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ABSTRACT 

In the fundamental theorem of arithmetic every integer greater than 1 

either is a prime number itself or can be represented as the product of prime 

numbers and this representation is unique. In this paper, we represented a 

number in DNR2 expression by using unique factorization theorem. 

Keywords: Prime Number, Integers, Divisors. 

 

Introduction: 

 The fundamental theorem of arithmetic, also called the unique factorization theorem 

states that, every integer greater than 1 either is a prime number itself or can be represented as 

the product of prime numbers. 

For example: 

1200 = 24 × 31 × 52 = 2 × 2 × 2 × 2 × 3 × 5 × 5. 

As Canonical representation of a positive integer is every positive integer n > 1 can be 

represented in exactly one way as a product of prime powers. 

i.e., 𝑛 = 𝑝1
𝑘1 × 𝑝1

𝑘2 × … 𝑝𝑟
𝑘𝑟  where 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟  are primes and then kr are positive 

integers. This representation is commonly extended to all positive integers, including 1, by 
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the convention that the empty product is equal to 1 (the empty product corresponds to k = 

0). This representation is the canonical representation of n. 

For example: 

999= 33 × 37, 1000 = 23 × 53. 

The concept of unique factorization plays an important role in modern commutative ring 

theory.  

A. G oksel A garg un and E. Mehmet Ozkan [1] discussed comprehensive survey of the 

history of the Fundamental Theorem of Arithmetic. They investigated the main steps during the 

period from Euclid to Gauss. 

Artur Korniowicz and Piotr Rudnicki [2] formalized the notion of the prime-power 

factorization of a natural number and prove the Fundamental Theorem of Arithmetic. They prove 

how prime-power factorization can be used to compute: products, quotients, powers, greatest 

common divisors and least common multiples. 

We consider any positive integer N greater than 1 and write number N in the 

product of powers of prime factors. This factorization we write by DNR2 expression 

discussed in the following. 

1. Let 𝑁 = 𝑝1
𝑘1 where p1 is a prime number and k1 is any positive integer, we write N by the 

DNR2 expression, 

 𝑁 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1. 

2. Let 𝑁 = 𝑝1
𝑘1 × 𝑝2

𝑘2  where p1, p2 is a prime number and k1, k2 is any positive integers, we write 

N by the DNR2 expression, 

𝑁 = [(𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1]  

× [(𝑝2 − 1) × (sum of proper divisors of 𝑝2
𝑘2) + 1] 

3. Let 𝑁 = 𝑝1
𝑘1 × 𝑝2

𝑘2 … × 𝑝𝑟
𝑘𝑟  where 𝑝1, 𝑝2, … , 𝑝𝑟  is prime number and 𝑘1, 𝑘2, … , 𝑘𝑟  is positive 

integers, we write N by the DNR2 expression, 

𝑁 = [(𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1]  

 × [(𝑝2 − 1) × (Sum of proper divisors of 𝑝2
𝑘2) + 1] … 

             × [(𝑝𝑟 − 1) × (Sum of proper divisors of 𝑝𝑟
𝑘𝑟) + 1]. 

Definition 1:  If a, b ∈ Z we say that a divides b, written a|b, if ac = b for some c ∈ Z. In this case, 

we say a is a divisor of b.  We say that a does not divide b, written a - b, if there is no c ∈ Z 

such that ac = b. 

Definition 2:  An integer n > 1 is a prime if the only positive divisors of n are 1 and n. A prime 

power is a positive integer power of a single prime number. 

Result 1: If 𝑁 = 𝑝1
𝑘1 > 1, where p1 is any prime number and k1 is any positive integer, can be 

expressed by DNR2 expression as, 

𝑁 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1. 
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Proof: Consider 𝑁 = 𝑝1
𝑘1 > 1, where p1 is any prime number and k1 is any positive integer. We 

prove this result by using mathematical induction. 

a) Let k1 = 1, we write by DNR2 expression 

𝑁 = 𝑝1
1 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1

1) + 1 

  = (𝑝1 − 1) × [1] + 1 = (𝑝1 − 1) × +1 = 𝑝1, 

i.e., it holds for k1 = 1. 

b) Let us assume it also holds for k1 = r, r < k1, then we write by    

DNR2 expression, 

𝑁 = 𝑝1
𝑟 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1

𝑟) + 1. 

Now to prove it also hold for k1 = r + 1, we can write 

 𝑁 = 𝑝1
𝑘1 = 𝑝1

𝑟+1 = 𝑝1
𝑟 × 𝑝1

1 

 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑟) + 1 

      × (𝑝1 − 1) × (Sum of proper divisors of 𝑝1
1) + 1 

= [(𝑝1 − 1) × (1 + 𝑝1 + 𝑝1
2 + ⋯ + 𝑝1

𝑟−1) + 1] × [(𝑝1 − 1) × (1) + 1] 

= [𝑝1 + 𝑝1
2 + 𝑝1

3 … + 𝑝1
𝑟 − 1 − 𝑝1 − 𝑝1

2 − 𝑝1
3 … − 𝑝1

𝑟 + 1] × [(𝑝1 − 1) × (1) + 1] 

= 𝑝1
𝑟 × 𝑝1 = 𝑝1

𝑟+1. 

Therefore, by mathematical induction it holds for 𝑁 = 𝑝1
𝑘1 

Hence, we prove that, 

𝑁 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1. 

We illustrate this result by following example. 

Example 1: Let N = 125 then we can write by DNR2 expression,  

125 = 53 = (5 − 1) × [1 + 51 + 52] + 1 

= 4 × [1 + 5 + 25] + 1 = (4 × 31) + 1 = 124 + 1 = 125. 

Result 2: If 𝑁 = 𝑝1
𝑘1  × 𝑝1

𝑘1  then by DNR2 expression, 

𝑁 = (𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1 

×  (𝑝2 − 1) × (Sum of proper divisors of 𝑝2
𝑘2) + 1. 

This result 2 can be proved by mathematical induction as proved in the   result 1. 

We illustrate this result by following example. 

Example 2: Let N = 784 then we can write by DNR2 expression, 

784 = 24 × 72 = [(2 − 1) × (1 + 21 + 22 + 23) + 1] × [(7 − 1) × (1 + 71) + 1] 

       = [1× (1+2+4+8) +1] ×[6× (1+7) +1]=[15+1] × [48+1]=16×49= 784. 
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Result 3: If 𝑁 = 𝑝1
𝑘1 × 𝑝2

𝑘2 … × 𝑝𝑟
𝑘𝑟  where 𝑝1, 𝑝2, … , 𝑝𝑟  is prime number and 𝑘1, 𝑘2, … , 𝑘𝑟  is 

positive integers, we write N by the DNR2 expression, 

𝑁 = [(𝑝1 − 1) × (Sum of proper divisors of 𝑝1
𝑘1) + 1]  

 × [(𝑝2 − 1) × (Sum of proper divisors of 𝑝2
𝑘2) + 1] … 

             × [(𝑝𝑟 − 1) × (Sum of proper divisors of 𝑝𝑟
𝑘𝑟) + 1]. 

We illustrate this result by following example. 

Example 3: Let N = 9000 then we can write by DR expression,  

9000 = 23 × 32 × 53 

       = [(2−1)×(1+21 +22)+1]×[(3−1)×(1+31)+1]×[(5−1)×(1+51 +52)+1] 

       = [1 × (1 + 2 + 4) + 1] × [2 × (1 + 3) + 1] × [4 × (1 + 5 + 25) + 1] 

       = [(1 × 7) + 1] × [(2 × 4) + 1] × [(4 × 31) + 1] = 8 × 9 × 125 = 9000. 

Conclusion 

Every positive integer can be expressed by unique factorization theorem, 𝑁 = 𝑝1
𝑘1 × 𝑝2

𝑘2 … ×

𝑝𝑟
𝑘𝑟  where 𝑝1, 𝑝2, … , 𝑝𝑟  is a n y  prime number and 𝑘1, 𝑘2, … , 𝑘𝑟 is a n y  positive integers. This 

representation we can write by DNR2 expression. So, we write any positive integer in DNR2 

expression by using unique factorization theorem. 
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