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ABSTRACT 

Using the known auxiliary parameters and the sample size information, we 

propose a new family of estimators for the population mean of the main 

variable in this study. The proposed class of estimators' sampling 

characteristics, such as bias and Mean Squared Error (MSE), are deduced up 

to approximately degree one. By reducing the MSE of the introduced 

estimators, the optimal values of the scalars of the proposed family of 

estimators are achieved. For these ideal values of the constants, the MSE of 

the proposed estimators' minimal value is likewise determined. The 

proposed estimator is hypothetically compared to the previously described 

existing population mean estimators. The proposed estimators' efficiency 

requirements for being more effective than the aforementioned current 

estimators are also obtained. Utilizing an actual, natural population, these 

efficiency conditions are confirmed. When compared to other population 

mean estimators, it has been found that the suggested estimators have 

lower MSEs. 

Keywords: Main Variable, Auxiliary Variable, Auxiliary Parameter, Bias, MSE.  

 

Introduction 

Instead of estimating a parameter, it is always preferable to calculate it. However, sampling is 

always the most effective method for obtaining information on the parameter if the population is 

sizable, and we estimate it using the sample data. The matching statistic is the best estimator to use 

when trying to estimate any parameter that is being studied, hence the best estimator to use when 

trying to estimate the population mean (Y ) of the primary variable (Y ) is the sample mean ( y ). 
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Despite the fact that y  is an unbiased estimate of Y of Y , it has a sizable sampling variance, thus we 

even look for biased estimators with a smaller MSE. The purpose of searching an improved estimator 

of Y is fulfilled by the use of auxiliary variable X , having a high positive or negative correlation with 

Y . The usage of X , which has a strong association with Y , serves the objective of finding a better 

estimator of Y .  

One of the most popular and straightforward estimating techniques is the ratio approach. The 

usual ratio estimator was developed by Cochran (1940) using positive correlated auxiliary data. 

Following Cochran (1940), a number of researchers, including Sisodia and Dwivedi (1981), Upadhyaya 

and Singh (1999), Singh et al. (2004), Al-Omari (2009), Yan and Tian (2010), Subramani and 

Kumarpandiyan (2012), Jeelani et al. (2013), and Yadav et al. (2019), revised the classical ratio 

estimator utilizing known X , including Coefficient of Variation.  Ratio and product estimators of the 

exponential kind were advised by Bahl and Tuteja (1991). Jerajuddin and Kishun (2016) used sample 

size along with auxiliary parameters to enhance the efficiency of the standard ratio estimator. To 

improve estimation, Singh and Tailor (2003) made use of data on the correlation coefficient of Y and 

X that was already known. A transformed X was utilized by Upadhyaya and Singh (1999).  

Gupta and Shabbir (2008), Koyuncu and Kadilar (2009), and Al-Omari et al. (2009) suggested 

innovative efficient ratio type estimators utilizing X parameters under simple random sampling (SRS) 

and rank set sampling (RSS) processes. Shabbir and Gupta (2011) and Singh and Solanki (2012) 

provided better ratio type estimators of Y under SRS and stratified random sampling approaches 

employing auxiliary information in quantitative and qualitative formats. In contrast, Yadav and Mishra 

(2015), Yadav et al. (2016), and Abid et al. (2016) proposed elevated ratio estimators of Y using known 

median of Y and a few customary and unusual supplementary parameters. Yadav and Kadilar (2013a, 

2013b) and Sharma and Singh (2013) proposed improved ratio and product type estimators of Y using 

known parameters of X .  

Different auxiliary information-based enhanced estimators were proposed by Yadav et al. 

(2017) and Yadav and Pandey (2017), respectively. Using well-known conventional and 

unconventional location parameters, Ijaz and Ali (2018), Yadav et al. (2018), and Zatezalo et al. (2018) 

developed improved ratio and ratio-cum-regression type estimators of Y . Yadav et al. (2019) and 

Zaman (2019) used information on the usual and non-usual features of X  to improve the estimation 

of Y . While Yadav et al. (2021) worked on a new class of Y estimators utilising regression-cum-ratio 

exponential estimators, Baghel and Yadav (2020) proposed a novel estimator for enhanced Y  

estimation using known X parameters. With the help of data on X , Yadav et al. (2022) proposed an 

enhanced estimator for calculating average peppermint oil yields. 

The goal of this study is to suggest some new estimators with higher efficiencies in comparison 

to other competing estimators that are being taken into consideration. We investigate the proposed 

estimator's large sample characteristics for a degree one approximation. The entire paper has been 

organised into several sections, including a review of existing estimators, a proposal for an estimator, 

a comparison of their efficacy, an empirical investigation, results and discussion, and a conclusion. The 

paper also includes a list of references at the end. 
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Review of Existing Estimators 

For an approximation of order one, we have shown many Y estimators in this section, along 

with their MSEs. Let the finite population U is made up of N different and recognizable units 

NUUU ,..........,, 21
 and the ‘Simple Random Sampling Without Replacement’ (SRSWOR) method is 

used to collect a sample of size n units from this population, assuming that Y and X has a strong 

correlation between them. Let (
ii XY , ) be the observation on the ith unit of the population, 

Ni ...,,2,1= . The manuscript contains the notations shown below. 

N - Population Size 

n - Sample Size 

Y - Study variable 

X - Auxiliary variable 

XY , - Population means 

xy, - Sample means 

yS ,
xS - Population Standard Deviations  

yxS - Population Covariance between Y and X 

yC ,
xC - Coefficients of Variations 

xM - Median of X  

 - Correlation coefficient between Y and X  

1 - Coefficient of Skewness of X  

2 - Coefficient of Kurtosis of X  

where, 
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The associated statistic y is the most appropriate estimator for Y , given by, 


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0

1
 

It is unbiased for Y , and given an approximation of order one, its sampling variance is, 

22

0 )( yCYtV =                 (1) 

Cochran (1940) suggested the usual ratio estimator of Y , utilizing the known X as, 
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It is a biased estimator and the MSE for the first degree approximation is, 

]2[)( 222

yxxyr CCCYtMSE −+=                (2) 

Sisodia and Dwivedi (1981) utilized the known 
xC and given an estimator of Y as, 
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The MSE of 1t for an approximation of degree one is, 
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Where, 
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Upadhyaya and Singh (1999) suggested the following estimator of Y by using the known 2 as, 
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The MSE of 2t for an approximation of order one is, 
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Singh and Tailor (2003) worked on improved estimation of Y using known  between Y  and X and 

introduced an estimator of Y as, 
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The MSE of 
3t for the first order approximation is, 
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Where, 



+

=
X

X
3

 

Singh et al. (2004) utilized the known information on 2 and proposed an enhanced estimator of Y

as, 
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The MSE of 4t for an approximation of order one is, 
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Yan and Tian (2010) suggested an estimator of Y by using the known 1 as, 
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The MSE of 5t for an approximation of order one is, 

]2[)( 5

22

5

22

5 yxxy CCCYtMSE  −+=              (7) 

Where, 
1

5



+

=
X

X

 

Subramani and Kumarpandiyan (2013) used the known 
xM and given an estimator of Y as, 
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The MSE of 6t for an approximation of order one is, 
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Jerajuddin and Kishun (2016) utilized the known information of n , the sample size and suggested the 

following estimator of Y as,  
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The MSE of 
7t for an approximation of order one is, 
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Suleiman and Adewara (2021) introduced a class of estimators of Y and given the seven members as, 
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where, 
i are the characterizing constants to be obtained such that )( )(8 itMSE is least and a and b

are either constants or auxiliary parameters. The values of ( a , b ) are (1, 
xC ), (

xC , 2 ), (1,  ), (1, 

2 ), (1, 1 ), (1, 
xM ) and (

xM , 1) respectively.  

The optimum values of the constants 
i is given by, 
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The least MSE of )(8 it for the optimal value of 
i is, 
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Proposed Estimators 

Motivated by Suleiman and Adewara (2021), we suggest the following modified family of estimators 

of Y as, 
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where, 1 and 2 are the characterizing scalars such that 121 + and a and b are either 

constants or auxiliary parameters as in Suleiman and Adewara (2021). It is to be worth mentioning 

that, if 121 =+ , the introduced family reduces to Suleiman and Adewara (2021) family of 

estimators. Thus the Suleiman and Adewara (2021) family of estimators of Y is the special case of the 

introduced family.  

We employ the following common approximations to examine the sample characteristics, such as bias 

and MSE, of the suggested estimators: 
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Expressing )(ipt in terms of sei ' ( 1,0=i ), we have 
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When Y is subtracted from both sides of the equation above, we get,  
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Considering both sides of the expectation in (11), we obtain the bias of )(ipt as, 
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Squaring on both sides of (11) and taking expectation, we get the MSE of )(ipt as, 
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Taking into account various expectations, we have,
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Where, 
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The optimum values of 1 and 2 , which minimizes the MSE of )(ipt are respectively given as, 
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Theoretical Efficiency Comparison 

In this section, we have made a theoretical comparison between the efficiency of the 

recommended estimator and the previously described existing Y estimators. We have also identified 

the conditions in which the suggested estimator outperforms the completion estimate.  

When the following conditions are met, the suggested estimator )(ipt is more effective than 

the estimator 0t .  

0)()( )(min0 − iptMSEtV , or 

1
2

2 +
Q

P
C y            

The introduced estimator )(ipt performs better than the estimator rt of Cochran (1940) for the 

following condition if, 

0)()( )(min − ipr tMSEtMSE , or 
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The suggested estimator )(ipt has lesser MSE than the estimator 1t of Sisodia and Dwivedi (1981) for 

the following condition if, 
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The estimator )(ipt outperforms the estimator 2t developed by Upadhyaya and Singh (1999) under the 

condition if, 
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The introduced estimator )(ipt is more effective in comparison to 
3t of Singh and Tailor (2003) if the 

following criteria are met, 

0)()( )(min3 − iptMSEtMSE , or 

1]2[
23

22

3

2 +−+
Q

P
CCC yxxy           

The estimator )(ipt is more efficient than 4t of Singh et al. (2004) for the criteria if, 
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When compared to Yan and Tian (2010) estimator 5t , the recommended estimator )(ipt is more 

effective for the condition if, 
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The introduced estimator )(ipt has lesser MSE than 6t of Subramani and Kumarpandiyan (2013) under 

the condition if, 

0)()( )(min6 − iptMSEtMSE , or 
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The suggested estimator )(ipt has lesser MSE than the estimator 
7t  of Jerajuddin and Kishun (2016) 

under the following condition if, 
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The estimator )(ipt is better than the family of estimators 
7t of Suleiman and Adewara (2021) under 

the condition if, 
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Numerical Study 

We have taken into consideration a real natural population from Murthy in order to assess 

the performances of the suggested and competing estimates of Y and to confirm the efficiency 

criteria of the provided estimator over the indicated existing estimators (1967). Following are the main 

and auxiliary variables of the considered population under consideration: 

 Y : Output for 80 factories in a region 

X : Number of workers 

The parameters of the population under consideration are presented in Table-1. 

Table-1: Parameters of the considered population 

Parameter Value Parameter Value 

N  80 yC  0.3542 

n  20 xC  0.7505 

Y  51.8264 1  1.0500 

X  11.2646 2  -0.0634 

  0.9413 xM  7.5750 

 

Table 2 shows the MSEs of )(ipt , the mentioned estimators stated above, and the percentage relative 

efficiency (PRE) of various estimators with respect to 0t . 
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Table-2: MSE of different estimators and PRE with respect to 
0t  

Estimator MSE PRE Estimator MSE PRE 

0t  12.63661 100.0000 
)(8 it  1.43999 877.5485 

rt  18.97931 66.58098 
)1(pt  1.38571 911.9231 

1t  15.25812 82.81892 
)2(pt  1.38584 911.8376 

2t  19.45925 64.93883 
)3(pt  1.38556 912.0219 

3t  14.45027 87.44895 
)4(pt  1.38867 909.9793 

4t  19.33831 65.34496 
)5(pt  1.38763 910.6613 

5t  14.01128 90.18883 
)6(pt  1.38882 909.8811 

6t  2.782544 454.1387 
)7(pt  1.38904 909.7369 

7t  1.838908 687.1801    

 

The results in Table-2 are also presented in the form of graph in Figure-1.  

 

Figure-1: PRE of competing and suggested estimators with respect to 0t  

Result and Conclusion 

Using the known auxiliary parameters and the sample size information, we proposed a novel 

family of estimators in this study for improved Y estimation. Up to approximation of order one, the 

bias and MSE of the introduced estimators are investigated. The efficiency criteria of the proposed 

PRE of competing and proposed estimators w.r.t. t0
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estimator over the rival estimators are determined by theoretical comparison of the recommended 

estimator with the previously described existing Y estimators. An actual natural population from 

Murthy (1967) is used to verify these efficiency conditions. It is clear from Table 2 that the competing 

estimators MSEs fall within the range [1.43999, 12.63661] while the MSEs of the introduced class of 

estimators ranges in [1.38556, 1.38904] and the PREs of the estimators in competition with respect 

to 
0t lie in the interval [64.93883, 877.5485] while the PREs of introduced estimators with respect to 

0t  lie in the interval [909.7369, 912.0219]. Thus it is clear that )(ipt  estimators of Y is the most 

efficient class of estimators as it has the lesser MSE and the highest PRE in comparison to the 

estimators of Y in competition. Therefore the introduced family of estimators is recommended for 

the use in different areas of applications.  
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