

# BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH 

A Peer Reviewed International Research Journal

http://www.bomsr.com
Email:editorbomsr@gmail.com
2348-0580

## Jacobsthal Graceful Labeling

R.Lalitha ${ }^{1}$, S.Santhakumari ${ }^{2}$, S.Freeda ${ }^{3}$<br>${ }^{1}$ Research scholar(Part-time Internal), Reg. No - 20223112092039, Nesamony Memmorial Christian College, Marthandam, Tamilnadu India.<br>${ }^{2}$ Assistant Professor, Department of Mathematics, M.S.U Constituent College, Kanyakumari,629 401 Tamilnadu, India.<br>${ }^{3}$ Assistant Professor, Department of Mathematics, Nesamony Memmorial Christian College, Marthandam, Tamilnadu, India. (A liated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu India.)<br>Email: lalithaarunvinu29@gmail.com ${ }^{1}$, santhasundar75@redimail.com²,freedasam1969@gmail.com³ DOI:10.33329/bomsr.11.1.48




#### Abstract

An injective function $f: V(G) \rightarrow\left\{0,1,1,3, \ldots, J_{q}\right\}$ is said to be Jacobsthal graceful labeling of a graph $G(p ; q)$ if the labeling of induced edge $f^{*}(u v)=$ $|f(u)-f(v)|$ is a bijection onto $\left\{J_{1}, J_{2}, \ldots, J_{q}\right\}$ where $J_{q}$ is the $q^{\text {th }}$ Jacobsthal number in the Jacobsthal sequence. If $G$ admits a Jacobsthal graceful labeling, then $G$ is called a Jacobsthal graceful graph. In this paper some standard graphs are shown to be Jacobsthal graceful labeling.


AMS classification: 05C78
Keywords : Labeling, Graceful labeling, Jacobsthal sequence, Jacobsthal graceful labeling.

## 1 Introduction

Let $G=(p, q)$ be a simple, undirected, finite graph. An assignment of integers to the edges or vertices or both subject to certain conditions is a graph labeling. For basic terminologies we refer Harrary [2]. Gallian [1] has given a vast survey on graph labeling. Alex Rosa [3] introduced the concept of graceful labeling in 1966. A function $f$ of $G$ is called a graceful labeling if $f$ is an injection from the vertex set of $G$ to the set $\{0,1, \ldots, m\}$ such that when each edge $u v$ is assigned the label
$|f(u)-f(v)|$ and the resulting edge labels are distinct, then $G$ is graceful. Acharya and Hedge introduced Fibonacci graceful labeling and further studied by [4, 5]. In this paper we introduced a new labeling called Jacobsthal graceful labeling and showed certain family of graphs which admits Jacobsthal graceful labeling.

## 2 Jacobsthal Graceful Labeling

Definition 2.1. The Jacobsthal sequence is an additivesequence defined by $\mathrm{J}_{\mathrm{n}}=\mathrm{J}_{\mathrm{n}-1}+2 \mathrm{~J}_{\mathrm{n}=2}$ with be gining terms $\mathrm{J}_{0}=0$ and $\mathrm{J}_{1}=1$ and the numbers in the sequence are called Jacobsthal numbers. The Jacobsthal numbers are $0,1,1,3,5,11,21,43,85, \ldots$

Definition 2.2. A graph $G(p, q)$ with injective functionf : $V(G) \rightarrow\left\{0,1,1,3, \ldots, J_{q}\right\}$ is said to be Jacobsthal graceful labeling $G$ if the induced edge labeling $|f(u)-f(v)|$ is a bijection onto the set $\left\{J_{1}, J_{2}, \ldots, J_{q}\right\}$ where $J_{q}$ is the $q^{\text {th }}$ Jacobsthal number in the Jacobsthal sequence. A graph is referred to be a Jacobsthal graceful graph ( $G$ ) if it admits a Jacobsthal graceful labelling.

Definition 2.3. The Comb is a graph obtained by Jogging a each vertex of a path $P_{n}$ to a single pendant edge. It is denoted by $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$

Definition 2.4. A Coconut Tree $C T_{(m, n)}$ is the graph obtained from the path $P_{m}$ by appending $n$ pendant edges at an end vertex of $P_{m}$ :

Definition 2.5. The Bistar $B_{m, n}$ is the graph obtained from $K_{2}$ by joining $m$ pendant edges to one end of $K_{2}$ and $n$ pendant edges to the other end of $K_{2}$ :

Definition 2.6. Subdivision of a graph $G$ is a graph obtained from $G$ by replacing certain edges of $G$ with internally vertex - disjoint paths.

Definition 2.7. A rooted tree consisting of n branches where the jth branch is a path of length j is called Olive tree and is denoted by Tn:

Definition 2.8. The Jelly fish graph $J(m, n)$ is obtained from a 4-cycle $v_{1} ; v_{2} ; v_{3} ; v_{4}$ by joining $v_{1}$ and $v_{3}$ with an edge and appending $m$ pendant edges to $v_{2}$ and $n$ pendant edges to $v_{4}$. Jelly fish $J(m, n)$ is a graph with order of vertices $m+n+4$ and sizes of edges is $m+n+5$.

Theorem 2.9. The path $\mathrm{P}_{\mathrm{n}}, n>3$ is Jacobsthal graceful labeling.
Proof. Let the vertices of $P_{n}$ be $v_{0}, v_{1}, \ldots, v_{n}$ and $e_{1}, e_{2}, \ldots, e_{n}$ be the corresponding edges. Now,
$\left|\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)\right|=n+1\left|\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)\right|=n$.
Case (i) If $n$ is odd,
Define $f: V\left(P_{n}\right) \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by $f\left(v_{0}\right)=0, f\left(v_{1}\right)=J_{q}$
and $f\left(v_{i}\right)=f\left(v_{i-1}\right)-J q-(i-1)$ where $i=2,3, \ldots, n$
Case(ii) If $n$ is even
Define $f: V\left(P_{n}\right) \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by
$f\left(v_{0}\right)=0, f\left(v_{1}\right)=J_{q}$
$f\left(v_{i}\right)=f\left(v_{i-1}\right)-J q-(i-1)$, where $i=2,3, \ldots, n-2$
$f\left(v_{n-1}\right)=J_{3}, f\left(v_{n}\right)=J_{4}-1$

In the above two cases, the edge labels induced are Jacobsthal numbers. Hence the path $P_{n}$ is Jacobsthal graceful labeling for all $n>3$

## Example



Figure 1: $\boldsymbol{P}_{10}$

## Theorem 2.10. The Cycle $C_{n}$ of even length is Jacobsthal graceful labeling

Proof. Let $C_{n}$ be the cycle of even length. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}$ be the vertices and $e_{0}, e_{1}, \ldots e_{n-1}$ be the corresponding edges of the cycle $C_{n}$. Now, $\left|V\left(C_{n}\right)\right|=n,\left|E\left(C_{n}\right)\right|=n$.

We define $\mathrm{f}: \mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \rightarrow\left\{0,1,1, \ldots, \mathrm{~J}_{\mathrm{q}}\right\}$ by
$\mathrm{f}\left(\mathrm{v}_{0}\right)=0, \mathrm{f}\left(\mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1}\right)+\mathrm{J}_{\mathrm{i}}$ where $\mathrm{i}=2,3, \ldots, \mathrm{n}-1$
This shows that the induced edge labels are Jacobsthal numbers. Hence even cycles are Jacobsthal graceful labeling.

## Example



Figure 2: $C_{8}$
Remark 2.11. Cycle of odd length is not Jacobsthal graceful
Example 2.12. The cycle $C_{5}$ is not a Jacobsthal graceful labeling.
Proof. If $C_{5}$ is a Jacobsthal graceful graph, then $f: V\left(C_{5}\right) \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ is an injective function such that the edge labels are Jacobsthal numbers $\left\{\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}\right\}=\{1,1,3,5,11\}$

Let $\{a, b, c, d\}$ be the vertices of the cycle $C_{5}$.
By Figure $3, f(a)=0, f(b)=1, f(e)=11, f(d)=6$. Let $f(c)=x$ if $x=3$, then $f *(b c)=2$,
2 is not a Jacobsthal number and if $x=2$, then $f *(c d)=4$,
4 is not a Jacobsthal number. Both cases leads to a contradiction that $f$ is a Jacbsthal graceful labeling. Hence $C_{5}$ is not a Jacobsthal graceful labeling

## Example



Figure 3: $C_{5}$
Theorem 2.13. The combs $P_{n} \odot K_{1}$ are Jacobsthal graceful labeling
Proof. Let $G=P_{n} \odot K_{1}$ be the comb graph. Let the vertices of the comb be $\left\{u_{1}, u_{2}, \ldots, u_{n+1}, v_{1}, v_{2}\right.$. $\left.\ldots, v_{n+1}\right\}$, where $u_{1}, u_{2}, \ldots, u_{n+1}$ are the vertices of $P_{n}$ and $v_{1}, v_{2}, \ldots, v_{n+1}$ are the vertices attached to $P_{n}$ by the edge $\left\{u_{i} v_{i} / i=1,2,3, \ldots, n\right\}$ defined by,
$\left|V\left(P_{n} \odot K_{1}\right)\right|=2 n+2$,
$\left|E\left(P_{n} \odot K_{1}\right)\right|=2 n+1$.
Case(i) G is even
Define $f: V \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by
$f\left(u_{1}\right)=J_{n+1}$
$f\left(u_{i}\right)=f\left(u_{i-1}\right)+J n+(i-1)$, where $i=2,3,4, \ldots$,
$n f\left(u_{n+1}\right)=0$
and $f\left(v_{i}\right)=\left\{\begin{array}{c}\mathrm{J}_{n+(i)}-\mathrm{J}_{n-(n-1)} ; \text { for } i \text { is odd } \\ \mathrm{J}_{n+i}-\mathrm{J}_{n-(n-1)}+1 ; \text { for } i \text { is even }\end{array}\right.$
where, $i=1,2, \ldots, n$.
$f\left(v_{n+1}\right)=1$.

## Case(ii) G is odd

Define $\mathrm{f}: \mathrm{V} \rightarrow\left\{0,1,1, \ldots, \mathrm{~J}_{\mathrm{q}}\right\}$ by $\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{J}_{\mathrm{n}+1}+1$
$f\left(u_{i}\right)=f\left(u_{i-1}\right)+J n+(i-1)$, where $i=2,3, \ldots, n$.
$f\left(u_{n+1}\right)=0$
and $f\left(v_{1}\right)=J_{n}$
$f\left(v_{i}\right)=\left\{\begin{array}{l}\mathrm{f}(\mathrm{Vi}-1)+\mathrm{Jn}-1-(\mathrm{i}-2)+\mathrm{Jn}+(\mathrm{i}-1)+1 \text {; for } \mathrm{i} \text { is even } \\ \mathrm{f}(\mathrm{Vi}-1)+\mathrm{Jn}-1-(\mathrm{i}-2)+\mathrm{Jn}+(\mathrm{i}-1)-1 \text {; for } \mathrm{i} \text { is odd }\end{array}\right.$
where $i=2,3, \ldots, n f\left(v_{n+1}\right)=1$.
we get the induced edge labels are Jacobsthal numbers. Hence the combs are Jacobsthal graceful .

## Example



Figure 4: Comb $\boldsymbol{P}_{6} \odot K_{1}$
Theorem 2.14. The coconut tree $C T(m, n)$ is Jacobsthal graceful for all $n ; m>2$
Proof. Let $C T(m, n)$ be the coconut tree. Let $\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set. By the definition of coconut tree $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of the path $P_{m}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the pendant vertices joined to the end vertex $u_{m}$ of the path $P_{m}$ and the edge set is $\left\{u_{i} u_{j}, i=1,2, \ldots, m-\right.$ $1, j=2,3, \ldots, m\}$ and $\left\{u_{m} v_{i}, i=1,2, \ldots, n\right\}$;

Now, $\mid V(C T(m, n) \mid=m+n$,
$\mid E(C T(m, n) \mid=(m-1)+n$
Define the function $\left\{\mathrm{f}: \mathrm{V}!\mathrm{fO} ; 1 ; 1 ;:: \mathrm{j}_{\mathrm{q}}\right\}$ by
$f\left(u_{i}\right)=\left\{\begin{array}{l}\mathrm{j}_{m+n-1}+\sum_{i=1}^{m-3} \mathrm{j}_{m+n-1}-i-\mathrm{J} 1 \text { for } \mathrm{m}>3 \\ \mathrm{j}_{m+n-1} \text { for } \mathrm{m}=3\end{array}\right.$
$f\left(u_{2}\right)=f\left(u_{1}\right)+1$
$f\left(u_{i}\right)=f\left(u_{i-1}\right)+J_{n+i-1}, \quad i=3,4,5, \ldots, m-1, f\left(u_{m}\right)=0$
and $f\left(v_{i}\right)=J_{i+1}, \quad i=1,2, \ldots, n$
Hence the induced edge labels are Jacobsthal numbers. Therefore the coconut tree is Jacobsthal graceful.

## Example



Figure 5: $C T(5,3)$
Theorem 2.15. The bistar $B_{m, n}$ is Jacobsthal graceful for all $m, n \geq 2$
Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}, u, v\right\}$ be the vertex set and $\left\{u u_{i}, i=1,2, \ldots, m\right\}$,
$\left\{v v_{i}, i=1,2, \ldots, m\right\},\{u v\}$ are the edge sets of $B_{m, n}$.

Now, $/ V\left(B_{m, n}\right) /=m+n+2$
$\left|E\left(B_{m, n}\right)\right|=m+n+1$
Define the function $f: V\left(B_{m, n}\right) \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by
$f(u)=0$
$f\left(u_{i}\right)=J_{n+i+1}, \quad i=1,2, \ldots, m$
and $f(v)=1$
$f\left(v_{i}\right)=J_{1}+J_{i+1}, \quad i=1,2, \ldots, n$.
Now the induced edge labels are Jacobsthal numbers. Therefore the bistar $B_{m, n}$ is Jacobsthal graceful for all $m, n \geq 2$.

## Example



Figure 6: $B(5 ; 2)$
Theorem 2.16. The subdivision of bistar $S\left(B_{m, n}\right)$ is Jacobsthal graceful for all $m, n \geq 2$.
Proof. Let $S\left(B_{m, n}\right)$ be the subdivision of bistar. Let $\left.\left\{u_{1}, u_{2}, \ldots . . u_{m}, u\right\}, u\right\}_{2}, \ldots u_{m}^{\jmath}, v_{1}, v_{2}, \ldots$
$\left.., v_{n}, v_{1}^{\prime}, v_{2}, \ldots, v_{n}^{\jmath}, u, v\right\}$ be the vertex set and $\left\{u_{i} u_{i}^{\prime}, i=1,2, \ldots, m\right\},\left\{u_{i}^{J} u, i=1,2, \ldots\right.$
$., m\},\{u v\},\left\{v v_{i}^{J}, i=1,2, \ldots, n\right\},\left\{v_{i}^{J} v_{i}, i=1,2, \ldots, n\right\}$ are the edge set of $B_{m, n}$.
Now, $/ V\left(S\left(B_{m, n}\right) /=2(m+n)+2\right.$
and $\mid E\left(S\left(B_{m, n}\right) \mid=2(m+n)+1\right.$
Define the function $f: V\left(S\left(B_{m, n}\right)\right) \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by $f(u)=0$,
$f(v)=J_{2(m+n)+1}$
$f\left(u_{1}\right)=2$
$f\left(u_{i}\right)=J_{2 m-(i-2)}+J_{i+1}, \quad i=2,3, \ldots, m$
$f\left(u_{i}^{J}\right)=J_{i+1}, \quad i=1,2, \ldots, m$
$f\left(v_{i}{ }^{J}\right)=J_{2(m+n)+1}-J_{2 m+i}, \quad i=1,2, \ldots, n$
$f\left(v_{i}\right)=J_{2(m+n)+1}-J_{2(m+n)-(i-1)}-J_{2 m+i}, \quad i=1,2, \ldots, n$.

Now, we get the induced edge labels are Jacobsthal numbers. Hence the subdivision of bistar is Jacobsthal graceful for all $m, n \geq 2$

## Example



Figure 7: $S(B(5 ; 5))$
Theorem 2.17. Olive tree is Jacobsthal graceful for all $n \geq 2$
Proof. Let $T_{n}$ be an olive tree. By the definition of Olive tree , the vertices of thepaths be joined by the single vertex $u_{0}$. Let the vertices are $\left\{u_{0}, u_{11}, u_{12}, \ldots ., u_{1 n}, u_{21}, u_{22}, \ldots, u_{2(n-1)}\right.$, $\left.\ldots, u_{n 1}\right\}$ and the edges are denoted as in figure.Now, $/ V(G) /=\left(n^{2}+n+2\right) / 2$
$\mid E(G) /=(n(n+1)) / 2$

Define the function $f: V \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by $f\left(u_{0}\right)=$
$0, f\left(u_{i 1}\right)=J_{q-(i-1)}, \quad 1 \leq i \leq n$
$f\left(u_{i 2}\right)=f\left(u_{i 1}\right)-J_{q-[n+(i-1)],} \quad 1 \leq i \leq n-1$
$f\left(u_{i 3}\right)=f\left(u_{i 2}\right)-J_{q-[(n+(i-1))+(n-1)]} \quad 1 \leq i \leq n-2$
$f\left(u_{i 4}\right)=f\left(u_{i 3}\right)-J_{q-[(n+(i-1))+(n-1)+(n-2)]} \quad 1 \leq i \leq n-3$
$f\left(u_{i 5}\right)=f\left(u_{i 4}\right)-J_{q-[(n+(i-1))+(n-1)+(n-2)+(n-3)],} \quad 1 \leq i \leq n-4$
and so on. continuing like this we get the edge labels are Jacobsthal numbers. Hence the olive tree is Jacobsthal graceful labeling for all $n \geq 2$

## Example



Figure 8: $\mathrm{T}_{4}$

Theorem 2.18. The Jelly fish $J(m, n)-e_{1}$ where $e_{1}=x_{1} x_{3}$ is Jacobsthal graceful.

Proof. Let $G=J_{(m, n)}-e_{1}$, where $e_{1}=x_{1} x_{3}$ Let $\left\{x_{1}, x_{2}, x_{3}, x_{4}, u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of $G$. By definition $x_{1}, x_{2}, x_{3}, x_{4}$ are the vertices of the cycle $C_{4} . u_{1}, u_{2}, \ldots, u_{m}$ be the pendant vertices are attached to the vertex $x_{1}$ and the pendant vetices $v_{1}, v_{2}$, $\ldots, v_{n}$ are attached to the vertex $x_{3}$. The edge set is defined as $\left\{x_{1} u_{i}, 1 \leq i \leq m\right\},\left\{x_{3} v_{i}, 1 \leq i\right.$ $\leq n\},\left\{x_{2} x_{1}\right\},\left\{x_{1} x_{4}\right\},\left\{x_{2} x_{3}\right\},\left\{x_{3} x_{4}\right\}$.

Define $f: V \rightarrow\left\{0,1,1, \ldots, J_{q}\right\}$ by $f\left(u_{i}\right)=J_{q-(i-1)}, \quad i=1,2, \ldots, m$
$f\left(x_{1}\right)=J_{0}$
$f\left(x_{i}\right)=f\left(x_{i-1}\right)+J_{i-1}, i=2,3,4$
$f\left(v_{i}\right)=J_{i+4}+2, i=1,2, \ldots, n$

Above conditions show that the induced edge labels are Jacobsthal numbers. Therefore the Jelly fish $J(m, n)-e_{1}$ is Jacobsthal graceful labeling.

## Example



Figure 9: $J(3,4)-e_{1}$

## References

[1] J.A.Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Coombinatories,2017
[2] F.Harrary, "Graph Theory," Narosa Publishing House -2001
[3] A.Rosa, "On certain valuations of the vertices of a graph." Theory of Graphs(Inter.Symposium,Rome,July 1966),Gordon and Breach, N.Y and Dunod Paris(1967),349355.
[4] R.Uma,D.Amuthavalli "Fibonacci Graceful labeling of some star related graphs," Ars Combin . International Journal of computer Applications(0975-8887)
[5] K.M. Kathiresan, S. Amutha, "Fibanocci Graceful Graphs", Ars Comb. (Com- municated).
[6] D.Muthuramakrishna and S. Sutha, "Some Pell Graceful Graphs", Interna- tional Journal of Scientific Research and Review, ISSN NO:2279-543X
[7] D.Muthuramakrishna and S. Sutha, "Pell graceful labeling of Graphs", Malaya Journal of Matematik,vol .7,No.3,508-512,2019.

