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ABSTRACT 

In this paper to give the effect of demographic variables on second cancer 

patients in this study using supervised machine learning methodologies. The 

social and demographic risk factors for developing a second malignancy 

were studied in this study. The following algorithms were investigated: RD-

RANSAC, k-Nearest Neighbor, Nave Bayes, Random Forest, and Neural 

Network. The socio-demographic risk factors retrieved from the 1000 

samples used are Gender, Undergo Radiation Treatment, Family Ever Had 

Cancer, Smoke, Diet & Exercise, Employment, Marital Status, Education, 

Income, Stress, Area, Age (in intervals), Age at First Cancer (in intervals), and 

Obesity. 

Key words: cancer cell, k-nearest neighbor, nave bayes, random forest, 

neural network. 

AMS Subject Classification: 46L53, 62C10, 14F05, 92B20. 

 

1. INTRODUCTION 

Regression is a term created by Francis Galton. The average height of children born to parents 

of a specific height tended to shift or "regress" toward the average height of the population as a whole, 

Galton observed in a well-known research. This was true even though tall parents had tall children 

and short parents had short children. In other words, children born to parents who are extremely tall 

or short tend to be closer to the demographic average in height. 
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Karl Parson, a Galton buddy who collected over a thousand records of family group heights, 

confirmed the universal regression law. Tall and short sons "regressed" toward the average height of 

all males, according to his studies. He noticed that the average height of sons of tall dads was lower 

than that of their fathers, whereas the average height of sons of short fathers was greater than that 

of their fathers. According to Galton, this was a "regression to mediocrity." 

Regression analysis, which has various applications in the applied sciences, is the most popular 

topic in mathematical statistics. Regression analysis is used in a variety of domains, including 

engineering, physical and chemical sciences, economics, management, life and biological sciences, and 

social sciences. In the applied sciences themes of forecasting and prediction, regression acts as an 

indicator. Regression is currently regarded to be a strategy that connects one variable, known as the 

dependent variable, to at least one other variable, known as the independent variable, with the 

purpose of estimating and/or projecting the former's mean value in relation to the latter's known 

(fixed) value(s). 

On the basis of the independent variables, a regression model may be used to define, predict, 

and regulate the dependent variable. Both quantitative and qualitative independent variables may be 

used in a regression model. An independent variable with a numerical value that is along the real line 

is said to be quantitative. Non-numerical variables are qualitative independent variables. The location 

of the conditional expectation of the dependent variable versus fixed values of the explanatory 

variable is represented by the geometric regression curve (s). 

Regression analysis is a statistics subject. It is useful in scientific endeavors that frequently 

require statistical testing and estimation of behavioral hypotheses. Given that the name "regression" 

alludes to a dependence relationship, an econometric model with only one equation can be called a 

regression model. Regression models are a type of statistical model, much like econometric models 

are a type of economic model. A regression model is a statistically dependent relationship. Regression 

models may clearly be employed in a wide range of physical and behavioural fields. 

Regression's dependence relation definition is far too general to be of any assistance in 

understanding the term's more technical meaning in today's context. The model is often expressed as 

an equation with all the variables having clearly defined statistical features. There are several methods 

for the analysis, but the least squares approach is the one that is most usually employed. 

2. PRELIMINARIES 

Regression analysis is a statistics subject. It is useful in scientific endeavors that frequently 

require statistical testing and estimation of behavioral hypotheses. Given that the name "regression" 

alludes to a dependence relationship, an econometric model with only one equation can be called a 

regression model. Regression models are a type of statistical model, much like econometric models 

are a type of economic model. A regression model is a statistically dependent relationship. Regression 

models may clearly be employed in a wide range of physical and behavioural fields. 

The definition of regression's dependency connection is considerably too broad to be useful in 

comprehending the term's more technical meaning in today's context. The model is frequently stated 

as an equation, with all variables having well-defined statistical properties. There are other ways for 

analyzing data, but the least squares method is the most commonly employed. 

Relationship research involves two components. The first is how connections are made, and the 

second is the strength of those relationships. In most situations, correlation for quantitative elements 
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and association for qualitative variables decide the strength. The connection pattern reveals how 

much one variable will change quantitatively for every unit change in the other. When numerous 

independent variables are present, the regression becomes multiple. The structure and expression of 

the regression may alter depending on the number of independent variables and the type of the 

dependent variable. 

To answer the question "How much does one variable change for a certain change in one or 

more of the other variables?" you must first understand the nature of the connection. Regressions 

can be linear or non-linear, and both are widely used. The utility and meanings of linear connections 

are investigated under two key categories. Both the first and second contain methods for a single 

dependent variable, one of which is quantitative and the other qualitative. 

A simple linear regression is the most common type of regression. This is only supported if the 

dependent variable grows or decreases at a steady rate as the regression result increases. Although 

the "optimal" value of the dependent variable predicted by the regression model may be far from 

reality. The usefulness of the model is determined by the successful selection of the regression. All 

persons who have an impact on the dependent variable should be included. However, there should 

be no substantial association between the explanatory elements. 

A regression model can only reliably predict each of the answer variables if the explanatory 

variable values are within the range utilized to build the regression equation. If one is unable to judge 

the statistical significance of the model, which may occur if the assumptions are violated, its practical 

relevance is greatly decreased. 

The steps for fitting regression for numerical variables are as follows: 

(1) Identifying the dependent variable and the independent factors  

(2) Specifying the type of regression (linear or non-linear) to be studied  

(3) Estimating the regression coefficients  

(4) Testing the model's goodness of fit  

(5) The importance of each regression coefficient  

(6) Estimating the residuals to ensure the assumptions' validity. 

A model is considered more accurate when it includes fewer explanatory variables yet a 

sufficient R2 value. To pick the best explanatory variables, many approaches such as stepwise 

regression, backward estimation, and forward selection can be utilised. In the forward selection, the 

coefficient of a variable with the highest statistical significance (i.e., the lowest p-value) is put first, 

followed by the coefficients with progressively decreasing statistical significance. 

Backward estimating entails include all explanatory factors in the first step and then deleting 

them one by one, beginning with the least significant. The third process, known as step-wise 

regression, reassesses the effectiveness of previously input elements and removes those that lose 

significance with the addition of additional explanatory variables. For models containing qualitative 

dependent variables, the techniques of logistic regression and the log-linear model are applied. 

2.1 Variable selection 

During the regression analysis, we assumed that the model's regressor variables were 

significant. We focused on approaches for ensuring that the model's functional form was correct and 
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that the underlying assumptions were followed. In certain circumstances, theoretical considerations 

or past information may help in selecting the regressor to include in the model. Even if the analyst 

frequently has a pool of prospective regressors that should comprise all of the key aspects, the precise 

subset of regressors that should be included in the model must be decided. The "Variable Selection 

Problem" refers to the difficulty of picking an appropriate selection of regressors for the model. 

2.2 Variance inflation factor 

The wording is the fault of Marquardt. Every term in the model has a variance inflation factor 

(VIF) that computes the total influence of the regressors' dependencies on the term's variance. When 

explanatory factors are considered to be uncorrelated with the remaining explanatory variables, the 

variance of predicted regression coefficients is defined as the ratio of the actual variance to the 

variance that would have occurred in the absence of the explanatory variables. 

The VIF implicitly compares the current situation to an ideal condition, with an ideal situation 

being one in which all explanatory variables are uncorrelated with the remaining explanatory variables 

and each other. The VIF of each explanatory variable is calculated independently.  

Only in extremely extreme situations, such as those where R2 = 1.0 or the lowest eigen value is 

very near to zero, are the VIFs effective for removing certain variables and imposing parameter 

limitations. Indicators of the degree of multicollinearity include the greatest VIF among the 

independent variables and the mean of the independent variables' VIF. Multicollinearity may 

significantly affect the least squares point estimates if the greatest VIF is bigger than 1.0 or if the mean 

of the VIF is much higher than 1. For instance, if the VIF for the three-variable models is higher than 

that for the two-variable model, the multicollinearity of the three-variable model will be higher. 

2.3 Path analysis 

The route coefficient analysis technique is essentially a tool for analysing the breakdown of a 

correlation coefficient into direct and indirect effects within a framework of causal interactions among 

linearly related variables. The path coefficient analysis has observed the direct impacts of independent 

variables and their indirect effects through other independent variables with which the former is 

related to evaluate the relative relevance of causative factors and estimate the correlation coefficient. 

We provide a path diagram to illustrate the path that the causal components traverse. 

 

Fig 1: Path co-efficient model 

The techniques of path coefficients may be facilitated as productive search in determining relative 

importance by using a few principles for tracing, connecting the path between two or more variables 

in a causal connection. 
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3. METHODOLOGY 

3.1 Standardized technique 

Let us consider the following linear multiple regression of Y on X1, X2, …, Xk as 

Y = β0 + β1 X1+β2 X2 + … +βK XK  … (1) 

The model is anticipated to be properly defined and fulfill the classical linear regression (CLR) 

criteria when Xi is changed by one unit while the other variables stay constant. The regression 

coefficient is also referred to as partial regression coefficients to emphasize the fact that the projected 

effect of changing a variable is reliant on the other variables in the regression equation being constant. 

The R2 is commonly used to evaluate how well variables predict Y when the independent variables are 

uncorrelated. R2 can be divided between the independent variables, using the definition as follows: 

R
2 =  

Explained sum of squares Total sum of squares 

3.2 Presentation and Discussion of Empirical Results 

This section goes into great detail on standards and partial standardization procedures. As 

stated in section, the issues given by standardized techniques are recommended to be handled by a 

partial standardization strategy. We show this numerically by utilizing data from sixteen patients at a 

community health centre within a private hospital in Tamilnadu, where blood pressure is regressed 

on weight and height. For this problem, patients who are considered for our model to execute the 

study, have been divided into four groups with height held constant. The proposed model is, 

Blood Pressure = α + β1 height + β2 weight  …(2) 

3.3 Path Analysis  

The path analysis can be demonstrated as follows: 

Let X1,X2,…Xk be measurements of K(clinical) factors supposed to influence the effect measured by Y. 

Let the effect Y be the sum total of these causal factors X1,X2,…Xk and a residual U. That is  

Y = X1 + X2 + … +Xk + U … (3) 

Table 1 : Blood Pressure, Height and Weight for 16 Patients 

 

Group 

Blood 

Pressure (B.P.) 

 

Height 

 

Weight 

Standard deviation (S*) 

of Weight within the group 

1 106 140 51  

1 120 150 44  

1 126 160 65 4.1205 

1 124 140 61  

2 126 145 56  

2 104 155 56  

2 120 145 66 6.2655 

2 120 135 67  

3 122 160 56  

3 120 150 61  

3 122 140 66 5.1183 

3 126 150 64  
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4 124 165 60  

4 120 165 62  

4 124 155 62 3.1515 

4 120 155 60  

 

Table 2: Blood Pressure, Height and Weight for 16 Patients 

 

Group 

Blood 

Pressure (B.P.) 

 

Height 

 

Weight 

Standard deviation (S*) 

of Weight within the group 

1 126 160 56  

1 130 160 62  

1 136 160 66 4.3205 

1 134 160 64  

2 136 165 66  

2 124 165 55  

2 130 165 60 7.3655 

2 140 165 72  

3 130 170 60  

3 130 170 64  

3 132 170 70 6.2183 

3 136 170 74  

4 134 175 72  

4 140 175 78  

4 134 175 74 3.6515 

4 140 175 80  

 

3.4 Machine Learning Techniques 

Statistical model fitting, an older topic, is frequently closely connected to machine learning. 

Building good probabilistic models is critical to machine learning's goal of extracting useful information 

from a corpus of data. Machine learning is the process of programming computers to maximize a 

performance criterion using sample data or existing knowledge. 

The anticipated model accuracy can be the optimized criterion in a modeling problem, but the 

fitness or evaluation function value can be the optimized criterion in an optimization problem. 

In a modeling problem, the term "learning" refers to running a computer programme to 

generate a model using training data or prior information. Because the purpose of machine learning 

is to derive inferences from samples, statistical theory is applied while developing computational 

models. 

The two main parts in this approach are inducing the model by analyzing a large amount of data 

and efficiently describing the model. In general, machine learning strategies fall into two categories: 

Supervised Learning, where the output has been given a priori labeled or the learner has 

some prior knowledge of the data; and Unsupervised Learning, where no prior information is given 

to the learner regarding the data or the output. 
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3.5  Supervised Machine Learning 

A classification problem involves classifying a collection of items into groups. Upon submission 

of an element from the collection, a class is established based on the attributes of the element and a 

set of classification rules. The only data provided is a list of labeled samples when this set of criteria is 

unknown in the real world (i.e., a set of instances associated with a class). Using supervised 

classification paradigm approaches, the classification rules are derived from the data. 

We are seeking for second cancer identification in our second cancer prediction experiential 

study, and the presence or absence of second cancer may provide instructional value for the class. 

Because this is a supervised classification problem, a set of labelled instances, or sequences of whether 

a second malignancy occurs or not, together with their label, is required. After gathering the training 

data, a classifier may be built. After being trained, the classifier may be used to classify new sequences 

by inputting the nucleotide present at each location into the classifier and receiving the supplied label 

as an output. 

3.6 Classification and Prediction Methodologies 

The existence or absence of a second cancer may have educational value for the class in our 

experiential research on second cancer prediction. We are seeking for second cancer detection. It is 

necessary to have a set of labeled instances, or sequences of whether a second malignancy occurs or 

not, together with their labels, as this is a problem involving supervised classification. After gathering 

the training data, a classifier may be produced. The classifier may be used to label new sequences 

after being trained by providing the nucleotide present at each location and receiving the supplied 

label as an output. 

There are a number of learning algorithms that might be discussed in this section despite the 

fact that machine learning is a relatively young field of research; nevertheless, just five strategies that 

are frequently used to solve data analysis issues (usually classification) are mentioned. 

3.7  Support RD-RANSAC classifier 

Support RD-RANSAC (Robust Distance- Random Sample Consensus) technology was created by 

Ravi.J (2017). The RD-RANSAC approach organizes data by creating a multidimensional hyper plane 

that maximizes the margin between the two data clusters and provides the best discrimination 

between two classes. By converting the input space into a multidimensional space using certain 

nonlinear functions, or kernels, this method offers great discriminative capability. 

To prevent over fitting, this method is based on locating linear hyper planes in kernel space and 

input space. The SVM classifier determines the hyper plane (P0) bisecting the nearest points of the 

data that can be linearly separated if the training sample data consists of n pairs (x1, y1), (x2, y1),..., (xn, 

yn) with xi Rp and yi -1, 1. The definition of the P0 is  

(P0) = {x: f(x) = x’β + β0 = 0}………………………..(3) 

Classifier creates a parallel hyper plane P1 which is defined as 

(P1) = {x’: f(x’) = x’ β + β0 = -1} … (4) 

On a point in the class -1 closest to P0 and second hyper plane P2 is defined as 

(P2) = {x: f(x) = xβ + β0 = 1} on a point in class closet to P0. 
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If the data set cannot be split, this approach puts it into a higher dimensional space where the training 

set may be separated using a transformation or extended feature space. Linear or Gaussian kernels 

are typically utilized in this context. 

3.8  k- Nearest neighbor classifier 

The k-Nearest Neighbor (kNN) algorithm employs distance measurement techniques. kNN 

assigns the most common class label among the training examples to the test sample after selecting k 

instances from the training data that are most similar to the test case. When categorising a new 

sample, the distance to each characteristic in the training data must be calculated. Only the k closest 

examples from the training set are evaluated further. The phrase "closest" is defined using a distance 

metric, such as Euclidean distance. The unknown example is assigned the most frequent class among 

its k nearest neighbours for k-nearest neighbour categorization. 

3.9  Random forest classifier 

Breiman recently created the classification or regression tool "Random Forest." It consists of 

many tree predictors that were each built separately. The strategy is clear to understand and has 

worked well as a nonlinear tool. The decision tree ensemble learning framework underlies the RF 

method. By merging many learning machines, ensemble learning is useful for increasing model 

accuracy. 

h(X, k), k = 1, K, where k are independent identically distributed random vectors, is a classifier 

built up of tree-structured classifiers. Each tree casts one unit of vote for the input X's most popular 

class. The method enables users to replicate in the initial phase of RF and construct k- data sets from 

the original data. For each set of bootstrapped data, a decision tree is constructed in the second step, 

and the solution is selected by a majority vote. The impurity index, which depicts the fluctuation of 

data at the node, is decreased by RF. Each piece of data becomes identical as the index gets closer to 

0. RF uses the Gini variance index as the impurity index. 

Where, i(t) is Gini variable index at node t, P(j/t) is the ratio of j to all the samples at node t, c 

is the number of clusters. 

 

Fig. 2 The structure of Random Forest 

The decrease of the impurity is defined as the difference of impurity between the parent   and   

children   nodes.   It   may   be   written   as: Δi(t)=i(t)– PLi(tL)–PRi(tR) 

Where PL i(tL) and PR i(tR) represent the proportion of data at the left- and right-side children 

nodes, respectively, to all the data. The relevance of the variable is a key factor in determining which 

variable is more crucial. It concentrates on each variable's impurity reduction. You may write it like 

this: 
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3.10  McNemar’s Test: 

This test is used to determine the model's relevance. It will be calculated using a 2x2 confusion 

matrix. Two binary variables' marginal homogeneity is studied. 

3.11.  Kappa Statistics: 

Another statistic utilised in this study is the Kappa coefficient (K). Kappa is a number between 

0 and 1, with 0 representing agreement based completely on chance. The total agreement between 

the two data sets is given as 1, or 1. Although negative values are feasible, they are untrue. It is 

commonly represented as a percentage (%). The Kappa statistic is a more sophisticated measure of 

classifier agreement that provides better interclass discrimination than overall accuracy. The Kappa 

statistic value is shown below. 

4. Research Results 

Using the same variables as the logistic regression formulation, the five approaches listed 

above are applied to the Second Cancer Data. Gender, Undergo Radiation Treatment, Family Ever Had 

Cancer, Smoke, Diet & Exercise, Employment, Marital Status, Education, Income, Stress, Area, Age (in 

intervals), Age at First Cancer (in intervals), and Obesity are the explanatory factors revealed from 836 

samples. 

Table 3: Variable importance /weight ages given by each supervised machine learning methods 

Explanatory Variable 

Machine Learning Methods 

Support 

Vector Machine 

k Nearest 

Neighbor 
Naïve Bayes 

Random 

Forest 

Neural 

Network 

Smoke 100.00 100.00 65.6 38.70 23.11 

Age Interval 72.67 72.67 64.07 24.94 28.47 

Family Ever Had 

Cancer 
28.05 28.05 57.25 8.21 8.46 

Undergo Radiation 

Treatment 
23.57 23.57 42.42 10.15 10.14 

Income 6.16 6.16 46.2 0.53 2.08 

Diet & Exercise 5.05 5.05 46.48 1.65 3.24 

Employment 3.35 3.35 51.75 14.79 1.15 

Area 2.14 2.14 52.33 0.09 1.63 

Stress 0.89 0.89 51.49 2.51 3.00 

Education 0.68 0.68 51.32 3.78 1.87 

Obesity 0.40 0.40 51.01 -1.58 0.35 

Gender 0.04 0.04 49.62 19.74 14.52 

Marital Status 0.00 0.00 50.26 7.50 1.99 

Table 3, which uses supervised machine learning techniques, shows that smoking, becoming  

older, and family history have the greatest effects on the risk of getting a second cancer. 
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Table 4: Measure of Model performance metrics 

Methods Accuracy Kappa 
Mcnemar's 

test p-Value 
Sensitivity Specificity 

Support Vector Machine 0.689 0.3587 0.7143 0.7143 0.6763 

k Nearest Neighbor 0.7368 0.4609 0.0000 0.8 0.705 

Naïve Bayes 0.7177 0.3332 0.0003 0.4786 0.8381 

Random Forest 0.8313 0.6456 0.0000 0.8857 0.804 

Neural Network 0.7273 0.4255 0.0000 0.725 0.7284 

 

The Random Forest technique beat the other approaches with 83% accuracy, followed by the 

k-Nearest Neighbor, Neural Network, and Nave Bayes approaches. Random Forest has a good Kappa 

score (0.6456) in comparative statistics when compared to other learning systems. According to 

Mcnemar's test p-Value, Random Forest, k-Nearest Neighbor, and Neural Network outperform other 

approaches on the supplied dataset. 

Table 2 reveals that, when compared to the other supervised algorithms, Support RD-

RANSACand Nave Bayes perform poorly on the second cancer data. 

Conclusion 

Using supervised machine learning approaches, we investigated the influence of demographic 

characteristics on second cancer patients in this study. In this study, social and demographic risk 

factors for having a second cancer were investigated. Support Vector Machine, k-Nearest Neighbor, 

Nave Bayes, Random Forest, and Neural Network were all investigated. Gender, Undergo Radiation 

Treatment, Family Ever Had Cancer, Smoke, Diet & Exercise, Employment, Marital Status, Education, 

Income, Stress, Area, Age (in intervals), Age at First Cancer (in intervals), and Obesity are the socio - 

demographic risk variables obtained from the 836 samples utilised. 

We discovered that smoking, age, and family history are the most important factors of 

developing the risk of second cancer in our study utilising supervised machine learning approaches. 

Our research shows that Random Forest outperforms other strategies for the given dataset among all 

Supervised Machine Learning Methods. Furthermore, Support RD-RANSACand Nave Bayes do not 

outperform the other learning algorithms. 
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