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| mevsaam ABSTRACT

K The effects of damping has been a major concern of researchers in
BOMSR dynamical systems. In this

et study, perturbation and asymptotic expansions were employed in the

solution of the equations of motion of a viscously and lightly damped
discretized imperfect spherical cap subjected to impulse loading. The
dynamic buckling behaviour of the structure revealed that the dynamic

buckling load Ip increases with light viscous damping S . This shows that
damping enhances the dynamic stability of structures. Consequently, we
opine that damping should be incorporated in the construction of dynamical
systems.

Keywords and Phrases: perturbation, asymptotic expansion, viscous,
axisymmetric, damping, elastic.

1. INTRODUCTION

The dynamic stability of elastic structures under various loading histories which are
time — dependent, aroused a wide range of inquests into the subject area. Some of the
researchers include Svalbonas and Kalnins [4], Wang and Tian [5 - 6], Ette and Osuji [7],
Aksogan and Sofiyev [8], Ette et al. [9], Ette [10] among others. The dynamic stability of elastic
structures under the stress of dynamic loads is a primary suitability criterion for the choice of
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such structures for practical purposes. However, some researchers have come up with the
inclusion of damping in the dynamical system so as to ameliorate the devastating effects of
dynamic loads. These include Ette and Osuji [11 - 12], Osuji et al. [13] and others. In this
investigation we shall use the perturbation technique with asymptotic expansions of the
nonlinear equations of motion of the system. The original investigation from where this study
is an extension, was made by Danielson [14] who used the concept of Mathieu-type of
instability in a singular perturbation analysis of the problem. Danielson discretized the normal
displacement W(x, y, t ) on a point on the spherical cap in the form

W(x, y,t) = & (T)Wolx, y) + & (T)Wilx, y) + &, (T )Wa(x, y) (1.1)
where Wo, W1 and W; are the symmetric pre-buckling mode, axisymmetric buckling mode

and a non-axisymmetric buckling mode all of which are functions of the space variable (x; y)
and&, (), & (1) and &, (1) are the respective time dependent amplitudes. He equally

discretized the imperfection function W (x, y) in the shape of the buckling modes namely:
W (x,y) = EW1+ EW, (1.2)

where 6?1 and 52 are the amplitudes of the axisymmetric and the non-axisymmetric
imperfections. We shall let 0 < ;71 <1, 0< 52 < 1 and assume that they are non-related

mathematically. By substituting (1.1) and (1.2) into the relevant compatibility dynamic
equilibrium equations of the simple quadratic elastic model structure and simplifying,
Danielson obtained the following dynamic equilibrium equations for a discretized

imperfect spherical cap under a step load.

idzfo B _

ST e 13)
L0 g K KE: — B, (L.4)
, dt

d? _
i2 diz +&,(1-&)+ &S, =6,4, @.5)
W, t
£,00) =%(0>:o. @=012 (L6)

Where for a step load, f(t) =1.Here, @, arethe circular frequencies of the associated modes
&,1=0,1,2, while dis a non-dimensional load parameter such that 0< A< 1. Danielson

solved the above coupled nonlinear differential equations by using the following
assumptions:

(a) Quantities of the order of shell thickness divided by the radius can be neglected
compared to unity.
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(b) Tangential and boundary effects are negligible.

(c) c_j?l can be set equal to zero assuming that non-axisymmetric imperfections are the main

cause of the reduction in the elastic strength of the structure.

(d) The effects of the quadratic term Klgglz may be neglected compared to the effects of

coupling between the buckling modes for initial buckling behaviour.

-
(e) The ratio of the subsequent frequencies namely —-is taken as (1—v) where v is the
i1
Poisson’s ratio.

In [15] , Ette extended Danielson’s earlier study in [14] to the case of an axial impulse and
unlike that of Danielson, obtained the following striking results by incorporating all nonlinear
terms as well as all the imperfection terms —

(i) By neglecting any imperfection, we automatically neglect the coupling effect of the
buckling mode that is in the shape of the mode neglected, with other buckling
modes.

(ii) The effects of the nonlinearity of any mode that is in the shape of the neglected mode
is also neglected.

(iii)  The only condition in which the coupling effects of any mode (be it pre-buckling or
buckling mode) is felt is if the imperfection in the shape of the mode coupling is not
neglected. Ette [15] showed that his findings and observation also hold for step
loading case.

The present study is an extension of Ette’s [15] findings to the case where (a) the discretized
imperfect spherical cap is viscously and lightly damped. (b) The damping parameterf_is
independent of the imperfection parameters & and&,i.e. & is not related to & or &, . Itis

also worthy of note that this study is a direct extension of Osuji et al. [13] wherein the simple
guadratic elastic model structure was trapped by an impulse; see Figure 1. Relatively recent
investigations on the subject matter include Ette et al. [9], Ette and Osuji [11 - 12] and Osuji
etal [13].

2. MATERIALS AND METHOD
FORMULATION OF THE PROBLEM

By substituting 15(t) for Af (t)in (1.3) as well as the damping terms C1% , C % and

dt Y df
dé, . .
ClF into (1.3), (1.4) and (1.5) respectively, we have;
1 d?%, dé _
— +C, 2+ & =16(t 2.1.1
o di? L gE S (t) ( )
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1 d? d _
LG B A 0-8) K K =B (212
1 d? =
2 —é:z 52 +&U-&)+ &&= £ (2.1.3)
@, dt?
§a(0‘)=%(0‘)= 0,0=0,12 (2.1.4)
where | = impulse amplitude and 15(f) is the Dirac-delta function of time t .

2.2 ASYMPTOTIC SOLUTION

Ao _ e P8 20

at 07 »qez W0 G2 = 0,1,2 (2.2.1)

Let t=aw,t.Therefore, we have

We now substitute (2.2.1) into (2.1.1) — (2.1.3) and rewrite the resulting equations with the
damping constant&, where 2§ = Cyw,,0 < & << 1(2.2.2) Thus integrating the resulting

equation from the substitution into (2.1.1) above, from (07)

to (0"), we have

d é:O 5 _ +
2k g2 tH=0 >0 (2.2.3a)
50(0+)=o,ddit°(o+)=|, dditf(o*)= r=1,2 (2.2.3b)

Solving the differential equation (2.2.3a,b), we have

I = . o\
S(t)= e Tsingt, p=0-2%) 224
Substituting rfo(t) from (2.2.4) into the resulting equation from (2.1.2) and (2.1.3)

we have respectively;

&t i
082520 50 e I Qi Qi 5 I 2

2 _ &t . _ &t o:
d “2 , pgr? 952 A2 L R2g, _g5p 8 SR pars _zg 80 SINA (2.2.6)
dt dt 1 1
where O<e<<l and
2 2
g:l(ﬂ], Q=% R=%, s{&j (2.2.7)
@y @, @, @,

Since 0<¢ <<1, and
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1 z2
Q= (1—EZF = [1—%—...), then singt =sint
Assuming (2.2.8) in (2.2.5) and (2.2.6), we have respectively

dd o1 51 élQ — &€ [ +%+ ]Sint_QzKlglz

+28Q? ¢

+K,Q%,° —Zlg[l+dfl ...]sint

2
ddt§22 +2§R2 dd§2 +§2R2 5253( él‘ JSlnt

+R*¢E, =27, sg(1+ & ...Jsint

where for convenience, we set & =27 and&, =27, . Let
G)=nltzie.8)=3 Y mltwie E'd)
i=1 j=0

gtz E)e'E

Ms
Ms

gz(t) (t 7., 5)

N
]
o

i=l ]

where
f:a,%%:gm+5;ﬂ k=12
Using (2.2.11c) and substituting (2.2.11a) into (2.2.9) and equating coefficients
of gié?" in the resulting equation fori=1,2and j=0, 1 we have
(e): Thow + Q%M = Z;sint
(68): Miae + Qs = =20, — 2Q°ny0,

Z,sint

(5622): Thow + Q27712 = _2Q27711,t - 27711,tr Mo — 2Q27710 r

(e

(525_): Mo T Q27721 = _2Q27720,t =214, + 1, Sint
+ 2Q2[K177107711 - Ky661]
17;(00)=0, i=12,.., j=012..,17,,00)=0

c Moo T Q27720 =1, Sint + K1Q277102 - Kznglo2

M (00)+7,.(00)=0, p=k-1, k=12,.
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(2.2.9)

(2.2.10)

(2.2.11a)

(2.2.11b)

(2.2.11c)
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(2.2.12b)

(2.2.12c)
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(2.2.12¢)

(2.2.13a)

(2.2.13b)



Vol.10.Issue.2.2022 (April-June) Bull.Math.&Stat.Res (ISSN:2348-0580)

72:(0,0)=0 (2.2.13¢)
12,(00)+7,,.(00)=0, p=k-1, k=12,.. (2.2.13d)

Similarly, from (2.2.10), we obtain the following

(€): Gioq + Ry = Z,sint (2.2.14a)
(62): Gy + R = —2R%0, — 2610, (2.2.14b)
(682): G + R, = —2R%, — 26111, —G10.e — 2R%G10, + Z_Zszsmt (2.2.14c)
(82)1 oot + R%620 = S SiNt — R¥7706,, (2.2.14d)

(525): Sorn T R2§21 = _2g20,tr - 2R2§20,t +Sgy, sint — R2[7711§10 + 106111 (2.2.14e)

;(00)=0, i=12,.., j=012,.., ,,/(00)=0 (2.2.15a)
64:(00)+4,.(00)=0, p=k-1, k=12,. (2.2.15b)
520:(0,0)=0 (2.2.15¢)
65:(00)+¢,,.(00)=0, p=k-1, k=12,.. (2.2.15d)

Now solving the differential equation (2.2.12a) using (2.2.13a) fori=1,j =0,

we have
1o (t,7) = 0, (7)cosQt + 3, (r)sinQt + Z,h, sint (2.2.16a)
~-Z
alO(O)ZO’ 1310(0):Tlhl (2.2.16b)
where
1
hl—Qz_l, Q=1 (2.2.16¢)

We now substitute (2.2.16a,b) into (2.2.12b) and to ensure a uniformly valid solution

in the time scale t, equate to zero the coefficients of cosQt andsinQt to get respectively;

B+ Qzﬂlo =0 and oy, + Qzam =0 (2.2.17a)

where ()' = %z')

On solving (2.2.17a) using the initial conditions in (2.2.16b), we have;

t(r)=0 ﬂ()z_hiT (2.2.47)
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Thus we have from (2.2.16a) and (2.2.17b)
: . —Zhe?T _
10(t,7) = Bo(7)sinQt + Z,h sint = T+ Z,h sint (2.2.17¢)
We now solve the remaining non-homogenous equation in the substitution into (2.2.12b)
using (2.2.13a,b) fori=1,j=1, k=1, to get
my(t,7) = e, (7)cosQt + B, (z)sinQt — 2Q%Z,h* cost (2.2.18a)

a,(7)=2Q°Zh’, B.(r)=0 (2.2.18b)

We now substitute for 7, and 7,into (2.2.12c) from (2.2.18a) and (2.2.17c)

respectively and to ensure a uniformly valid solution in the time scale t, equate
to zero the coefficients of cosQt and sinQt to get respectively;

BL+Q°B,=0 and o, +Qay, = 28+Q,B10 (2.2.19a)
On solving (2.2.19a) using the initial conditions in (2.2.18b), we have
(r)= 2Q [I e%* (B (5) + 2Q*(s)s + 2Qez,,(0) |, £,(r)=0 (2.2.19b)

Therefore, we have from (2.2.18a) and (2.2.19b) that
1y, = o4, (7)cosQt — 2Q%Z,h* cost (2.2.19¢)

We now solve the remaining differential equation in the substitution into (2.2.12c)
using the first of (2.2.13a,b) fori=1,j=2 and k = 2 to get

1, (t,7) = e, (r)cosQt + B, (z)sinQt + FlThl - 4Q421h13}sint (2.2.20a)
a,(r)=0, B,(0)=Zhh, (2.2.20b)
where
.Q
h, =4Q°h* — 2Q > —Q%+2Q, (2.2.20c)

To solve (2.2.12d), we first solve (2.2.14a,b) using (2.2.15a) fori=1, j= 0 and get

G0 = 710(7)cOSRL + 6, sin Rt + Z,Sf, sint (2.2.21a)
70(0)=0, 6’10(0)=—22:f1, f, =ﬁ, R=1 (2.2.21b)

We now substitute (2.2.21a) into (2.2.14b) and to ensure a uniformly valid solution
in the time scale t, we equate to zero the coefficients of COSRt andSin Rt respectively to get
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&, +R*G,=0 and y,+R%,,=0 (2.2.22a)

On solving (2.2.22a) using the initial conditions in (2.2.21b), we have

Z,Sfe R
910(2')= _%’ 710(0): 0 (2.2.22b)

Therefore, we have from (2.2.21a,b) and (2.2.22b) that
G0 = O, (7)sinRt + Z,Sf, sint (2.2.22¢)

We now solve the remaining equation in the substitution into (2.2.14b) using (2.2.15a,b)
fori=1, j=1and k=1, to get

¢, = 7, (z)cosRt + 6, (z)sinRt — 2R?Z,Sf,* cost (2.2.23a)
1(0)=2R?Z,Sf?,  6,(0)=0 (2.2.23b)
We next substitute 77, andg,, from (2.2.17c) and (2.2.22c) respectively into (2.2.12d) and

the resultant equation is similarly solved to get

_ - T, rcos2t  rcos1-Q)
Mo (t,7) = @5 (7)c0SQt + By (7)siNQt + o’ + o4 + 201

(2.2.24a)
_rcos1+Q) i cosl—-R}t  cosl+R)}t | g,cos2Qt . 9, COS2R
2Q+1 4 Q2_(1_ R)Z Q2_(1+ R)?_ 3Q2 Q2_4R2
a20(0)= Kl(Qz_lhl)295 + Kz(szsfl)zge + Z1h1g7’ ﬂzo(o): 0 (2.2.24b)
where
2 2
g; = _9% 9 G + 3 + 9s (2.2.24c¢)
20+1 6 2 2(Q*-4) 2Q-1
g g 0,95 1 g
_ ‘i s 90 49 2.2.24d
Jo Q?*-(1-Rf} Q*-(@1+R} 2 2(@*-4) 2Q-1 ( )
2
- % %, 1 g 2.2.24
Y7200+ 2 ' 2[Q7-4) 220-1) (2.2.24e)
1 1 1 1
gl:1+&, 92:14_?, 9326’ g4:E (2.2.24f)

Q;t%,Z . Q=(1-R), (1+R)

We now substitute for7,,, 7, 1,  ¢pand & obtained above into (2.2.12e) and by

solving for uniformly valid solution in the time scale t, with respect to cosQt and sinQt

obtain the following;
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Bo(7)=0 and ay(r [K (Qzh, ¥ 9, + K,(QZ,Sf, F g, +zlhlg7Je o (2.2.25a)

Hence,

B h cosZt 0 cos(1-Q)t rcos(l+Q)t
Uzo(t’ 7)= azo( JcosQt + Q Q 20-1 2Q +1

.2.25b
—r{ cosl-RJt cos(1+ R)t }_qlCOSZQt+q20082Rt (2:2.250)
1Q2-(1-R) Q*-(@1+R)

3Q° Q% —4R?
Solving the remaining part of the equation in the substitution in (2.2.12e), we obtain

r,sin2t r,;sin2Qt r,sin2Rt
+ 2 + 2 2
Q*-4 3Q Q°—4R

7721(t’7) = a21(T)COSQt + ﬂzl( )SIth

L GSin(@-Q)  rsin(L+Q) | rosin(L+R)  rsin(l-R) (2.2.26a)
20-1 2Q+1 Q ~(@1+RY Qz—(l_ R)
2,,(0)=0, £,,(0)=K,(QZh,F 0,0 + K,(QZ,S, ¥ 0, + Zi1y0ss (2.2.26b)

where

I,isafunctionof z and r,,i=1, 2, .., 11 are functions of 7 which are
coefficients of cosQt, sinQt, cosRt, sinRt, cos@—Q)t , sin@—Q)t , cos@L+Q)t

sin(l+Q)t, cos+ R)t, cos(l—R)t, sin(l— R)t and sin(1+ R)t respectively. Also

, While g; , =289, .., 23 are constant terms

_ 29 2 2 2
ql(T)I KlQ ﬂlo ’ qg(T): KZQ glO
2 2
independent of 7.

Similarly, we solve equations (2.2.14c — e) to get the following results;

¢, (t,7)=7,,(r)cosRt + 6,,(z)sinRt + [% - 4R“Z_28f12jsint (2.2.27a)
712(0):()' 912(0) (ZZS 4R'Z,Sf, J;\: 7/11T(0) (2.2.27b)

r,cos2t r,cos(l-R r,, cosil+ R
gzo(t’f):?/zo(T)COSRt"_ 1;2_4 +- ZR( 1 )t_ 5 2R(+1 )t

_G_S{COS(Q—R)t+cos(Q+ R)t}—r cos(l Qk , cosf1+QX | (2.2.27c)
Q 2R-Q 2R+Q 16 (1 Q) R2 —(1+Q)2 R’

70(0)=Z,Z,SL,, +Z,Sl,, , 6,,(0)=0 (2.2.27d)

where
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L= OsLs + gsL15 Ly B L
® "2R-Q 2R+Q RZ—(l Q) R’ -(1+Q)

RZLij4 B 2|R:13—1+ 2|I;il+ 9. Ly

I | |
12 3, 4

L, = =
© TR2_4 T gR-1 2R+1
—Sf R? Rh, f
o= o Ly = b = L =
Sf Rhf fR —R°h f -R
S LT BER SPGB
e,1(t.7)= 7,.()cosRE + 0, (z)sinRt + flsj'”Zt 4 faSIN@ =R _ psin(l+ R)
R°—4 2R -1 2R +1 (2.2.28a)
r213|n(Q R)t rz?_sin(Q+R)t+ I sin(l— Q)t r,sin(l+Q)t -
20R - Q? 2QR+Q*  R*-(1-QY Rz—(1+Q)2
7,(0)=0, 0,(0)=Z,5l,, +ZZ,SL, (2.2.28b)
where . , i =18, 19, ..,24 are functions of zwhich are coefficients of sin2t ,

sin(L— R}, sin(L+ R)t, sin(Q—R)t, sin(Q+R}t, sin(L—Q)t and sin(L+Q)t respectively.
- 94(1+R)|20 _ 294'18 _ 94(1_ R)I19 +9,9 21" g4|1’3 _ g4|1,4
2 2R+1 R?’-4  2R-1 V90 2R-1 2R+1
L - 94(1"' R)Lzo _ 94(Q+ R)Lzz _ 294"18 _ 94(1_ R)L19 _ 94(Q_ R)LZI
= 2R +1 20R+Q?> R?’-4  2R-1 2QR - Q?
_ 94(1_Q)L23 _ 94(1+Q)|—24 _ 9,5 _ 9,
2-(1-Qf R*-(1+Qf 2R-1 2R+1

Lg,L 1,1 Lol 1 . 1
51 20R—Q7 T 20R+ Q7| Y4 R?-(1-Qf R*-(1+Q)

+ 94992L

p o RSH R3h1f1 y _ —RShy L, - thlfl , _ RQhf,

13 2 » H13 v 114 2 ) 4 y M5 2 ’

, R*Qhf 2R Sf, 2R

L. = Qzll,|18 o~ RISE L = R2hl+Rthf+Rh1f

L+ SR? f12’ Ly = RQ2h12 fi— R4hl f12
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L - 2RSf,(1+R) —2R*h f,(1+R)
2 2R +1 2R +1

L. = 2R4h1f12 _ Rshl fl(Q — R) _ Rshl fl(Q — R)
- Q 2Q°R-Q° 2QR-Q*

_RNhHQ+R) Rhfi(Q+R), RQ?h’f, + 2R*n f,*

+R%SE, L, = —RQ%h’f, - R*h 1

~RQ’h/’f,

? 20°R+Q° 20QR + Q2 Q
R4h1f1(1_Q) RZthfl(l_Q) 22 2 R4hlf12
L, =—f 2 21" "2 2 -R fl
AR --QF] R-G-qF [ 2rhtTg
Rnf,1+Q) RNQhf(1+Q) _2mz.2, RN}
Loy =1 2 7] 2 > —R fi——
df-af] R-aiqr "OMRTTg

So far the total (net) displacement §(t,2';5,§) is the sum of the two displacements n(t, T,&, f_)
and g(t,r;g,f) where, from (2.2.11a,b), we have

n(t,r;g,g?): 5[7710 + 57711 + ]+ 52[7720 + 57721 + ]+ (2.2.29a)

g(t, r;g,é?)z g[glo + &g + ]+ gz[gzo + &g, + ]+ (2.2.29b)
2.3 MAXIMUM DISPLACEMENT
Let the maximum displacement of n(t,r;g,;?) be 7, attained at t=t, r=r,ie.
n,= n(ta,ra;g,g) and the maximum displacement of g(t,r; g,f_) be ¢, attained at
t=t, r=r7,,le ¢ = g(tc,rc;g,g?) . The condition for 7, is

Mt 7,)+&n.(t,7,)=0 (23.1a)

Let

t, =ty + Etyy ot ety + Elyy .|+ £2 [ty + Ly + ] (2.3.1b)
Therefore from (2.2.11c), we have

T, =¢t = E{to &ty ot £ty + Ety |+ [y + Ay . ]+ } (2.3.1c)

We next expand every function of t, in a Taylor series about t, =t, and every function of 7,

about7, =0. Using (2.2.29a), we therefore have

Ny = 77(ta , Ta) = 5[7710 + é?{toﬂho,t + 8o, + 7711}]@0,0) + 52[t107710,t 175
+ f_ {t117710,t + oo, + totlioTio.e T tobio?ho s T Loiae + ToaTa0t (2.3.2)
+ o7, + 7721}](t0 ot 0(56?2 )"‘ 0(5252)

To evaluate the time parameters as expressed in (2.3.2), we expand (2.3.1a) in Taylor
series using (2.3.1b, ¢) and equate to zero relevant coefficients of gig?j ,i=1,2,..,j=0,1,..

and obtain the following:
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(t,,0)™ 0, (g_): [t017710,tt + oMot + Ty + 771o,r](t0,0): 0

(8) “Thoyt
(‘92 ): [t107710,n T 120, ](t0,0)= 0

(5 Zé? ): [t117710,tt + Uothotr + tottioMome T Gotoio e + Yol + tora0.1

+8M0.0r + Moae + Yolho e + Yoo o + 7720,f] =0

(t5.0)
To solve the first part of (2.3.3a), we substitute (2.2.17c) and simplify to get
cost, —cosQt, =0

An approximate value of t, is obtained by maintaining the first few terms in the

series expansion of (2.3.4a) to get

i[ 12 jz
1+Q?

From the second part of (2.3.3a) we obtain after simplifying

QsinQt,
QsinQt, —sint,

Similarly, we solve (2.3.3b) to obtain

- _ |K1(Qz_lhl)2 928 + KZ (QZ_2Sf1)2 g29 + Z_lhlg30 |
Zh[QsinQt, —sint, ]

L

1

bty = 2h1Q2 +

th

(2.3.3a)

(2.3.3b)

(2.3.3c)

(2.3.4a)

Taylor

(2.3.4b)

(2.3.4¢)

(2.3.4d)

where @,, i = 28, ...,30 represent the terms associated with Kl(Qz_lhl)z,Kz(QZ_ZSfl)zand

Z,h, respectively in the solution of (2.3.3b).

We evaluate the maximum displacement 17, by first evaluating and substituting the

respective terms in (2.3.2) to obtain

7, =1ty 7,) = £l Z0Gss + E1Z1G,0e0 ]+ £°[ K(QZ,f g,

+ K, (QZ,S, ) s + Zies + E{ t0Z,00e0s0 + Lot ZiN T
+toZi 0y ey + todEK (QZNJ 055 + K, (QZ, S, 50 + Zi1, 0503}
+K,(QZh f g + K, (QZ,5,f 957 + Zi00ss } ]

(2.3.5)

where @, i = 31, .., 62 are the terms associated with Kl(Qz_lhl)z,Kz(QZ_ZSfl)zand Z.h

respectively and their combination with the time parameters.

Also the condition for ¢, is

g,t(tc'rc)"' é?g,r(tcyfc)z 0

Let

W. 1. OSUJI
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t, =+ &+ 4 effyy + EEy + o |+ 2 + Fpy | (2.3.6b)
T, =t = E{fo + & 4ot elfy + Ey 4|+l + Fp ]+} (2.3.6¢)
Using (2.2.29b) and expanding in Taylor series about (fO,O) we get

Se = g(tc’rc) = 8[§1o + g{fOlglo,t +f0§10,r + gll}ltoyo) + Sz[floglo,t + S
+ ":?{fnélo,t + floglo,r + fOlflogw,tt + fofloélo,tr + flogll,t + fOngO,t (2.3.6d)
+ ngZO,T + gzl}](fo,o) + O(gégz )+ 0(5252)

Similarly, to determine the time parameters expressed in (2.3.6d), we evaluate the terms in
the equation and compare coefficients of terms of & , 2 and £2£ . We solve respectively to

get;
1 ~ ~ ~ A —_— A
P O A P |t0I2+I3+I4| ¢ __[|5+ZlL1] 537
°~ 14+ R? » lo=— ( ’owo ( (2:3.72)
+R Il Il
where

I, = f,(RsinRE, —sinf, ), [, = R*f,cosRf,, [, =Rf,sinRf,, I, = 2R?f(sinf, - RsinRf,)

&:_%%ka%+2b?nﬁb_@—R%ﬁm@—Rﬁt+@+RMﬁMQ+Rﬁ
R? -4 2R-1 2R +1
QZ_%%Jng+2gfmﬁo_ﬂ—mgﬁm@—mg+ﬂ+mgﬁm@+R%
R? -4 2R-1 2R +1
+ (Q — R)L155|n(Q — R)to + (Q + R)L153|n(Q + R)to + (1_ QZLissm(l_zQ)to (2.3.7b)

Q(2R-Q) Q(2R+Q) R’ -(1-Q)

(1+ Q)L165in(1+Q)fo
R? - (1+QY

Substituting (2.3.7a) into (2.3.6d) we obtain after simplifying
6. =t z,) = e|Z,Shy + ERZ,S0 |+ 2] Z,80,, + Z,Z,S0, + E{ 2,5,

+8,60Z,5h +E,60Z,S, +E0Z,S, + 6, (2,51, + Z,Z,S0, )+ §,(Z,5%, + Z,Z,SL,) (2.3.8)

Z,Shs + Z,Z,5, } ]+0(c82)+0(e2&?)
where ﬂ and I:k ,i=2,..,15,k=4,6, 7 are constants arising from the above
Substitution and simplification similar to those of (2.3.7b).
Consequently, total or net maximum displacement¢,is obtained from (2.3.6d) and
(2.3.8) as
E=n,+¢,=6C,+£°Cy+... (2.3.93)

where
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C = [Z_1h1901 +Z,Sly + E{Z_lhlgoz +Z,Sl, }] (2.3.9b)
C, =[ Ki(QZN) 95 +K,(QQZ;S1,) 0oy + Zigss + 2,31,
+Z,Z,5L, + &4 Kl(QZ_1h1)2 Jos + Kz(QZ_ZSfl)Z Gor + ZiN g (2.3.9¢)

+Z,8k, +Z,Z,5L,, } ]+0(2?)+0(c22?)
where
Oo1 = Osor o = ias 9o =16959e0+ Lo =5+ Gog = e T = Usas Gos = Use
log = Lias Loy = L, Qo5 = toaG2s + 107 + Gess Gor =tor 0o + 1oz + Usy
Jos = tio95Geo + tortioJer +tioGa eo +tonFs0 + o Gso + Tsa Loy = Ful + L, + L
1oy = €l + €Ll +E£00 + €, + 6,0 + €1, + 1
According to Budiansky and Hutchinson [1 — 3] and Ette [10], the condition for

dynamic buckling is

ar g (2.3.10)
dé,

Using the method of reversal of series by Amazigo [16], we have

e=d& +d, &2 +d &0 +... (2.3.11)

We now substitute for &, from (2.3.9a) into (2.3.11) and equate the coefficients of ¢ and g’

respectively to get

d=— and d,=—-"=% (2.3.12)

Since C,,C,,... ,dependonl , we apply (2.3.10) on (2.3.11) to obtain

c’
— (2.3.13)
gaD 2C2
where &, is the maximum displacement at buckling and the right hand side of (2.3.13) is
evaluated at | ;. By evaluating (2.3.11) at buckling we have
e=d, &, +d,E 7  +dEL 0 + . (2.3.14)

We now substitute d; and d, from (2.3.12) and &, from (2.3.13) into (2.3.14) and simplify

to get

_ G
4C,

where & is the value of ¢ at buckling.

&p (2.3.15)

On substituting &€ from (2.2.7), we have

W. 1. OSUJI —
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2
ID(ﬂj :4%1 (2.3.16)
2 2
-2
=S (2.3.17)
4C,

3. RESULTS AND DISCUSSION

3.1 ANALYSIS OF RESULT
For K, =0.28, K, =0.30, Zl =0.03, Zz =0.02and E =0.01, 0.02,...,0.10, the corresponding
values of |, were computed from (2.3.17). Hence figure 2 below shows the relationship
between the dynamic buckling impulse load |, and light viscous damping Eof the
discretized spherical cap.

3.2 DISCUSSION OF RESULT

The result in (2.3.9a — c) is carefully arranged as to display the contributions of each of the
terms in the governing differential equations (2.1.1) to (2.1.3). For example the terms

multiplying K;, K, Z,Z, indicate the contributions to dynamic buckling of the terms
KE&Z K& 2and £, respectively in the equations (2.1.2) and (2.1.3). Similarly, the terms
multiplying Z,h, and Z,, in the same vein, indicate the contributions of the terms &£& and
&,&, respectively. If we assume that Zz i.e. the non — axisymmetric imperfection equals zero,

then we have the following result from (2.3.16).

|D(ﬂ]2 o 290+ £0) - 821)
@y Kl(Qzlhl)z Jos + ZiNGgs + & {Kl(Qzlhl) Oos + Zlhlg08}

We observe the following from (3.2.1)

(a) The effect of the coupling is zero.

(b) The effect of the quadratic term K2§22 is also zero.
(c) The effects of the coupling term &,&, is zero.

(d) The effect of the coupling term &, &, is non — zero.

(e) This means that the only major non — linear term that influences buckling is

the quadratic term K.&”.

However, if we set  (Danielson’s assumption) as in [14], we have the following result as
obtained from (2.3.16)

ID(&T _ Z_zs(lm +é?|02)
Do KZ(QZ_ZSfl)ZgM +Z,Slgs +§_{K2(QZ_ZSf1)2 Jo7 + Z_ZSIO4}

(3.2.2)
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From (3.2.2), we observe the following

(f) The effect of the coupling term &, &, is again zero.

(g) The effect of the quadratic term Kl§12 is zero.
(h) The effect of the coupling term & &, is also zero.

(i) The effect of the coupling term &,&; is non zero.

(j) The effect of the quadratic term Kszzz is non zero and it is this term

that dominates the buckling process.
We make the following additional observations:

(k) The only condition in which the effect of the coupling term &, &, is feltis if none
of the imperfections Z, and Z, is set equal to zero.

(I) Once we set an imperfection equal to zero, the effect of the coupling of the
mode that is in the shape of the neglected imperfection, with any other mode,
be it buckling mode or pre — buckling mode, is automatically equal to zero.

(m) We note that setting Z, =0 automatically nullifies the effect of Klélz ; the
converse is however not true. In the same way, setting ZZ =0, nullifies the

effect of K,&,” .
(n) All these deductions confirm those obtained by Ette [13].

(o) If we setgE =0in (2.3.16), we obtain the same result obtained by Ette [13] for

the undamped case.

Finally, we observe that damping a system gives additional dynamic stability to any elastic
structure in the dynamic buckling process.

4. CONCLUSION

From the foregoing, we have successfully demonstrated that damping enhances the dynamic
stability of elastic structures in the dynamic buckling process. Figure 2 reveals a steady rise in

the dynamic buckling impulse load |, with increase in the light viscous damping& . This

corroborates the results of earlier investigations in the subject area. However, it is our candid
opinion that further work should be carried out in this area using other forms of dynamic
loading and engineering structures.
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TABLE 1: DYNAMIC BUCKLING IMPULSE LOAD |, WITH LIGHT VISCOUS DAMPING &

Bull.Math.&Stat.Res (ISSN:2348-0580)

£ 1001 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
I, | 3.20E- | 3.69E- | 4.19E- | 4.68E- | 5.17E- | 5.67E- | 6.16E- | 6.66E- | 7.15E- | 7.65E-
04 04 04 04 04 04 04 04 04 04
FIGURES
X
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KL(X-aXZ)/

Figure 1: A simple quadratic - elastic model structure
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FIGURE 2: A GRAPH OF DYNAMIC BUCKLING IMPULSE LOAD ID AGAINST LIGHT VISCOUS DAMPING g .
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