Vol.11.Issue.1.2023 (Jan-March) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

Jacobsthal Graceful Labeling

R.Lalitha¹, S.Santhakumari², S.Freeda³

¹Research scholar(Part-time Internal), Reg. No - 20223112092039, Nesamony Memmorial Christian College, Marthandam, Tamilnadu India.

²Assistant Professor, Department of Mathematics, M.S.U Constituent College, Kanyakumari,629 401 Tamilnadu, India.

³Assistant Professor, Department of Mathematics, Nesamony Memmorial Christian College, Marthandam, Tamilnadu, India. (A liated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu India.)

Email: lalithaarunvinu29@gmail.com¹, santhasundar75@redimail.com²,freedasam1969@gmail.com³ DOI:<u>10.33329/bomsr.11.1.48</u>

ABSTRACT

An injective function $f : V(G) \rightarrow \{0, 1, 1, 3, ..., J_q\}$ is said to be Jacobsthal graceful labeling of a graph G(p; q) if the labeling of induced edge $f^*(uv) = |f(u) - f(v)|$ is a bijection onto $\{J_1, J_2, ..., J_q\}$ where J_q is the qth Jacobsthal number in the Jacobsthal sequence. If G admits a Jacobsthal graceful labeling, then G is called a Jacobsthal graceful graph. In this paper some standard graphs are shown to be Jacobsthal graceful labeling.

AMS classification: 05C78

Keywords : Labeling, Graceful labeling, Jacobsthal sequence, Jacobsthal graceful labeling.

1 Introduction

Let G = (p,q) be a simple, undirected, finite graph. An assignment of integers to the edges or vertices or both subject to certain conditions is a graph labeling. For basic terminologies we refer Harrary [2]. Gallian [1] has given a vast survey on graph labeling. Alex Rosa [3] introduced the concept of graceful labeling in 1966. A function f of G is called a graceful labeling if f is an injection from the vertex set of G to the set $\{0, 1, ..., m\}$ such that when each edge uv is assigned the label

|f(u) - f(v)| and the resulting edge labels are distinct, then *G* is graceful. Acharya and Hedge introduced Fibonacci graceful labeling and further studied by [4, 5]. In this paper we introduced a new labeling called Jacobsthal graceful labeling and showed certain family of graphs which admits Jacobsthal graceful labeling.

2 Jacobsthal Graceful Labeling

Definition 2.1. The Jacobsthal sequence is an additivesequence defined by $J_n = J_{n-1} + 2J_{n-2}$ with begining terms $J_0 = 0$ and $J_1 = 1$ and the numbers in the sequence are called Jacobsthal numbers. The Jacobsthal numbers are 0, 1, 1, 3, 5, 11, 21, 43,85, ...

Definition 2.2. A graph G(p,q) with injective function $f : V(G) \rightarrow \{0, 1, 1, 3, ..., J_q\}$ is said to be Jacobsthal graceful labeling G if the induced edge labeling |f(u) - f(v)| is a bijection onto the set $\{J_1, J_2, ..., J_q\}$ where J_q is the q^{th} Jacobsthal number in the Jacobsthal sequence. A graph is referred to be a Jacobsthal graceful graph (G) if it admits a Jacobsthal graceful labelling.

Definition 2.3. The Comb is a graph obtained by Jogging a each vertex of a path P_n to a single pendant edge. It is denoted by $P_n \odot K_1$

Definition 2.4. A Coconut Tree $CT_{(m,n)}$ is the graph obtained from the path P_m by appending n pendant edges at an end vertex of P_m :

Definition 2.5. The Bistar $B_{m,n}$ is the graph obtained from K_2 by joining m pendant edges to one end of K_2 and n pendant edges to the other end of K_2 :

Definition 2.6. Subdivision of a graph G is a graph obtained from G by replacing certain edges of G with internally vertex - disjoint paths.

Definition 2.7. A rooted tree consisting of n branches where the jth branch is a path of length j is called Olive tree and is denoted by Tn:

Definition 2.8. The Jelly fish graph J(m, n) is obtained from a 4-cycle v_1 ; v_2 ; v_3 ; v_4 by joining v_1 and v_3 with an edge and appending m pendant edges to v_2 and n pendant edges to v_4 . Jelly fish J(m, n) is a graph with order of vertices m + n + 4 and sizes of edges is m + n + 5.

Theorem 2.9. The path P_n , n > 3 is Jacobsthal graceful labeling.

Proof. Let the vertices of P_n be v_0, v_1, \ldots, v_n and e_1, e_2, \ldots, e_n be the corresponding edges. Now,

 $|V(P_n)| = n + 1 |E(P_n)| = n$.

Case (i) If n is odd,

Define $f: V(P_n) \to \{0, 1, 1, ..., J_q\}$ by $f(v_0) = 0, f(v_1) = J_q$

and $f(v_i) = f(v_{i-1}) - Jq - (i-1)$ where i = 2, 3, ..., n

Case(ii) If n is even

Define $f: V(P_n) \rightarrow \{0, 1, 1, \ldots, J_q\}$ by

$$f(v_0) = 0, f(v_1) = J_q$$

 $f(v_i) = f(v_{i-1}) - Jq - (i-1)$, where i = 2, 3, ..., n - 2

 $f(v_{n-1})=J_{3},\ f(v_{n})=J_{4}-1$

In the above two cases, the edge labels induced are Jacobsthal numbers. Hence the path P_n is Jacobsthal graceful labeling for all n > 3

Example

Theorem 2.10. The Cycle C_n of even length is Jacobsthal graceful labeling

Proof. Let C_n be the cycle of even length. Let $v_0, v_1, v_2, ..., v_{n-1}$ be the vertices and $e_0, e_1, ..., e_{n-1}$ be the corresponding edges of the cycle C_n . Now, $|V(C_n)| = n$, $|E(C_n)| = n$.

We define $f : V(C_n) \rightarrow \{0, 1, 1, \dots, J_q\}$ by

 $f(v_0) = 0, f(v_1) = 1, f(v_i) = f(v_{i-1}) + J_i$ where i = 2, 3, ..., n - 1

This shows that the induced edge labels are Jacobsthal numbers. Hence even cycles are Jacobsthal graceful labeling.

Example

Figure 2: C₈

Remark 2.11. Cycle of odd length is not Jacobsthal graceful

Example 2.12. The cycle C_5 is not a Jacobsthal graceful labeling.

Proof. If C_5 is a Jacobsthal graceful graph, then $f : V(C_5) \rightarrow \{0, 1, 1, ..., J_q\}$ is an injective function such that the edge labels are Jacobsthal numbers $\{J_1, J_2, J_3, J_4, J_5\} = \{1, 1, 3, 5, 11\}$

Let $\{a, b, c, d\}$ be the vertices of the cycle C_5 .

By Figure 3, f (a) = 0, f (b) = 1, f (e) = 11, f (d) = 6. Let f (c) = x if x = 3, then f *(bc) = 2,

2 is not a Jacobsthal number and if x = 2, then $f^{*}(cd) = 4$,

4 is not a Jacobsthal number. Both cases leads to a contradiction that f is a Jacobsthal graceful labeling. Hence C_5 is not a Jacobsthal graceful labeling

Figure 3: C₅

Theorem 2.13. The combs $P_n \odot K_1$ are Jacobsthal graceful labeling

Proof. Let $G = P_n \odot K_1$ be the comb graph. Let the vertices of the comb be $\{u_1, u_2, \ldots, u_{n+1}, v_1, v_2, \ldots, v_{n+1}\}$, where $u_1, u_2, \ldots, u_{n+1}$ are the vertices of P_n and $v_1, v_2, \ldots, v_{n+1}$ are the vertices attached to P_n by the edge $\{u_i v_i / i = 1, 2, 3, \ldots, n\}$ defined by,

 $|V (P_n \odot K_1)| = 2n + 2,$ $|E(P_n \odot K_1)| = 2n + 1.$

Case(i) G is even

Define $f: V \rightarrow \{0, 1, 1, ..., J_q\}$ by $f(u_1) = J_{n+1}$ $f(u_i) = f(u_{i-1}) + Jn + (i-1)$, where i = 2, 3, 4, ..., $n f(u_{n+1}) = 0$ and $f(v_i) = \begin{cases} J_{n+(i)} - J_{n-(n-1)}; for i \text{ is odd} \\ J_{n+i} - J_{n-(n-1)} + 1; for i \text{ is even} \end{cases}$ where, i = 1, 2, ..., n. $f(v_{n+1}) = 1$. **Case(ii)** G is odd Define $f: V \rightarrow \{0, 1, 1, ..., J_q\}$ by $f(u_1) = J_{n+1} + 1$ $f(u_i) = f(u_{i-1}) + Jn + (i-1)$, where i = 2, 3, ..., n. $f(u_{n+1}) = 0$ and $f(v_1) = J_n$ $f(v_i) = \begin{cases} f(v_i - 1) + J_n - 1 - (i - 2) + J_n + (i - 1) + 1; \text{ for i is even} \\ f(v_i - 1) + J_n - 1 - (i - 2) + J_n + (i - 1) - 1; \text{ for i is odd} \end{cases}$ where $i = 2, 3, ..., n f(v_{n+1}) = 1$.

we get the induced edge labels are Jacobsthal numbers. Hence the combs are Jacobsthal graceful .

_

Figure 4: Comb $P_6 \odot K_1$

Theorem 2.14. The coconut tree CT(m, n) is Jacobsthal graceful for all n;m > 2

Proof. Let *CT* (*m*, *n*) be the coconut tree. Let $\{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n\}$ be the vertex set. By the definition of coconut tree u_1, u_2, \ldots, u_m be the vertices of the path P_m and v_1, v_2, \ldots, v_n be the pendant vertices joined to the end vertex u_m of the path P_m and the edge set is $\{u_iu_j, i = 1, 2, \ldots, m - 1, j = 2, 3, \ldots, m\}$ and $\{u_mv_i, i = 1, 2, \ldots, n\}$;

Now, |V(CT(m, n)| = m + n,

|E(CT (m, n)| = (m - 1) + n

Define the function { $f : V \mid f0; 1; 1; ::: j_q$ } by

$$f(u_i) = \begin{cases} j_{m+n-1} + \sum_{i=1}^{m-3} j_{m+n-1} - i - J_1 \text{ for } m > 3 \\ j_{m+n-1} \text{ for } m = 3 \end{cases}$$

$$f(u_i) = f(u_1) + 1$$

$$f(u_i) = f(u_{i-1}) + J_{n+i-1}, \quad i = 3, 4, 5, \dots, m-1, f(u_m) = 0$$

and $f(v_i) = J_{i+1}, \quad i = 1, 2, \dots, n$

Hence the induced edge labels are Jacobsthal numbers. Therefore the coconut tree is Jacobsthal graceful .

Example

Figure 5: CT (5, 3)

Theorem 2.15. The bistar $B_{m,n}$ is Jacobsthal graceful for all $m, n \ge 2$ Proof. Let $\{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n, u, v\}$ be the vertex set and $\{uu_i, i = 1, 2, \ldots, m\}$, $\{vv_i, i = 1, 2, \ldots, m\}$, $\{uv\}$ are the edge sets of $B_{m,n}$. Now, $|V(B_{m,n})| = m + n + 2$ $|E(B_{m,n})| = m + n + 1$ Define the function $f: V(B_{m,n}) \rightarrow \{0, 1, 1, ..., J_q\}$ by f(u) = 0 $f(u_i) = J_{n+i+1}, \quad i = 1, 2, ..., m$ and f(v) = 1 $f(v_i) = J_1 + J_{i+1}, \quad i = 1, 2, ..., n.$

Now the induced edge labels are Jacobsthal numbers. Therefore the bistar $B_{m,n}$ is Jacobsthal graceful for all $m, n \ge 2$.

Example

Figure 6: B(5; 2)

Theorem 2.16. The subdivision of bistar $S(B_{m,n})$ is Jacobsthal graceful for all $m, n \ge 2$.

Proof. Let $S(B_{m,n})$ be the subdivision of bistar. Let $\{u_1, u_2, ..., u_m, u_1^{\downarrow}, u_2^{\downarrow}, ..., u_m^{\downarrow}, v_1, v_2, ..., v_n, v_1^{\downarrow}, v_2^{\downarrow}, ..., v_n^{\downarrow}, u, v\}$ be the vertex set and $\{u_i u_i^{\iota}, i = 1, 2, ..., m\}, \{u_i^{\downarrow}, u, i = 1, 2, ..., m\}, \{uv\}, \{vv_i^{\downarrow}, i = 1, 2, ..., n\}, \{v_i^{\downarrow}v_i, i = 1, 2, ..., n\}$ are the edge set of $B_{m,n}$.

Now, $|V(S(B_{m,n})| = 2(m + n) + 2$

and $|E(S(B_{m,n})| = 2(m + n) + 1$

Define the function $f : V(S(B_{m,n})) \rightarrow \{0, 1, 1, \dots, J_q\}$ by f(u) = 0,

 $f(v) = J_{2(m+n)+1}$ $f(u_1) = 2$ $f(u_i) = J_{2m-(i-2)} + J_{i+1}, \qquad i = 2, 3, ..., m$ $f(u_i^J) = J_{i+1}, \qquad i = 1, 2, ..., m$ $f(v_i^J) = J_{2(m+n)+1} - J_{2m+i}, \qquad i = 1, 2, ..., n$ $f(v_i) = J_{2(m+n)+1} - J_{2(m+n)-(i-1)} - J_{2m+i}, \qquad i = 1, 2, ..., n.$

Now, we get the induced edge labels are Jacobsthal numbers. Hence the subdivision of bistar is Jacobsthal graceful for all $m, n \ge 2$

Example

Figure 7: S(B(5; 5))

Theorem 2.17. Olive tree is Jacobsthal graceful for all $n \ge 2$

Proof. Let T_n be an olive tree. By the definition of Olive tree , the vertices of the paths be joined by the single vertex u_0 . Let the vertices are $\{u_0, u_{11}, u_{12}, \ldots, u_{1n}, u_{21}, u_{22}, \ldots, u_{2(n-1)}, u_{n-1}, u_{n-1}$..., u_{n1} and the edges are denoted as in figure.Now, $|V(G)| = (n^2 + n + 2)/2$

$$|E(G)| = (n(n+1))/2$$

Define the function $f: V \rightarrow \{0, 1, 1, \dots, J_q\}$ by $f(u_0) =$

 $0, f(u_{i1}) = J_{q-(i-1)}, \ 1 \le i \le n$

 $f(u_{i2}) = f(u_{i1}) - J_{q-[n+(i-1)]}, \quad 1 \le i \le n-1$

$$f(u_{i3}) = f(u_{i2}) - J_{q-[(n+(i-1))+(n-1)]}, \quad 1 \le i \le n-2$$

$$f(u_{i4}) = f(u_{i3}) - J_{q-[(n+(i-1))+(n-1)+(n-2)]}, \quad 1 \le i \le n-3$$

$$f(u_{i5}) = f(u_{i4}) - J_{q-[(n+(i-1))+(n-1)+(n-2)+(n-3)]}, \quad 1 \le i \le n-4$$

and so on. continuing like this we get the edge labels are Jacobsthal numbers. Hence the olive tree is Jacobsthal graceful labeling for all $n \ge 2$

Theorem 2.18. The Jelly fish $J(m,n) - e_1$ where $e_1 = x_1x_3$ is Jacobsthal graceful.

Proof. Let $G = J_{(m,n)} - e_1$, where $e_1 = x_1x_3$ Let $\{x_1, x_2, x_3, x_4, u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n\}$ be the vertices of G. By definition x_1, x_2, x_3, x_4 are the vertices of the cycle C_4 . u_1, u_2, \ldots, u_m be the pendant vertices are attached to the vertex x_1 and the pendant vetices v_1, v_2, \ldots \ldots, v_n are attached to the vertex x_3 . The edge set is defined as $\{x_1u_i, 1 \le i \le m\}, \{x_3v_i, 1 \le i \le n\}, \{x_2x_1\}, \{x_1x_4\}, \{x_2x_3\}, \{x_3x_4\}$.

Define $f: V \to \{0, 1, 1, \dots, J_q\}$ by $f(u_i) = J_{q-(i-1)}, i = 1, 2, \dots, m$

$$f(x_1) = J_0$$

$$f(x_i) = f(x_{i-1}) + J_{i-1}, i = 2, 3, 4$$

$$f(v_i) = J_{i+4} + 2, i = 1, 2, ..., n$$

Above conditions show that the induced edge labels are Jacobsthal numbers. Therefore the Jelly fish $J(m, n) - e_1$ is Jacobsthal graceful labeling.

Figure 9: *J*(3, 4) – *e*₁

References

- [1] J.A.Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Coombinatories,2017
- [2] F.Harrary, "Graph Theory," Narosa Publishing House -2001
- [3] A.Rosa, "On certain valuations of the vertices of a graph." Theory of Graphs(Inter.Symposium,Rome,July 1966),Gordon and Breach, N.Y and Dunod Paris(1967),349-355.
- [4] R.Uma,D.Amuthavalli "Fibonacci Graceful labeling of some star related graphs," Ars Combin . International Journal of computer Applications(0975- 8887)
- [5] K.M. Kathiresan, S. Amutha, "Fibanocci Graceful Graphs", Ars Comb. (Com- municated).
- [6] D.Muthuramakrishna and S. Sutha, "Some Pell Graceful Graphs", Interna- tional Journal of Scientific Research and Review, ISSN NO:2279-543X
- [7] D.Muthuramakrishna and S. Sutha, "Pell graceful labeling of Graphs", Malaya Journal of Matematik,vol .7,No.3,508-512,2019.