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ABSTRACT 

An injective function 𝑓 ∶  𝑉 (𝐺) → {0, 1, 1, 3, … , 𝐽𝑞} is said to be Jacobsthal 

graceful labeling of a graph 𝐺(𝑝;  𝑞) if the labeling of induced edge 𝑓∗(𝑢𝑣) =

 |𝑓(𝑢) − 𝑓(𝑣) |is a bijection onto {𝐽1, 𝐽2, … , 𝐽𝑞} where 𝐽𝑞 is the qth Jacobsthal 

number in the Jacobsthal sequence. If 𝐺 admits a Jacobsthal graceful 

labeling, then 𝐺 is called a Jacobsthal graceful graph. In this paper some 

standard graphs are shown to be Jacobsthal graceful labeling.  

AMS classification: 05C78 

Keywords : Labeling, Graceful labeling, Jacobsthal sequence, Jacobsthal 

graceful labeling. 

 

1 Introduction 

Let 𝐺 =  (𝑝, 𝑞) be a simple, undirected,  finite graph. An assignment of integers to the edges or 

vertices or both subject to certain conditions is a graph labeling. For basic terminologies we refer 

Harrary [2]. Gallian [1] has given a vast survey on graph labeling. Alex Rosa [3] introduced the concept 

of graceful labeling in 1966. A function 𝑓 of 𝐺 is called a graceful labeling if 𝑓 is an injection from the 

vertex set of 𝐺 to the set {0, 1, … , 𝑚} such that when each edge 𝑢𝑣 is assigned the label 
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|𝑓(𝑢) − 𝑓(𝑣) | and the resulting edge labels are distinct, then 𝐺 is graceful. Acharya and Hedge 

introduced Fibonacci graceful labeling and further studied by [4, 5]. In this paper we introduced a new 

labeling called Jacobsthal graceful labeling and showed certain family of graphs which admits 

Jacobsthal graceful labeling. 

2 Jacobsthal Graceful Labeling 

Definition 2.1. The Jacobsthal sequence is an additivesequence defined by Jn = Jn-1 + 2Jn=2 

𝑤𝑖𝑡ℎ 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠 J0 = 0 and J1 = 1 and the numbers in the sequence are called Jacobsthal numbers. 

𝑇ℎ𝑒 𝐽𝑎𝑐𝑜𝑏𝑠𝑡ℎ𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎𝑟𝑒 0, 1, 1, 3, 5, 11, 21, 43,85, . . .   

Definition 2.2. A graph 𝐺(𝑝, 𝑞) with injective function𝑓 ∶  𝑉 (𝐺) → {0, 1, 1, 3, … , 𝐽𝑞} is said to be 

Jacobsthal graceful labeling 𝐺 if the induced edge labeling |𝑓(𝑢) − 𝑓(𝑣) |𝑖s a bijection onto the set 

{𝐽1, 𝐽2, … , 𝐽𝑞}where 𝐽𝑞is the qth Jacobsthal number in the Jacobsthal sequence. A graph is referred to be 

a Jacobsthal graceful graph (𝐺) if it admits a Jacobsthal graceful labelling.  

Definition 2.3. The Comb is a graph obtained by Jogging a each vertex of a path Pn to a single pendant 

edge. It is denoted by Pn ⊙K1 

Definition 2.4. A Coconut Tree 𝐶𝑇(𝑚,𝑛) is the graph obtained from the path Pm by appending 𝑛 

pendant edges at an end vertex of Pm: 

Definition 2.5. The Bistar 𝐵𝑚,𝑛 is the graph obtained from K2 by joining m pendant edges to one end 

of K2 and 𝑛 pendant edges to the other end of K2: 

Definition 2.6. Subdivision of a graph 𝐺 is a graph obtained from 𝐺 by replacing certain edges of 𝐺 

with internally vertex - disjoint paths. 

Definition 2.7. A rooted tree consisting of n branches where the jth branch is a path of length j is called 

Olive tree and is denoted by Tn: 

Definition 2.8. The Jelly  fish graph 𝐽(𝑚, 𝑛) is obtained from a 4-cycle v1; v2; v3; v4 by joining v1 and v3 

with an edge and appending m pendant edges to v2 and n pendant edges to v4 . Jelly  fish 𝐽(𝑚, 𝑛)  is a 

graph with order of vertices 𝑚 + 𝑛 + 4 and sizes of edges is 𝑚 +  𝑛 +  5 . 

Theorem 2.9. The path Pn, 𝑛 >  3 is Jacobsthal graceful labeling. 

Proof. Let the  vertices  of Pn be v0, v1, . . . , vn and e1, e2, . . . , en be  the  corresponding edges. Now,  

|V (Pn)| = n + 1 |E(Pn)| = n . 

Case (i) If n  is odd, 

Define f : V (Pn) → {0, 1, 1, . . . , Jq} by f (v0) = 0, f (v1) = Jq 

and f (vi) = f (vi−1) − Jq−(i−1)  where  i = 2, 3, . . . , n 

Case(ii) If n is even 

Define f : V (Pn) → {0, 1, 1, . . . , Jq}  by 

f (v0) = 0, f (v1) = Jq 

f (vi) = f (vi−1) − Jq−(i−1), where  i = 2, 3, . . . , n − 2 

f (vn−1) = J3,  f (vn) = J4 − 1 
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In the above two cases, the edge labels induced are Jacobsthal numbers. Hence the path Pn is 

Jacobsthal graceful labeling for all n > 3 

Example 

 

Figure 1:  P10 

Theorem 2.10. The Cycle Cn of even length is Jacobsthal graceful labeling 

Proof.  Let  Cn be the cycle of even length.  Let  v0, v1, v2, . . . , vn−1   be the vertices and e0, e1, . . . en−1 be 

the corresponding edges of the cycle  Cn .  Now,  |V (Cn)| = n, |E(Cn)| = n. 

We define f : V (Cn) → {0, 1, 1, . . . , Jq} by 

f (v0) = 0, f (v1) = 1, f (vi) = f (vi−1) + Ji where i = 2, 3, . . . , n − 1 

This shows that the induced edge labels are Jacobsthal numbers. Hence even cycles are Jacobsthal 

graceful labeling. 

Example 

 

Figure 2: C8 

Remark 2.11. Cycle of odd length is not Jacobsthal graceful 

Example 2.12. The cycle C5  is not a Jacobsthal graceful labeling. 

Proof. If C5 is a Jacobsthal graceful graph,then f : V (C5) → {0, 1, 1, . . . , Jq} is an injective function such 

that the edge labels are Jacobsthal numbers {J1, J2, J3, J4, J5} ={1, 1, 3, 5, 11} 

Let {a, b, c, d}  be the vertices of the cycle  C5. 

By Figure 3, f (a) = 0, f (b) = 1, f (e) = 11, f (d) = 6. Let f (c) = x if x = 3, then f ∗(bc) = 2, 

2 is not a Jacobsthal number and if  x = 2,  then  f ∗(cd) = 4, 

4 is not a Jacobsthal number. Both cases leads to a contradiction that f is a Jacbsthal graceful labeling. 

Hence C5 is not a Jacobsthal graceful labeling 
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Example 

 

Figure 3: C5 

Theorem 2.13. The combs Pn ⊙ K1  are Jacobsthal graceful labeling 

Proof.  Let G  =  Pn⊙K1   be the comb graph.   Let the vertices of the comb be {u1, u2, . . . , un+1, v1, v2, . 

. . , vn+1},  where   u1, u2, . . . , un+1  are the vertices of   Pn and v1, v2, . . . , vn+1 are the vertices attached 

to Pn by the edge {uivi/i = 1, 2, 3, . . . , n} defined by, 

|V (Pn ⊙ K1)| = 2n + 2, 

|E(Pn ⊙K1)| = 2n + 1. 

Case(i) G is even 

Define f : V  → {0, 1, 1, . . . , Jq} by 

f (u1) = Jn+1 

f (ui) = f (ui−1) + Jn+(i−1), where  i = 2, 3, 4, . . . ,  

n f (un+1) = 0 

𝑎𝑛𝑑 𝑓(𝑣𝑖) ={
J𝑛+(𝑖) − J𝑛−(𝑛−1);  𝑓𝑜𝑟 𝑖 is odd

J𝑛+𝑖 −  J𝑛−(𝑛−1)  +  1;  𝑓𝑜𝑟 𝑖 is even
 

where, i = 1, 2, . . . , n. 

f (vn+1) = 1. 

Case(ii) G is odd 

Define f : V → {0, 1, 1, . . . , Jq} by  f (u1) = Jn+1 + 1 

f (ui) = f (ui−1) + Jn+(i−1), where  i = 2, 3, . . . , n. 

f (un+1) = 0 

and f (v1) = Jn 

𝑓(𝑣𝑖) ={
f(vi − 1) +  Jn − 1 − (i − 2) +  Jn + (i − 1) +  1;  for i is even
f(vi − 1) +  Jn − 1 − (i − 2) +  Jn + (i − 1) − 1;  for i is odd

 

where i = 2, 3, . . . , n f (vn+1) = 1. 

we get the induced edge labels are Jacobsthal numbers. Hence the combs are Jacobsthal graceful . 
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Example 

 

Figure 4: Comb  P6 ⊙K1 

Theorem 2.14.  The coconut tree  CT (m, n)   is Jacobsthal graceful for all n;m > 2 

Proof. Let CT (m, n) be the coconut tree. Let  {u1, u2, . . . , um, v1, v2, . . . , vn}  be the vertex set. By the 

definition of coconut tree u1, u2, . . . , um be the vertices of the path Pm   and   v1, v2, . . . , vn   be the 

pendant vertices joined to the end vertex um of the path Pm and the edge set is {uiuj, i = 1, 2, . . . , m − 

1, j = 2, 3, . . . , m} and {umvi, i = 1, 2, . . . , n}; 

Now, |V (CT (m, n)| = m + n, 

|E(CT (m, n)| = (m − 1) + n 

Define the function{ f : V ! f0; 1; 1; : : : jq} by 

𝑓(𝑢𝑖) ={
j𝑚+𝑛−1 +  ∑ j𝑚+𝑛−1 − 𝑖𝑚−3

𝑖=1 − J1 for m > 3

j𝑚+𝑛−1 for m = 3                                              
 

f (u2) = f (u1) + 1 

f (ui) = f (ui−1) + Jn+i−1, i = 3, 4, 5, . . . , m − 1, f (um) = 0 

and f (vi) = Ji+1, i = 1, 2, . . . , n 

Hence the induced edge labels are Jacobsthal numbers. Therefore the coconut tree is Jacobsthal 

graceful . 

Example 

 

Figure 5:  CT (5, 3) 

Theorem 2.15. The bistar Bm,n  is Jacobsthal graceful for all  m, n ≥ 2 

Proof. Let  {u1, u2, . . . , um, v1, v2, . . . , vn, u, v} be the vertex set and  {uui, i = 1, 2, . . . , m}, 

{vvi, i = 1, 2, . . . , m} , {uv} are the edge sets of Bm,n . 
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Now, |V (Bm,n)| = m + n + 2 

|E(Bm,n)| = m + n + 1 

Define the function f : V (Bm,n) → {0, 1, 1, . . . , Jq} by 

f (u) = 0 

f (ui) = Jn+i+1, i = 1, 2, . . . , m 

and f (v) = 1 

f (vi) = J1 + Ji+1, i = 1, 2, . . . , n. 

Now the induced edge labels are Jacobsthal numbers. Therefore the bistar Bm,n is Jacobsthal graceful 

for all m, n ≥ 2. 

Example 

 

Figure 6: B(5; 2) 

Theorem 2.16. The subdivision of bistar S(Bm,n)  is Jacobsthal graceful for all m, n ≥ 2. 

Proof.  Let  S(Bm,n)  be the subdivision of bistar .  Let  {u1, u2, . . . ..um, u1
J , u2

J , . . . um
J     , v1, v2, . . 

. , vn, v1
J , v2

J , . . . , vn
J  , u, v}   be  the  vertex  set  and   {uiuJ

i,   i  =  1, 2, . . . , m} , {ui
J u, i = 1, 2, . . 

. , m}, {uv}, {vvi
J, i = 1, 2, . . . , n}, {vi

Jvi, i = 1, 2, . . . , n} are the edge set of Bm,n . 

Now, |V (S(Bm,n)| = 2(m + n) + 2 

and |E(S(Bm,n)| = 2(m + n) + 1 

Define the function  f  : V (S(Bm,n)) → {0, 1, 1, . . . , Jq}  by   f (u) = 0, 

f (v) = J2(m+n)+1 

f (u1) = 2 

f (ui) = J2m−(i−2) + Ji+1,            i = 2, 3, . . . , m 

f (ui
J ) = Ji+1,          i = 1, 2, . . . , m 

f (vi
J) = J2(m+n)+1 − J2m+i,  i = 1, 2, . . . , n 

f (vi) = J2(m+n)+1 − J2(m+n)−(i−1) − J2m+i, i = 1, 2, . . . , n. 
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Now, we get the induced edge labels are Jacobsthal numbers. Hence the subdivision of bistar is 

Jacobsthal graceful for all m, n ≥ 2 

Example 

 

Figure 7: S(B(5; 5)) 

Theorem 2.17. Olive tree is Jacobsthal graceful for all n ≥ 2 

Proof. Let Tn be an olive tree. By the definition of Olive tree ,the vertices of the paths be 

joined by the single vertex u0 . Let the vertices are {u0, u11, u12, . . .. . . , u1n, u21, u22, . . . , u2(n−1), 

. . . , un1} and the edges are denoted as in figure. Now, |V (G)| = (n2 + n + 2)/2 

|E(G)| = (n(n + 1))/2 

Define the function f : V  → {0, 1, 1, . . . , Jq}  by  f (u0) = 

0, f (ui1) = Jq−(i−1), 1 ≤ i ≤ n 

f (ui2) = f (ui1) − Jq−[n+(i−1)],  1 ≤ i ≤ n − 1 

f (ui3) = f (ui2) − Jq−[(n+(i−1))+(n−1)],   1 ≤ i ≤ n − 2 

f (ui4) = f (ui3) − Jq−[(n+(i−1))+(n−1)+(n−2)],   1 ≤ i ≤ n − 3 

f (ui5) = f (ui4) − Jq−[(n+(i−1))+(n−1)+(n−2)+(n−3)], 1 ≤ i ≤ n − 4 

and so on. continuing like this we get the edge labels are Jacobsthal numbers. Hence the olive 

tree is Jacobsthal graceful labeling for all n ≥ 2 
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Example 

 

Figure 8:  T4 

Theorem 2.18. The Jelly fish J(m,n) −e1  where  e1 = x1x3  is Jacobsthal graceful. 

Proof.  Let  G = J(m,n)−e1 , where  e1 = x1x3  Let  {x1, x2, x3, x4, u1, u2, . . . , um, v1, v2, . . . , vn} 

be the vertices of G. By definition x1, x2, x3, x4 are the vertices of the cycle C4. u1, u2, . . . , um be  

the  pendant  vertices  are  attached  to  the  vertex   x1   and  the  pendant  vetices v1, v2, . 

. . , vn are attached to the vertex x3 . The edge set is defined as {x1ui, 1 ≤i ≤ m}, {x3vi, 1 ≤ i 

≤ n}, {x2x1}, {x1x4}, {x2x3}, {x3x4} . 

Define  f : V  → {0, 1, 1, . . . , Jq}  by  f (ui) = Jq−(i−1), i = 1, 2, . . . , m 

f (x1) = J0 

f (xi) = f (xi−1) + Ji−1, i = 2, 3, 4 

f (vi) = Ji+4 + 2, i = 1, 2, . . . , n 

Above conditions show that the induced edge labels are Jacobsthal numbers. Therefore the Jelly fish 

J(m, n) − e1 is Jacobsthal graceful labeling. 
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Example 

 

Figure 9:  J(3, 4) − e1 
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