Vol.11.Issue.2.2023 (April-June) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

Characterization of Contra Continuous Functions

T. D. Rayanagoudar

Department of Mathematics, Government First Grade College, Rajnagar, Hubli-580032 Karnataka state, India Email:rgoudar1980@gmail.com DOI:<u>10.33329/bomsr.11.2.120</u>

ABSTRACT

In this paper, weaker forms of continuous functions called contra αg^*s continuous functions are introduced. Also, a new form of contra continuity called almost contra αg^*s -continuous functions which are weaker than contra αg^*s -continuity is introduced and studied their basic properties relating to them.

Keywords and Phrases: αg^*s -closed sets, αg^*s -continuous functions, contra αg^*s -continuous functions.

AMS Subject Classification: 54C08, 54C10

1. Introduction

Dontchev [4] introduced a new class of functions called contra-continuous functions in topological spaces. New weaker forms of functions called contra-semi continuous functions were introduced and investigated by Dontchev and Noiri [5]. Jafari and Noiri [8], [9] introduced other new weaker forms of this class of functions called contra- α -continuous and contra-pre continuous functions. Also, Contra super continuity is a continuation of research done by Dontchev [4] and Jafari and Noiri [7].

In this paper, we introduce and investigate the properties of new class of functions called contra αg^*s -continuous functions as a generalization of contra continuity. Also, almost contra αg^*s -continuous functions are introduced and obtained some of their properties in topological spaces.

2. Preliminaries

Throughout this paper (X, τ), (Y, μ) and (Z, σ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, the closure and interior of A with respect to τ are denoted by cl(A) and int(A) respectively.

Definition 2.1. [10] A subset A of X is αg^*s -closed if $\alpha cl(A) \subset U$ whenever $A \subset U$

and U is gs-open in X.

Definition 2.2. [10] The intersection of all αg^*s -closed sets containing a set A is called αg^*s -closure of A and is denoted by αg^*s -cl(A).

A set A is αg^*s -closed set if and only if αg^*s -cl(A) = A.

Definition 2.3. [10] The union of all αg^*s -open sets contained in A is called αg^*s - interior of A and is denoted by αg^*s -int(A).

A set A is αg^*s -open if and only if αg^*s -int(A) = A.

Definition 2.4. In a space X,

(i) If every αg^*s -closed set is closed in X, then X is called $T_{\alpha g^*s}$ space [10].

Definition 2.5. A function $f: X \rightarrow Y$ is called a

- (i) αg^*s -continuous [10], if the inverse image of every closed set in Y is αg^*s -closed in X.
- (ii) pre αg^*s -continuous [10], the image of every αg^*s -closed set in X is αg^*s closed in Y.
- (iii) αg*s-irresolute [10], if the inverse image of every αg*s-closed set in Y is αg*s-closed in X.
- (iv) contra continuous [4], for every open set V in Y, $f^{-1}(V)$ is closed in X.

3. Contra αg*s -continuous functions

In this section, a new class of functions called contra αg^*s -continuous functions is introduced and obtains some of their properties and relationships with some other related functions are discussed.

Definition 3.1. A function f: $X \rightarrow Y$ is said to be contra αg^*s -continuous if

 $f^{\text{-1}}(V)\in sg\omega\alpha\text{-}C(X)$ for every $V\in O(Y$).

Remark 3.1. We can observe that contra αg^*s -continuous and αg^*s -continuous are independent of each other.

Example 3.1. Let X = Y = {a, b, c}, $\tau = {X, \phi, {a}, {b}} and \mu = {Y, \phi, {a, b}} be topologies on X and Y respectively. Let f: X \to Y be the identity function. Then f is <math>\alpha g^*s$ -continuous function but not contra αg^*s -continuous, since for the open set {a, b} in Y, f⁻¹({a, b}) = {a, b} is not αg^*s -closed in X.

Example 3.2. Let X = Y = {a, b, c}, $\tau = {X, \phi, {c}}$ and $\mu = {Y, \phi, {a, b}}$ be topologies on X and Y respectively. Define the identity function f : X \rightarrow Y. Then f is contra αg^*s -continuous but not αg^*s -continuous, for the open set {a, b} in Y, f⁻¹({a, b}) = {a, b} is not αg^*s -open in X.

Remark 3.2. Every contra continuous is contra αg^*s -continuous.

Theorem 3.1. If a function $f : X \to Y$ is αg^*s -irresolute, $g : Y \to Z$ is contra continuous then $g \circ f : X \to Z$ is contra αg^*s -continuous.

Proof: Let $G \in O(Z)$. Since g is contra continuous, $g^{-1}(G) \in C(Y)$. Thus $g^{-1}(G) \in \alpha g^*s$ -C(Y). Since f is αg^*s -irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G) \in \alpha g^*s$ -C(X). Thus $g \circ f$ is contra αg^*s -continuous.

Theorem 3.2. Composition of contra αg^*s -continuous and continuous functions is again contra αg^*s -continuous.

Proof.Let $V \in O(Z)$. As g is continuous, $g^{-1}(V) \in O(Y)$. Then by contra αg^*s -continuity, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in \alpha g^*s$ -C(X). Thus gof is contra αg^*s -continuous.

Lemma 3.1. [7] The following properties holds for A, $B \subset X$:

(i) $x \in ker(A)$ if and only if $A \cap F \neq \phi$ for any $F \in C(X, x)$

(ii) $A \subset ker(A)$ and A = ker(A) if $A \in O(X)$.

(iii) if $A \subset B$, then ker(A) \subset ker(B)

Theorem 3.3. The followings conditions are equivalent for a function f: $X \rightarrow Y$:

(i) f is contra αg^* s-continuous.

(ii) for every $F \in C(Y)$, $f^{-1}(F) \in \alpha g^*s$ -O(X).

(iii) for each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \alpha g^*s$ -O(X, x) such that $f(U) \subset F$.

(iv) for each $x \in X$ and $V \in O(Y)$ not containing f (x), there exists $K \in \alpha g^*s$ -C(X) not containing x such that $f^{-1}(V) \subset K$.

(v) $f(\alpha g^*s-cl(A)) \subset ker(f(A))$ holds for $A \subset X$

 $(\textit{vi}) \qquad \alpha g^* s\text{-cl}(f^{-1}(B)) \subset f^{-1}(ker(B)) \text{ holds for } B \subset Y \ .$

Proof. (i) \rightarrow (ii) Let $F \in C(Y)$ and so $Y - F \in O(Y)$. From (i), $f^{-1}(Y - F) = X - f^{-1}(F) \in \alpha g^* s - C(X)$. Thus $f^{-1}(F) \in s \alpha g^* s - O(X)$. Hence (ii) holds.

(ii) \rightarrow (i): Let $G \in O(Y)$ and so $Y - G \in C(Y)$. From (ii), $f^{-1}(Y - G) = X - f^{-1}(G) \in \alpha g^* s - O(X)$, which shows that $f^{-1}(G) \in \alpha g^* s - C(X)$. Thus (i) hold.

(iii) \rightarrow (ii) Let $F \in C(Y, f(x))$. Then $x \in f^{-1}(F)$. By (ii), $f^{-1}(F) \in \alpha g^*s$ -O(X, x). Let $U = f^{-1}(F)$. Then f (U) = f ($f^{-1}(F)$) \subseteq F. Therefore (iii) holds.

(ii) \rightarrow (iii) Let $F \in C(Y, f(x))$. Then $x \in f^{-1}(F)$. From (iii), $Ux \in \alpha g^*s$ -O(X, x) with $f(Ux) \subseteq F$, that is $Ux \in f^{-1}(F)$. Thus $f^{-1}(F) = \bigcup \{Ux : x \in f^{-1}(F)\}$, which is the union of αg^*s -open sets. Thus $f^{-1}(F) \in \alpha g^*s$ -O(X).

(iv)→ (iii) Let V ∈ O(Y) not containing f (x). Then Y-V ∈ C(Y, f(x)). By (iii), U ∈ αg^*s -O(X, x) such that f (U)⊆Y-V and so U - f⁻¹(Y-V) = X-f⁻¹(V). Hence f⁻¹(V) ⊆ X -U. Put K = X - U and so K ∈ αg^*s -C(Y) not containing x such that f⁻¹(V) ⊆ K.

(iii) \rightarrow (iv) Let $F \in C(Y, f(x))$ and so $Y - F \in O(Y)$ not containing f(x). From (iv), $K \in \alpha g^*s - C(X)$ not containing x with $f^{-1}(Y - F) \subseteq K$ and so $X - f^{-1}(F) \in K$. Thus $X - K \in f^{-1}(F)$, that is $f(X - K) \subseteq F$. Put U = X - K, then $U \in \alpha g^*s - O(X, x)$ with $f(U) \subseteq F$.

(ii) \rightarrow (v) Let A \subseteq X. Assume that y \notin ker(f(A)). From lemma 3.1, F \in C(Y, y) with f (A) \cap F = ϕ . Thus, A - f⁻¹(F) = ϕ and so A-X \subseteq f⁻¹(F). But from (ii), f⁻¹(F) $\in \alpha g^*$ -O(X) and hence X-f⁻¹(F) $\in \alpha g^*s$ -C(X). Thus αg^*s -cl(X-f⁻¹(F)) = X-f⁻¹(F). Now A-X \subseteq f⁻¹(F), that is αg^*s -cl(A) $\in \alpha g^*s$ -cl(X - f⁻¹(F)) = X-f⁻¹(F). Therefore αg^*s -cl(A) \in f⁻¹(F) = ϕ , which implies f (αg^*s -cl(A)) \cap F = ϕ and hence y $\notin \alpha g^*s$ -cl(A). Thus f (αg^*s -cl(A)) \in ker(f (A)) holds for every A \subseteq X.

(v) \rightarrow (vi) Let B \subset Y. Then f⁻¹(B) \subset X. From (iv) and by Lemma 3.1, f (αg^*s - cl(f⁻¹(B))) \subset ker(f(f⁻¹(B))) \subset ker(B). Thus, for every B \subseteq Y, we have

 $\alpha g^*s\text{-}\operatorname{cl}(f^{\text{-}1}(B)) \subseteq f^{\text{-}1}(\ker(B)) \;.$

(vi) \rightarrow (i) Let $V \in O(Y)$. Then from (vi) and Lemma 3.1, αg^*s -cl($f^{-1}(V) \subseteq f^{-1}(ker(V)) = f^{-1}(V)$ and αg^*s -cl($f^{-1}(V)$) = $f^{-1}(V)$. Thus $f^{-1}(V) \subseteq \alpha g^*s$ -C(X). Hence f is contra αg^*s -continuous.

Theorem 3.4. Let f: $X \to Y$ be contra αg^*s -continuous with Y is regular space. Then f is αg^*s -continuous.

Proof.Let $x \in X$ and $V \in O(Y, f(x))$. Then by regularity of Y, $W \in O(Y, f(x)$ with $cl(W) \subseteq V$. As f is contra αg^*s -continuous and from **Theorem** 3.3 (iii), $U \in \alpha g^*s$ -O(X, x) such that $f(U) \subset cl(W)$. Then $f(U) \subset cl(W) \subset V$. Thus f is αg^*s -continuous.

Definition 3.2. A space X is called locally αg^*s -indiscrete if $V \in \alpha g^*s$ -O(X) then $V \in C(X)$.

Theorem 3.5. If a function f: $X \rightarrow Y$ is contra αg^*s -continuous with X is locally αg^*s -indiscrete then f is continuous.

Proof.Let $U \in O(Y)$. As f is contra αg^*s -continuous and X is locally αg^*s - indiscrete space, f⁻¹(U) $\in O(X)$. Thus f is continuous.

Definition 3.3. A function f is said to be weakly αg^*s -continuous, if for each $x \in X$

and $V \in O(Y, f(x))$, there exists $U \in \alpha g^*s$ -O(X, x) with f(U) \subset cl(V).

Theorem 3.6. Every contra αg^*s -continuous function is weakly αg^*s -continuous function.

Proof.Let $V \in O(Y)$. Since $cl(V) \in C(X)$ and from **Theorem** 3.3(ii), $f^{-1}(cl(V)) \in \alpha g^*s$ -O(X). Let $U = f^{-1}(cl(V))$, then $f(U) \subset f(f^{-1}(cl(V))) \subset cl(V)$. Thus f is almost weakly αg^*s -continuous.

Definition 3.4. For any A \subset X, αg^*s -frontier of A defined as αg^*s -cl(A)- αg^*s - int(A) and is denoted by αg^*s -Fr(A).

Theorem 3.7. The set of all points x of X at which the function $f : X \rightarrow Y$ is not contra αg^*s continuous is identical with the union of αg^*s -frontier of the inverse images of closed sets of Y
containing f (x).

Proof.Suppose f is not contra αg^*s -continuous at $x \in X$. From **Theorem** 3.3 (iii), for every $U \in \alpha g^*s$ -O(X, x), $F \in C(Y, f(x))$ such that $f(U) \cap (Y-F) = \varphi$, that is $U \cap f^{-1}(Y-F) = \varphi$. Therefore, $x \in \alpha g^*s$ -cl $(f^{-1}(Y-F)) = \alpha g^*s$ -cl $(X-f^{-1}(F))$. Also, $x \in f^{-1}(F) \in \alpha g^*s$ -cl $(f^{-1}(F))$. Thus, $x \in \alpha g^*s$ -cl $(f^{-1}(F))$ - αg^*s -cl $(X-f^{-1}(F))$, that is $x \in \alpha g^*s$ -cl $(f^{-1}(F)) - \alpha g^*s$ -int $(f^{-1}(F))$. Hence $x \in \alpha g^*$ -Fr $(f^{-1}(F))$.

On the other hand, for some $F \in C(Y, f(x))$, $x \in \alpha g^*s$ -Fr(f⁻¹(F)). As f is contra αg^*s -continuous, $U \in \alpha g^*s$ -O(X, x) such that $f(U) \subset F$. Therefore, $x \in U \subseteq f^{-1}(F)$ and hence $x \in \alpha g^*s$ -int(f⁻¹(F)) $\subseteq X - \alpha g^*s$ -Fr(f⁻¹(F)), which is contradiction to the fact that $x \in \alpha g^*s$ -Fr(f⁻¹(F)). Hence f is not contra αg^*s -continuous.

Definition 3.5. If X cannot be expressed as the union of two disjoint nonempty αg^*s -open sets, then X is said to be αg^*s -connected.

Theorem 3.8. Let f: $X \rightarrow Y$ be contra αg^*s -continuous from a αg^*s -connected space X onto any space Y. Then Y is not a discrete space.

Proof.Let f be contra αg^*s -continuous with X is αg^*s -connected. On the contrary, let Y be a discrete space. Let $A \in O(Y)$, C(Y) and so $f^{-1}(A) \in \alpha g^*s$ -O(X), αg^*s -C(X), which shows that X is αg^*s -connected. Thus Y is not a discrete space.

Theorem 3.9. Every contra αg^*s -continuous surjective space with αg^*s -connected space is connected.

Proof.Let f be contra αg^*s -continuous with X is αg^*s -connected. Suppose Y is not connected. Then U, V \in O(Y) with U \cap V = φ such that Y = U \cup V. Thus U and V are clopen sets in Y. By contra αg^*s -continuity of f, f⁻¹(U), f⁻¹(V) $\in \alpha g^*s$ -O(X). As f is surjective, f⁻¹(U) and f⁻¹(V) are non-empty disjoint and X = f⁻¹(U) \cup f⁻¹(V), which shows that X is αg^*s -connected. Thus Y must be connected.

Theorem 3.10. Let X be αg^*s -connected with Y is T1-space. Then f is constant, if f is contra αg^*s -continuous.

Proof.Let f: X \rightarrow Y is contra αg^*s -continuous with X is αg^*s -connected and Y is T1-space. Then by T1-space, $\nabla = \{f^{-1}(y): y \in Y\}$ which is the disjoint αg^*s -open partition of X. If $|\nabla| \ge 2$, there exists a proper αg^*s -open and αg^*s -closed set, which is contradiction to the hypothesis. Thus $\nabla = 1$ and so f is a constant map.

Definition 3.8 [10]: A space X is said to be αg^*s-T_2 , if for any x, $y \in X$ with $x \neq y$, there exist U, V $\in \alpha g^*s-O(X)$ with $U \cap V = \varphi$ such that $x \in U$ and $y \in V$.

Definition 3.9. [11] A space X is called Ultra Hausdroff space, if for every pair of distinct points x and y in X, there exist disjoint clopen sets U and V in X containing x and y respectively.

Theorem 3.12. Let $f : X \rightarrow Y$ be contra αg^*s -continuous injective function. If Y is Ultra Hausdroff, then X is αg^*s -T₂.

Proof. Let $x, y \in X$ with $x \neq y$. Then $f(x) \neq f(y)$. By Ultra Hausdroff space there exists disjoint clopen sets U and V containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, where $f^{-1}(U), f^{-1}(V) \in \alpha g^*s$ -O(X) with $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Thus X is αg^*s -T₂.

Definition 3.10. [10] (i) if every αg^*s -closed cover has a finite subcover, then X is said to be αg^*s -closed compact.

(ii) if every countable cover of X by αg^*s -closed sets has a finite subcover, then X is said to be countably αg^*s -closed compact.

(iii) if every αg^*s -closed cover has a countable subcover, then X is said to be αg^*s -Lindelof.

Theorem 3.13. The following properties holds for a contra αg^*s -continuous surjection function f : $X \rightarrow Y$:

(i) Y is compact, if X is αg^*s -closed compact.

(ii) Y is countabaly compact, if X is countably αg^*s -closed compact.

(iii) Y is Lindelof, if X is αg*s-Lindelof.

4. Almost Contra αg*s-Continuous Functions inTopological spaces

In this section, a new type of continuous functions called an almost contra αg^*s continuous functions, which are weaker than contra αg^*s -continuous functions are introduced and studied some of their properties.

Definition 4.1. A function $f: X \to Y$ is said to be almost contra αg^*s continuous if $f^{-1}(V)$ is αg^*s -closed in X for each regular-open set V in Y.

Theorem 4.1: For the function f: $X \rightarrow Y$, following statements are equivalent:

- (i) f is almost contra αg^*s -continuous
- (ii) for every F \in RO(Y), f-1(F) $\in \alpha g^*sO(X)$
- (iii) for each $x \in X$ and for each $F \in RC(Y, f(x))$ there exists $U \in \alpha g^*sO(X, x)$ such that $f(U) \subseteq F$.
- (iv) for each $x \in X$ and for each $V \in RO(Y)$ such that $f(x) \notin$ there exists $K \in$

 $\alpha g^*sC(X)$ not containing x such that $f-1(V) \subseteq K$.

Proof: (i) \Rightarrow (ii) Let $F \in RO(Y)$ then $Y - F \in RC(Y)$. From (i), $f^{-1}(Y - F) = X - f^{-1}(F) \in$

 $\alpha g^*sC(X)$ and hence $f^{-1}(F) \in \alpha g^*sO(X)$.

(ii) \Rightarrow (i) Let $G \in RC(Y)$ then $Y - G \in RC(Y)$. By (ii), $f^{-1}(Y - G) = X - f^{-1}(G) \in \alpha g^*sO(X)$, this implies that $f^{-1}(G) \in \alpha g^*sC(X)$.

(ii) \Rightarrow (iii) Let $F \in RC(Y, f(x))$ such that $x \in f^{-1}(F)$. By (ii), $U \in \alpha g^*sO(X, x)$ such that $f(Ux) \subseteq F$, so $Ux \subseteq f^{-1}(F)$. Thus $f^{-1}(F) = \bigcup \{Ux : x \in f^{-1}(F)\}$.

(iii) \Rightarrow (ii) Let $F \in RC(Y, f(x))$ and $x \in f^{-1}(F)$. By (iii), there exists $U \subseteq \alpha g^*sO(X,x)$ such that $f(Ux) \subseteq F$, that implies $Ux \subseteq f^{-1}(F)$. Thus, $f^{-1}(F) = \bigcup \{Ux : x \in f^{-1}(F)\}$. Hence $f^{-1}(F) \in \alpha g^*sO(X)$.

(iii) \Rightarrow (iv) Let $V \in RO(Y)$ such that $f(x) \notin V$ then $Y - V \in RC(Y, f(x))$. By (iii) there exists $U \in \alpha g^*sO(X, x)$ such that $f(U) \subseteq Y - V$, that is $U \subseteq f^{-1}(Y - V) = X - f^{-1}(V)$ and hence $f^{-1}(V) \subseteq X - U$. Take K = X - U then $K \in \alpha g^*sC(X)$ such that $f^{-1}(V) \subseteq K$.

(iv) \Rightarrow (iii): Let $F \in RC(Y, f(x))$ then $Y - F \in RO(Y)$. From (iv), there exists $K \in \alpha g^*sC(X)$ not containing x such that $f^{-1}(Y - F) \subseteq K$, that is $X - f^{-1}(F) \subseteq K$. Hence $X - K \subseteq f^{-1}(F)$ this implies $f(X - K) \subseteq F$. Take U = X - K then $U \in \alpha g^*sO(X, x)$ such that $f(U) \subseteq F$.

Theorem 4.2. If f: $X \rightarrow Y$ is an almost contra αg^*s -continuous injective and Y is Weakly Hausdorff then X is αg^*s -T₁- space.

Proof: Let x, $y \in X$ with $x \neq y$. Then there exist V, $W \in RC(Y)$ such that $f(x) \in V$ and $f(y) \in W$ as Y Weakly Hausdroff. Since f is almost contra αg^*s -continuous then $f^{-1}(V)$, $f^{-1}(W) \in \alpha g^*sO(X)$ such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$ and $y \in f^{-1}(W)$, $x \notin f^{-1}(W)$. Hence X is αg^*s -T₁- space.

Theorem 4.3. If $f : X \rightarrow Y$ is almost contra αg^*s -continuous injective function from a space X into an Ultra Hausdorff space Y then X is αg^*s -T₂.

Proof: Let x, $y \in X$ with $x \neq y$ then f (x) \neq f (y) as f is injective. As Y is Ultra Hausdorff there exist U \in CO(Y, f (x)) and V \in CO(Y, f (y)) such that U \cap V = ϕ . Since f is almost

contra αg^*s -continuous, $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$ where $f^{-1}(U) \in \alpha g^*sO(X, x)$ and $f^{-1}(V) \in \alpha g^*sO(X, y)$ such that $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Hence X is αg^*s -T₂.

Theorem 4.4. Let f: $X \rightarrow Y$ be almost contra αg^*s -continuous closed and injection function. If Y is Ultra Normal then X is αg^*s -normal.

Theorem 4.5. If a function $f : X \rightarrow Y$ is almost contra αg^*s -continuous from a αg^*s -connected space X on to a topological space Y, then Y is also connected space.

Proof: If Y is not connected then U, $V \in O(Y)$ such that $Y = U \cup V$ and hence U, $V \in CO(Y)$. Then $f^{-1}(U)$, $f^{-1}(V) \in \alpha g^*sO(X)$ since f is almost contra αg^*s -continuous function and $f^{-1}(U) \cap f^{-1}(V) = \varphi$ such that $X = f^{-1}(U) \cup f^{-1}(V)$ which is a contradiction to the fact that X is αg^*s -connected. Hence Y must be connected space.

Theorem 4.6. Let f: $X \rightarrow Y$ and g : $Y \rightarrow Z$ are any two functions. Then we have the following:

(i) gof is almost contra αg^*s -continuous if f is almost contra αg^*s -continuous and g is an R-map.

(ii) gof is αg^*s -continuous and contra αg^*s -continuous if f is almost contra αg^*s -continuous and g is perfectly-continuous.

References

- C. W. Baker, Sub-contra Continuous functions, Int. Jl. Math. and Math. Sci., Vol. 21, No.1, 1998, 19-24.
- [2]. C. W. Baker, Weakly Contra continuous functions, Int. Jl. of Pure and Appl.Math., Vol. 40, No.2, 2007, 265-271.
- [3]. M. Caldas and S. Jafari, Some Properties of Contra β-Continuous Functions, Mem. of the Fac. of Sci. Kochi Univ. Ser A. math., 22(2001), 19-28.
- [4]. J. Dontchev, Contra Continuous functions and strongly S-closed mappings. Int.Jl. Math. Sci., Vol. 10, 1996, 303-310.
- [5]. J. Dontchev and T. Noiri., Contra Semi Continuous Functions, Math. Panno.,10(2), 1999, 159-168.
- [6]. R. C. Jain and A. R. Signal, Slightly continuous mappings, Indian Math. Soc., Vol.64, 1997, 195-203.
- [7]. S. Jafari and T. Noiri, Contra-super continuous functions. Ann. Ales Univ. Sci.Budapest, Vol. 42, 1999, 27-34.
- [8]. S. Jafari and T. Noiri, Contra continuous functions between topological spaces. Iranian. Int. Jl. Sci., Vol. 2, 2001, 153-167. [3]
- [9]. S. Jafari and T. Noiri, On Contra Pre-Continuous Functions, Bull. of Malaysian Mathematical Sci. Soc., 25, 2002, 115-128.
- [10]. T.D. Rayanagoudar, On Some Recent Topics In Topology, Ph. D, Thesis, Karnatak University, (2007).
- [11]. R. Staum, The algebra of bounded continuous functions into a non-Archimedean field, Pacific Jl. Math., Vol. 50, 1974, 169-185.