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ABSTRACT 

Let C be a non-perfect square positive-integer and 𝐶 = 𝑚2 ± 4. The basic 
solution of the Pell equation is found in the present article 𝑥2 − 𝐶𝑦2 = ±1 

by using Continued fraction expansion of √𝐶. Also, in terms of Generalized 
Bi-Periodic Fibonacci & Lucas sequences, we obtain all positive-integer 
solutions of the Pell equation 𝑥2 − 𝐶𝑦2 = ±1. 

Keywords: Continued fraction, Pell equations, Generalized Bi-Periodic 
Fibonacci and Lucas sequences. 

2010 Mathematics Subject Classifications: 11A55, 11B39, 11D55, 11D09, 
11J70. 

 

1 Introduction 

It is generally recognized that the Pell equation 𝑥2 − 𝐶𝑦2 = 1 always have positive-integer 

solutions, where C is a positive integer which is not a perfect square. When N is not equal to 1, there 

may be no positive-integer solution for 𝑥2 − 𝐶𝑦2 =  𝑁 Pell equation. The positive-integer solution for 

𝑥2 − 𝐶𝑦2 = −1 equation depends on the period length of √𝐶 continued fraction expansion. In [10], 
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we gave all positive-integer solutions of the Pell equation 𝑥2 − 𝐶𝑦2 = ±1 in terms of Generalized Bi-

Periodic Fibonacci and Lucas sequences for the choices 𝐶 = 𝑚2 ± 1,𝑚2 ± 2,𝑚2 ±𝑚. In the present 

article, when 𝑚 is a positive integer as well as 𝐶 = 𝑚2 ± 4,  particularly if a solution is available, all 

positive integer solutions are provided in terms of Generalized Bi-Periodic Fibonacci and Lucas 

sequences by utilizing √𝐶 continued fraction expansion. 

2 Preliminaries 

 Some writers have generalized the sequences, Fibonacci & Lucas, by altering their initial 

conditions and recurring relations. Yayenie & Edson ([4]) generalize the Fibonacci sequence to the new 

set of sequences denoted as  {𝑝𝑛} and is defined by  

𝑝0 = 0, 𝑝1 = 1,  𝑝𝑛 = {
𝑎𝑝𝑛−1 + 𝑝𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑏𝑝𝑛−1 + 𝑝𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

    (𝑛 ≥ 2). 

Bilgici ([6]), on contrary, generalized the Lucas sequence by presenting a bi-periodic Lucas 

sequence denoted as  {𝑙𝑛} and is expressed as:  

𝑙0 = 2, 𝑙1 = 𝑎,  𝑙𝑛 = {
𝑏𝑙𝑛−1 + 𝑙𝑛−2,    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎𝑙𝑛−1 + 𝑙𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

    (𝑛 ≥ 2). 

as well as several interesting associations between {𝑝𝑛} & {𝑙𝑛}  have been proven. 

We now consider a generalized bi-periodic Fibonacci sequence {𝑓𝑛} and Lucas sequence {𝑞𝑛} 

which are the generalization of {𝑝𝑛} and {𝑙𝑛}, termed as:  

𝑓0 = 0, 𝑓1 = 1,  𝑓𝑛 = {
𝑎𝑓𝑛−1 + 𝑐𝑓𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑏𝑓𝑛−1 + 𝑐𝑓𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

    (𝑛 ≥ 2), 

and 

𝑞0 = 2𝑑, 𝑞1 = 𝑎𝑑,  𝑞𝑛 = {
𝑏𝑞𝑛−1 + 𝑐𝑞𝑛−2,    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎𝑞𝑛−1 + 𝑐𝑞𝑛−2,     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

    (𝑛 ≥ 2), 

where 𝑎, 𝑏, 𝑐, 𝑑 are nonzero real numbers. 

 Yayenie and Choo ([4] and [5]) gave Binet’s formulas for {𝑓𝑛} & {𝑞𝑛} are represented as: 

                                                   𝑓𝑛(𝑎, 𝑏, 𝑐) =
𝑎𝜁(𝑛+1)

(𝑎𝑏)
⌊
𝑛

2
⌋
(
𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
)                                                           (1) 

                                                 𝑞𝑛(𝑎, 𝑏, 𝑐, 𝑑) =
𝑑

(𝑎𝑏)
⌊
𝑛

2
⌋
𝑏𝜁(𝑛)

(𝛼𝑛 + 𝛽𝑛)                                                (2) 

where 𝛼 =
𝑎𝑏+√𝑎2𝑏2+4𝑎𝑏𝑐

2
  and 𝛽 =

𝑎𝑏−√𝑎2𝑏2+4𝑎𝑏𝑐

2
, i.e., 𝛼 and 𝛽 are the roots of the equation 𝑥2 −

𝑎𝑏𝑥 − 𝑎𝑏𝑐 = 0, and 𝜁(𝑛) = 𝑛 − 2 ⌊
𝑛

2
⌋ is the parity function such that 

 𝜁(𝑛) = {
0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
1 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

 We now provide the fundamental solution to an equation 𝑥2 − 𝐶𝑦2 = ±1 utilizing the length 

of a period of √𝐶 continued fraction expansion. 

Lemma 2.1: Suppose 𝑙 be the period length of √𝐶 continued fraction expansion. When 𝑙 is even, then 

the fundamental solution for  𝑥2 − 𝐶𝑦2 = 1 equation is represented as: 
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𝑥1 + 𝑦1√𝐶 = 𝑝𝑙−1 + 𝑞𝑙−1√𝐶 

and 𝑥2 − 𝐶𝑦2 = −1 equation has no integer solution. In case of 𝑙 is odd, then the fundamental 

solution for  𝑥2 − 𝐶𝑦2 = 1 equation is represented as:  

𝑥1 + 𝑦1√𝐶 = 𝑝2𝑙−1 + 𝑞2𝑙−1√𝐶 

and fundamental solution for 𝑥2 − 𝐶𝑦2 = −1 equation is represented as:  

𝑥1 + 𝑦1√𝐶 = 𝑝𝑙−1 + 𝑞𝑙−1√𝐶 

Cognition 2.1 Let 𝑥1 + 𝑦1√𝐶 be the fundamental solution of 𝑥2 − 𝐶𝑦2 = 1 equation. Then all 

positive-integer solutions of 𝑥2 − 𝐶𝑦2 = 1 equation is represented as:  

𝑥𝑛 + 𝑦𝑛√𝐶 = (𝑥1 + 𝑦1√𝐶)
𝑛

 

with 𝑛 ≥ 1. 

Cognition 2.2 Let 𝑥1 + 𝑦1√𝐶 be the fundamental solution of 𝑥2 − 𝐶𝑦2 = −1. Then all positive-integer 

solutions for 𝑥2 − 𝐶𝑦2 = −1 are represented as:  

𝑥𝑛 + 𝑦𝑛√𝐶 = (𝑥1 + 𝑦1√𝐶)
2𝑛−1

 

with 𝑛 ≥ 1. 

Cognition 2.3 Let 𝐶 = 𝑚2 ± 4. Then  √𝐶 continued fraction expansion is given by  

√𝐶 =

{
 
 
 
 
 

 
 
 
 
 [𝑚; 

𝑚

2
, 2𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅
]                                                         if C = 𝑚2 + 4 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑤𝑖𝑡ℎ 𝑚 ≥ 1

[𝑚; 
𝑚 − 1

2
, 1,1,

𝑚 − 1

2
, 2𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 ]                          if C = 𝑚2 + 4 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑤𝑖𝑡ℎ 𝑚 ≥ 1

[𝑚 − 1; 1,
𝑚 − 3

2
, 2,
𝑚 − 3

2
, 1,2(𝑚 − 1)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
]    if C = 𝑚2 − 4 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑤𝑖𝑡ℎ 𝑚 ≥ 3

[𝑚 − 1; 1,
𝑚 − 4

2
, 1,2(𝑚 − 1)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
]    if C = 𝑚2 − 4 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑤𝑖𝑡ℎ 𝑚 > 2,𝑚 ≠ 4

[3; 2,6̅̅ ̅̅ ]                                                                                                                           𝑖𝑓 𝑚 = 4

 

 

Corollary 2.1 Let 𝐶 = 𝑚2 ± 4. The basic solution of 𝑥2 − 𝐶𝑦2 = 1 equation is represented as: 

𝑥1 + 𝑦1√𝐶 =

{
 
 
 
 

 
 
 
 
𝑚6 + 6𝑚4 + 9𝑚2 + 2

2
+
𝑚5 + 4𝑚3 + 3𝑚

2
√𝐶      𝑖𝑓 𝐶 = 𝑚2 + 4 𝑎𝑛𝑑  𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑚2 + 2

2
+
𝑚

2
√𝐶                                                          𝑖𝑓 𝐶 = 𝑚2 + 4 𝑎𝑛𝑑  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑚3 − 3𝑚

2
+
𝑚2 − 1

2
√𝐶                                                𝑖𝑓 𝐶 = 𝑚2 − 4 𝑎𝑛𝑑  𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑚2 − 2

2
+
𝑚

2
√𝐶                                                         𝑖𝑓 𝐶 = 𝑚2 − 4 𝑎𝑛𝑑  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

 

Corollary 2.2 Let 𝑚 > 0 and 𝐶 = 𝑚2 ± 4. The basic solution of 𝑥2 − 𝐶𝑦2 = −1  is 

 𝑥1 + 𝑦1√𝐶 = {

𝑚3+3𝑚

2
+
𝑚2+1

2
√𝐶    𝑖𝑓 𝐶 = 𝑚2 + 4 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑛𝑜𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                𝑖𝑓 𝐶 = 𝑚2 + 4 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛𝑜𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛         𝑖𝑓 𝐶 = 𝑚2 − 4 𝑎𝑛𝑑 𝑚 > 3
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3 Main Theorems 

Theorem 3.1 Let 𝑚 > 1 and 𝐶 = 𝑚2 + 4. Then all positive-integer solutions of the equation 

 𝑥2 − 𝐶𝑦2 = 1 are given by  

(𝑥𝑛, 𝑦𝑛) =

{
 
 
 
 
 

 
 
 
 
 

{
 
 

 
 
1

2
𝑚⌊3𝑛⌋ (𝑞6𝑛 (𝑚, 1,

1

𝑚
, 1) ,

1

𝑚
𝑓6𝑛 (𝑚, 1,

1

𝑚
))

𝑜𝑟
1

2
𝑚⌊3𝑛⌋ (𝑞6𝑛 (1,𝑚,

1

𝑚
, 1) , 𝑓6𝑛 (1,𝑚,

1

𝑚
))

 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑

{
 
 

 
 
1

2
𝑚⌊𝑛⌋ (𝑞2𝑛 (𝑚, 1,

1

𝑚
, 1) ,

1

𝑚
𝑓2𝑛 (𝑚, 1,

1

𝑚
))

𝑜𝑟
1

2
𝑚⌊𝑛⌋ (𝑞2𝑛 (1,𝑚,

1

𝑚
, 1) , 𝑓2𝑛 (1,𝑚,

1

𝑚
))

 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

 

with 𝑛 ≥ 1. 

Proof 

Case I 

Let 𝑚 is odd. 

By Corollary 2.1, Cognition 2.1, and Cognition 2.3, all positive integer solutions of the equation 𝑥2 −

𝐶𝑦2 = 1 are given by 

𝑥𝑛 + 𝑦𝑛√𝐶 = (
𝑚6 + 6𝑚4 + 9𝑚2 + 2

2
+
𝑚5 + 4𝑚3 + 3𝑚

2
√𝐶)

𝑛

 

with 𝑛 ≥ 1. Let  𝛼1 =
(𝑚3+3𝑚)

2
+2

2
+
𝑚((𝑚2+2)

2
−1)

2
√𝐶  and 𝛽1 =

(𝑚3+3𝑚)
2
+2

2
−
𝑚((𝑚2+2)

2
−1)

2
√𝐶.  

Then, 

𝑥𝑛 + 𝑦𝑛√𝐶 = 𝛼1
𝑛 and 𝑥𝑛 − 𝑦𝑛√𝐶 = 𝛽1

𝑛 

Thus, it follows that 

𝑥𝑛 =
𝛼1

𝑛 + 𝛽1
𝑛

2
 and 𝑦𝑛 =

𝛼1
𝑛 − 𝛽1

𝑛

2√𝐶
 

Let 

𝛼 =
𝑎𝑏 + √𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 and 𝛽 =

𝑎𝑏 − √𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 

Sub Case (i) 

Take  𝑎 = 𝑚, 𝑏 = 1, 𝑐 =
1

𝑚
, we get 

𝛼 =
𝑚 + √𝑚2 + 4

2
 and 𝛽 =

𝑚 − √𝑚2 + 4

2
 

Thus, 𝛼6 = 𝛼1 and 𝛽6 = 𝛽1 
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Therefore, we get,  

𝑥𝑛 =
(𝛼6)𝑛 + (𝛽6)𝑛

2
= 2−1(𝛼6𝑛 + 𝛽6𝑛) = 2−1𝑚⌊3𝑛⌋𝑞6𝑛 (𝑚, 1,

1

𝑚
, 1)      by (2) 

and  

𝑦𝑛 =
(𝛼6)𝑛 − (𝛽6)𝑛

2√𝑚2 + 4
= 2−1

𝛼6𝑛 − 𝛽6𝑛

𝛼 − 𝛽
= 2−1

𝑚⌊3𝑛⌋

𝑚
𝑓6𝑛 (𝑚, 1,

1

𝑚
)              by (1) 

Thus, 

(𝑥𝑛, 𝑦𝑛) = (
1

2
𝑚⌊𝑛⌋𝑞6𝑛 (𝑚, 1,

1

𝑚
, 1) ,

1

2𝑚
𝑚⌊3𝑛⌋𝑓6𝑛 (𝑚, 1,

1

𝑚
)) 

Sub Case (ii) 

Take,  𝑎 = 1, 𝑏 = 𝑚, 𝑐 =
1

𝑚
 , we get  

𝛼 =
𝑚 + √𝑚2 + 4

2
 and 𝛽 =

𝑚 − √𝑚2 + 4

2
 

Thus, 𝛼6 = 𝛼1 and 𝛽
6 = 𝛽1 

Therefore, we get,  

𝑥𝑛 =
(𝛼6)𝑛 + (𝛽6)𝑛

2
= 2−1(𝛼6𝑛 + 𝛽6𝑛) = 2−1𝑚⌊3𝑛⌋𝑞6𝑛 (1,𝑚,

1

𝑚
, 1)    by (2) 

and  

𝑦𝑛 =
(𝛼6)𝑛 − (𝛽6)𝑛

2√𝑚2 + 1
= 2−1

𝛼6𝑛 − 𝛽6𝑛

𝛼 − 𝛽
= 2−1𝑚⌊3𝑛⌋𝑓6𝑛 (1,𝑚,

1

𝑚
)          by (1) 

Thus,  

(𝑥𝑛, 𝑦𝑛) = (
1

2
𝑚⌊3𝑛⌋𝑞6𝑛 (1,𝑚,

1

𝑚
, 1) ,

1

2
𝑚⌊3𝑛⌋𝑓6𝑛 (1,𝑚,

1

𝑚
)) 

Case II 

Let 𝑚 is even. 

By Corollary 2.1, Cognition 2.1, and Cognition 2.3, all positive integer solutions of the equation 𝑥2 −

𝐶𝑦2 = 1 are given by 

𝑥𝑛 + 𝑦𝑛√𝐶 = (
𝑚2 + 2

2
+
𝑚

2
√𝐶)

𝑛

 

with 𝑛 ≥ 1. Let  𝛼1 =
𝑚2+2

2
+
𝑚

2
√𝐶 and 𝛽1 =

𝑚2+2

2
−
𝑚

2
√𝐶.  

Then, 

𝑥𝑛 + 𝑦𝑛√𝐶 = 𝛼1
𝑛 and 𝑥𝑛 − 𝑦𝑛√𝐶 = 𝛽1

𝑛 

Thus, it follows that 

𝑥𝑛 =
𝛼1

𝑛 + 𝛽1
𝑛

2
 and 𝑦𝑛 =

𝛼1
𝑛 − 𝛽1

𝑛

2√𝐶
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Let 

𝛼 =
𝑎𝑏 + √𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 and 𝛽 =

𝑎𝑏 − √𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 

Sub Case (iii) 

Take  𝑎 = 𝑚, 𝑏 = 1, 𝑐 =
1

𝑚
, we get 

𝛼 =
𝑚 + √𝑚2 + 4

2
 and 𝛽 =

𝑚 − √𝑚2 + 4

2
 

Thus, 𝛼2 = 𝛼1 and 𝛽2 = 𝛽1 

Therefore, we get,  

𝑥𝑛 =
(𝛼2)𝑛 + (𝛽2)𝑛

2
= 2−1(𝛼2𝑛 + 𝛽2𝑛) = 2−1𝑚⌊𝑛⌋𝑞2𝑛 (𝑚, 1,

1

𝑚
, 1)      by (2) 

and  

𝑦𝑛 =
(𝛼2)𝑛 − (𝛽2)𝑛

2√𝑚2 + 4
= 2−1

𝛼2𝑛 − 𝛽2𝑛

𝛼 − 𝛽
= 2−1

𝑚⌊𝑛⌋

𝑚
𝑓2𝑛 (𝑚, 1,

1

𝑚
)              by (1) 

Thus, 

(𝑥𝑛, 𝑦𝑛) = (
1

2
𝑚⌊𝑛⌋𝑞2𝑛 (𝑚, 1,

1

𝑚
, 1) ,

1

2𝑚
𝑚⌊𝑛⌋𝑓2𝑛 (𝑚, 1,

1

𝑚
)) 

Sub Case (iv) 

Take,  𝑎 = 1, 𝑏 = 𝑚, 𝑐 =
1

𝑚
 , we get  

𝛼 =
𝑚 + √𝑚2 + 4

2
 and 𝛽 =

𝑚 − √𝑚2 + 4

2
 

Thus, 𝛼2 = 𝛼1 and 𝛽
2 = 𝛽1 

Therefore, we get,  

𝑥𝑛 =
(𝛼2)𝑛 + (𝛽2)𝑛

2
= 2−1(𝛼2𝑛 + 𝛽2𝑛) = 2−1𝑚⌊𝑛⌋𝑞2𝑛 (1,𝑚,

1

𝑚
, 1)    by (2) 

and  

𝑦𝑛 =
(𝛼2)𝑛 − (𝛽2)𝑛

2√𝑚2 + 4
= 2−1

𝛼2𝑛 − 𝛽2𝑛

𝛼 − 𝛽
= 2−1

𝑚⌊𝑛⌋

𝑚
𝑓2𝑛 (1,𝑚,

1

𝑚
)          by (1) 

Thus,  

(𝑥𝑛 , 𝑦𝑛) = (
1

2
𝑚⌊𝑛⌋𝑞2𝑛 (1,𝑚,

1

𝑚
, 1) ,

1

2
𝑚⌊𝑛⌋𝑓2𝑛 (1,𝑚,

1

𝑚
)) 

From Cases (I) and (II) we get the required solution. 

 

Theorem 3.2 Let 𝑚 > 1 and 𝐶 = 𝑚2 + 4. Then all positive solutions of the equation 

 𝑥2 − 𝐶𝑦2 = −1 are given by  

(i) If 𝑚 is odd, then 



Vol.10.Issue.4.2022 (Oct-Dec) Bull .Math.&Stat.Res  ( ISSN:2348-0580)  

 

 

S. Sriram & P. Veeramallan                                                                                                                      Page-88 

 

(𝑥𝑛, 𝑦𝑛) =

{
 
 

 
 
1

2
𝑚
⌊
6𝑛−3

2
⌋
(𝑞6𝑛−3 (𝑚, 1,

1

𝑚
, 1) , 𝑓6𝑛−3 (𝑚, 1,

1

𝑚
, 1))

𝑜𝑟
1

2
𝑚
⌊
6𝑛−3

2
⌋
(𝑞6𝑛−3 (1,𝑚,

1

𝑚
, 1) , 𝑓6𝑛−3 (1,𝑚,

1

𝑚
, 1))

 

with 𝑛 ≥ 1. 

(ii) If 𝑚 is even, then there is no solution 

Proof 

Case I 

Let 𝑚 is odd. 

By Corollary 2.1, Cognition 2.2, and Cognition 2.3, all positive integer solutions of the equation 𝑥2 −

𝐶𝑦2 = −1 are given by 

𝑥𝑛 + 𝑦𝑛√𝐶 = (
𝑚3 + 3𝑚

2
+
𝑚2 + 1

2
√𝐶 )

2𝑛−1

 

with 𝑛 ≥ 1. Let  𝛼1 =
𝑚3+3𝑚

2
+
𝑚2+1

2
√𝐶  and 𝛽1 =

𝑚3+3𝑚

2
−
𝑚2+1

2
√𝐶 .  

Then, 

𝑥𝑛 + 𝑦𝑛√𝐶 = 𝛼1
2𝑛−1 and 𝑥𝑛 − 𝑦𝑛√𝐶 = 𝛽1

2𝑛−1 

Thus, it follows that 

𝑥𝑛 =
𝛼1

2𝑛−1 + 𝛽1
2𝑛−1

2
 and 𝑦𝑛 =

𝛼1
2𝑛−1 − 𝛽1

2𝑛−1

2√𝐶
 

Let 

𝛼 =
𝑎𝑏 + √𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 and 𝛽 =

𝑎𝑏 − √𝑎2𝑏2 + 4𝑎𝑏𝑐

2
 

Sub Case (i) 

Take  𝑎 = 𝑚, 𝑏 = 1, 𝑐 =
1

𝑚
, we get 

𝛼 =
𝑚 + √𝑚2 + 4

2
 and 𝛽 =

𝑚 − √𝑚2 + 4

2
 

Thus, 𝛼3 = 𝛼1 and 𝛽3 = 𝛽1 

Therefore, we get,  

𝑥𝑛 =
(𝛼3)2𝑛−1 + (𝛽3)2𝑛−1

2
= 2−1(𝛼6𝑛−3 + 𝛽6𝑛−3) = 2−1𝑚

⌊
6𝑛−3

2
⌋
𝑞6𝑛−3 (𝑚, 1,

1

𝑚
, 1)      by (2) 

and  

𝑦𝑛 =
(𝛼3)2𝑛−1 − (𝛽3)2𝑛−1

2√𝑚2 + 4
= 2−1

𝛼6𝑛−3 − 𝛽6𝑛−3

𝛼 − 𝛽
= 2−1𝑚

⌊
6𝑛−3

2
⌋
𝑓6𝑛−3 (𝑚, 1,

1

𝑚
)              by (1) 

Thus, 

(𝑥𝑛, 𝑦𝑛) = (
1

2
𝑚⌊𝑛⌋𝑚

⌊
6𝑛−3

2
⌋
𝑞6𝑛−3 (1,𝑚,

1

𝑚
, 1) ,

1

2
𝑚
⌊
6𝑛−3

2
⌋
𝑓6𝑛−3 (𝑚, 1,

1

𝑚
)) 
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Sub Case (ii) 

Take,  𝑎 = 1, 𝑏 = 𝑚, 𝑐 =
1

𝑚
 , we get  

𝛼 =
𝑚 + √𝑚2 + 4

2
 and 𝛽 =

𝑚 − √𝑚2 + 4

2
 

Thus, 𝛼3 = 𝛼1 and 𝛽
3 = 𝛽1 

Therefore, we get,  

𝑥𝑛 =
(𝛼3)2𝑛−1 + (𝛽3)2𝑛−1

2
= 2−1(𝛼6𝑛−3 + 𝛽6𝑛−3) = 2−1𝑚

⌊
6𝑛−3

2
⌋
𝑞6𝑛−3 (1,𝑚,

1

𝑚
, 1)    by (2) 

and  

𝑦𝑛 =
(𝛼3)2𝑛−1 − (𝛽3)2𝑛−1

2√𝑚2 + 4
= 2−1

𝛼6𝑛−3 − 𝛽6𝑛−3

𝛼 − 𝛽
= 2−1𝑚

⌊
6𝑛−3

2
⌋
𝑓6𝑛−3 (1,𝑚,

1

𝑚
)          by (1) 

Thus,  

(𝑥𝑛, 𝑦𝑛) = (
1

2
𝑚⌊3𝑛⌋𝑚

⌊
6𝑛−3

2
⌋
𝑞6𝑛−3 (1,𝑚,

1

𝑚
, 1) ,

1

2
𝑚
⌊
6𝑛−3

2
⌋
𝑓6𝑛−3 (1,𝑚,

1

𝑚
)) 

Case II 

Let 𝑚 is even. 

Since by Cognition 2.3, the period length of continued fraction expansion of  √𝐶 is always even. Thus, 

by Lemma 2.1, it follows that there is no positive integer solution of the equation 

 𝑥2 − 𝐶𝑦2 = −1. 

From Cases (I) and (II) we get the required solution. 

Now, we consider the other cases of C without giving their proof since they can be proved as 

similar to that of Theorem 3.1 and Theorem 3.2 was proved. 

Theorem 3.3 Let 𝑚 > 0 and 𝐶 = 𝑚2 − 4. Then all positive solutions of the equation 

 𝑥2 − 𝐶𝑦2 = 1 are given by  

(i) If 𝑚 is even, then  

(𝑥𝑛, 𝑦𝑛) =

{
 
 

 
 
1

2
𝑚⌊𝑛⌋ (𝑞2𝑛 (𝑚, 1,

−1

𝑚
, 1) , 𝑓2𝑛 (𝑚, 1,

−1

𝑚
))

𝑜𝑟
1

2
𝑚⌊𝑛⌋ (𝑞2𝑛 (1,𝑚,

−1

𝑚
, 1) , 𝑓2𝑛 (1,𝑚,

−1

𝑚
))

 

  

(ii) If m is odd, then 

(𝑥𝑛, 𝑦𝑛) =

{
 
 

 
 
1

2
𝑚
⌊
3𝑛

2
⌋
(𝑞3𝑛 (𝑚, 1,

−1

𝑚
, 1) ,

1

𝑚𝜁(3𝑛+1)
𝑓3𝑛 (𝑚, 1,

−1

𝑚
))

𝑜𝑟
1

2
𝑚
⌊
3𝑛

2
⌋
(𝑚𝜁(3𝑛)𝑞2𝑛 (1,𝑚,

−1

𝑚
, 1) , 𝑓3𝑛 (1,𝑚,

−1

𝑚
))
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with 𝑛 ≥ 1. 

Theorem 3.8 Let 𝐶 = 𝑚2 − 4  then the equation 𝑥2 − 𝐶𝑦2 = −1 has no solution in positive 

integers. 

Proof 

Since by Cognition 2.3, the period length of continued fraction expansion of  √𝐶 is always even. Thus 

by Lemma 2.1, it follows that there is no positive integer solution of the equation 

 𝑥2 − 𝐶𝑦2 = −1. 

4 Conclusion 

In this paper, we investigate the Pell equation 𝑥2 − 𝐶𝑦2 = ±1, 𝐶 = 𝑚2 ± 4 and we are seeking 

positive integer solutions in 𝑥 and 𝑦. We get all positive integer solutions of the Pell equations 𝑥2 −

𝐶𝑦2 = ±1 in terms of Generalized Bi-Periodic Fibonacci and Lucas sequences when 𝐶 = 𝑚2 ± 4. 
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