Vol.11.Issue.2.2023 (April-June) ©KY PUBLICATIONS

http://www.bomsr.com
Email:editorbomsr@gmail.com
RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

INTERNATIONAL STANDARD
SERIAL NUMBER 2348-0580

WEAKLY FAINTLY CONTINUOUS FUNCTIONS

Sarika M. Patil
Department of Mathematics, Government First Grade College, Rajnagar, Hubli-580 032
Karnataka State, India.
Email: sarupatil@rediffmail.com
DOI:10.33329/bomsr.11.2.133

Abstract

In this paper a new class of continuous functions called faintly $\alpha g^{*} s$ continuous functions and relationship among faintly $\alpha g^{*} s$-continuous functions and $\alpha \mathrm{g}^{*} \mathrm{~s}$-connected spaces, $\alpha \mathrm{g}^{*} \mathrm{~s}$-compact spaces and $\alpha \mathrm{g}{ }^{*}$ s-regular spaces have been investigated and their properties are obtained.

Keywords and Phrases: αg^{*} s-closed sets, αg^{*} s-connected spaces, αg^{*} scompact spaces, $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous spaces.

AMS Subject Classification: 54C08, 54C10.

1. Introduction

Generalized open sets play a very important role in General Topology and they arenow the research topics of many topologists worldwide. The weaker forms of continuous functions called faintly continuous functions using θ-open sets were introduced byLong and Herrington [4]. They defined number of properties concerning such functionsand among them; they have showed that every weakly continuous function is faintly continuous. Later Noiri and Popa[6] investigated the properties of weaker form of faintcontinuity called faint semi-continuity, faint pre-continuity and faint β-continuity.

The purpose of this paper is to introduce and investigate the properties of faintly $\alpha g^{*} s$ continuous functions. Some new characterizations and several fundamental properties of these functions along with their relationships with certain other types of functions are investigated.

2. Preliminary

Throughout this paper, X and Y always means topological spaces (X, τ) and (Y, σ) and $f:(X, \tau) \rightarrow(Y, \sigma)$ (simply $f: X \rightarrow Y$) denotes a function f of a space (X, τ) into a space (Y, σ).

Definition 2.1: A subset A of a topological space (X, τ) is called
(i) α-open $[5]$ if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$.
(ii) semi-open [2] if $\mathrm{A} \subseteq \mathrm{cl}(\operatorname{int}(\mathrm{A}))$.

Definition 2.2: A subset A of a topological space (X, τ) is called
(i) g-closed [3] cl $(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .
(ii) $\alpha g^{*} s$-closed $[7] \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is gs-open in X .

Definition 2.3: A function $f: X \rightarrow Y$ is said to be $\alpha g^{*} s$-continuous [7] if for each open set V in $Y, f^{-1}(V)$ is $\alpha g^{*} s$-open in X.

Definition 2.4: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be faintly continuous [6] (resp. faintly semicontinuous [6], faintly pre-continuous [6], faintly α-continuous [1], faintly β - continuous [6], quasi θ-continuous [5]) if for each point $x \in X$ and each θ-open set V containing $f(x)$, there exists an open set(resp. semi-open, pre-open, α-open, β-open) set U containing x such that $f(U) \subset V$.

Definition 2.5 [8]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be slightly $\alpha \mathrm{g}^{*}$ s-continuous if for each clopen set V in Y containing $f(x)$, there exist $U \in \alpha g^{*} O(X, x)$ such that $f(U) \subset V$.

3. Faintly $\alpha g^{*} s$-Continuous Functions

Definition 3.1: A function $f: X \rightarrow Y$ is called faintly $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous at a point $\mathrm{x} \in \mathrm{X}$ if for each $\mathrm{V} \in \theta-\mathrm{O}\left(\mathrm{Y}, \mathrm{f}(\mathrm{x})\right.$), there exists $\mathrm{U} \in \alpha \mathrm{g}^{*} \mathrm{~s}-\mathrm{O}(\mathrm{X}, \mathrm{x})$ such that $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$.

If f has the above property at each point of X, then f is said to be faintly $\alpha g^{*} s$ - continuous.
Theorem 3.2: The following statements are equivalent for a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$:
(i) f is faintly $\alpha_{\mathrm{g}}{ }^{*} s$-continuous.
(ii) for each $V \in \theta-O(Y), f^{-1}(V) \in \alpha g^{*} s-O(X)$.
(iii) for each $F \in \theta-C(Y), f^{-1}(F) \in \alpha g^{*} s-C(X)$.
(iv) f is $\alpha \mathrm{g}^{*} s$-continuous.
(v) for every $B \subseteq Y, \alpha g^{*} s-c l\left(f^{-1}(B)\right) \subseteq f^{-1}\left(c l_{\theta}(B)\right)$.
(vi) for every $G \subseteq Y, f^{-1}\left(\right.$ int $\left._{\theta}(G)\right) \subseteq \alpha g^{*} s-i n t\left(f^{-1}(G)\right)$.

Proof: (i) \rightarrow (ii) Let f be faintly $\alpha \mathrm{g}^{*}$ s-continuous and $V \in \theta-\mathrm{O}(\mathrm{Y})$ such that $\mathrm{x} \in \mathrm{f}-1(\mathrm{~V})$. Then there exists $U \in \alpha g^{*} s-O(X, x)$ with $f(U) \subseteq V$, that is $x \in U \subseteq f^{-1}(V)$. Thus $f^{-1}(V) \in \alpha g^{*} s-O(X)$.
(ii) \rightarrow (i) Let $x \in X$ and $V \in \theta-O(Y, f(x))$. From (ii), $f^{-1}(V) \in \alpha g^{*} s-O(X, x)$. Let $U=f-1(V)$, then $f(U) \subseteq V$. Hence f is faintly $\alpha g^{*} s$-continuous.
(ii) \rightarrow (iii) Let $V \in \theta-C(Y)$, then $Y-V \in \theta-O(X)$. From (ii), $f^{-1}(Y-V)=X-f^{-1}(V) \in \alpha g^{*} s-O(X)$ and hence $f^{-1}(V) \in \alpha g^{*} s-C(X)$.
(iii) \rightarrow (ii) Let $V \in \theta-O(Y)$, then $Y-V \in \theta-C(Y)$. From (iii), $f^{-1}(Y-V)=X-f^{-1}(V) \in \alpha g^{*} s-C(Y)$ and hence $\mathrm{f}^{-1}(\mathrm{~V}) \in \alpha \mathrm{g}^{*} \mathrm{~s}-\mathrm{O}(\mathrm{X})$.

From the definition 3.1, we can prove the other equivalent properties.
Remark 3.3: Every $\alpha g^{*} s$-continuous function is faintly $\alpha g * s$-continuous. However, the converse is not true in general as shown in the below example.

Example 3.4: Let $X=\{1,2,3\}$ and $\tau=\{X, \Phi, 1,2,3\}$ and $\sigma=\{Y, \phi,\{1\},\{2\},\{1,2\},\{2,3\}\}$. Then the identity function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is faintly $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous but not $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous.

Definition 3.5: A function $f: X \rightarrow Y$ is said to be weakly $\alpha g^{*} s$-continuous if for each point $x \in X$ and for each $V \in O(Y, f(x))$, there exists $U \in \alpha g^{*} s-O(X, x)$ such that $f(U) \subset c l(V)$.

Theorem 3.6: Every weakly $\alpha g^{*} s$-continuous function is faintly $\alpha{ }^{*} s$-continuous.
Proof: Let $x \in X$ and $V \varepsilon \theta-O(Y, f(x))$. Then there exists $W \in O(Y)$ such that $f(x) \in W \subset V$, that is $f(x) \in W \subset c l(W) \subset V$. By weakly $\alpha g^{*} s$-continuous, there exists $U \in \alpha g^{*} s-O(X)$ such that $f(U) \subset c l(W)$, that is $f(U) \subset c l(W) \subset V$. Therefore for each $V \in \theta-O(Y, f(x))$, there exists $U \in \alpha g * s-O(X, x)$ such that $f(U) \subset V$. Hence f is faintly $\alpha g^{*} s$-continuous.

Theorem 3.7: Let $f: X \rightarrow Y$ be faintly $\alpha g^{*} s$-continuous and Y is regular space. Thenf is $\alpha g^{*} s$ continuous.

Proof: Let $V \in O(Y)$. As Y is regular, $V \in \theta-O(Y)$. Since f is faintly $\alpha g^{*} s$-continuous and from Theorem 3.6, $f^{-1}(V) \in \alpha g^{*} s-O(X)$. Therefore, for every $V \in O(Y), f^{-1}(V) \in \alpha g^{*} s-O(X)$. Thus f is $\alpha g^{*} s$-continuous.

Theorem 3.8: Every faintly $\alpha \mathrm{g}^{*}$ s-continuous function is slightly $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous.
Proof: Let $x \in X$ and V be clopen set in Y containing $f(x)$. Then $V \in \theta-O(Y)$. Since fis faintly $\alpha g^{*} s$-continuous, there exists $U \in \alpha g^{*} s-O(X, x)$ such that $f(U) \subset V$. Hence for everyV $\in \theta-O(Y)$, $f(U) \subset V$. Therefore, f is slightly $\alpha{ }^{*}$ s-continuous.

Definition 3.9: Let X be topological space. Since the intersection of two clopen sets of X is clopen, the clopen sets of X may be use as a base for a topology for X. This topology is called the ultraregularization of τ [5] and is denoted by τ_{u}.

A topological space X is said to be ultra-regular if $\tau=\tau_{u}$.
Theorem 3.10: The following statements are equivalent for a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, if Y is ultraregular space:
(i) f is $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous.
(ii) fis faintly $\alpha{ }^{*} s$-continuous.
(iii) f is slightly $\alpha \mathrm{g}^{*}$ s-continuous.

Proof: It follows from the Theorems 3.2, 3.8 and Definition 3.9.
Definition 3.11: $A \alpha g^{*} s$-frontier of a subset A of a space X is defined as $\alpha g * \operatorname{si} \operatorname{Fr}(A)=$ $\alpha g * s-c l(A) \cap \alpha{ }^{*} s-c l(X-A)$.

Theorem 3.12: The set of all points $x \in X$ in which a function $f: X \rightarrow Y$ is not faintly $\alpha g^{*} s-$ continuous is the union of αg^{*} s-frontier of the inverse images of θ-open set containing $f(x)$.

Proof: Suppose f is not faintly $\alpha{ }^{*} s$-continuous at each point $x \in X$. Then there exists $V \in \theta-O(Y, f(x))$ such that $f(U)$ is not contained in V and hence $x \in \theta-c l\left(X-f^{-1}(V)\right)$.

On the other hand, let $x \in f^{-1}(V) \subset \alpha g^{*} s-c l\left(f^{-1}(V)\right)$ and hence $x \in \alpha g^{*} s-c l\left(f^{-1}(V)\right)$. Therefore, we can observe that $x \in \alpha g^{*} s-f r\left(f^{-1}(V)\right)$.

Conversely, assume that f is faintly $\alpha g^{*} s$-continuous at each point $x \in X$ and $V \in \theta-O(Y, f(x))$. Then, there exists $U \in \alpha g^{*} s-O(X, x)$ such that $U \subset f^{-1}(V)$. Hence $x \in \alpha g^{*} s-\operatorname{int}\left(f^{-1}(V)\right)$. Therefore $x \notin \alpha{ }^{*} s-f r\left(f^{-1}(V)\right)$.

Theorem 3.13: Let $f: X \rightarrow Y$ be a function and $g:(X, \tau) \rightarrow(X \times Y, \tau \times \sigma)$ the graph of f defined by $g(x)=(x, f(x))$ for every $x \in X$. If g is faintly $\alpha g^{*} s$-continuous then f is faintly $\alpha g^{*} s$-continuous.

Proof: Let $U \in \theta-O(Y)$, then $X x U \in \theta-O(X \times Y)$. It follows that $f^{-1}(U)=g^{-1}(X \times U) \in \alpha g^{*} s-O(X, x)$. Hence f is faintly $\alpha g^{*} s$-continuous.

Theorem 3.14: Faintly $\alpha{ }^{*} s$-continuous image of a $\alpha g^{*} s$-connected space is connected.
Proof: Assume that Y is not connected. Then there exist two non empty open sets V_{1} and V_{2} such that $V_{1} \cap V_{2}=\varphi$ and $V_{1} \cup V_{2}=Y$. Hence $f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right)=\varphi$ and $f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right)=X$. As f is surjective, $f^{-1}\left(V_{1}\right), f^{-1}\left(V_{2}\right)$ are non empty subsets of X. Then $V_{1}, V_{2} \in \theta-O(X)$, since V_{1} and V_{2} are both open and closed. As f is faintly αg^{*} s-continuous, $f^{-1}\left(V_{1}\right), f^{-1}\left(V_{2}\right) \in \alpha g^{*}$ s$O(X)$ and hence X isnot $\alpha g^{*} s$-connected which is contradiction to the assumption. Hence Y is connected.

Theorem 3.15: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is faintly $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous surjective and X is $\alpha \mathrm{g}^{*} \mathrm{~s}$ - compact then Y is θ-compact.

Proof: Let f be faintly $\alpha g^{*} s$-continuous surjective function. Let $\left\{G_{\alpha}: \alpha \in \lambda\right\}$ be any θ-open cover
 subcover $\left\{f^{-1}\left(G_{i}\right): i=1,2,3, \ldots\right\}$ in X, that is $\left\{G_{i}: i=1,2,3 ..\right\}$ is a subfamily which covers the space Y . Thus Y is θ-compact.

Definition 3.16 [8]: A topological space X is said to be
(i) $\alpha g^{*} s-T_{1}$ space if for each pair of distinct points x, y in X, there exist pair of $\alpha g^{*} s$-opensets, one containing x but not y and the other containing y but not x.
(ii) $\alpha g * s-T_{2}$ space if for each pair of distinct points x, y of X, there exist disjoint $\alpha g * s$-open sets U and V such that $x \in U$ and $y \in V$.

Theorem 3.17: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be faintly $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous, injective function. If
(i) Y is $\theta-T_{1}$ then X is $\alpha g^{*} s-T_{1}$.
(ii) Y is $\theta-T_{2}$ then X is $\alpha g^{*} s-T_{2}$.

Proof: (i) Let Y be $\theta-T_{1}$. Then for any $x_{1}, x_{2} \in X$ with $x_{1} \cap x_{2}=\varphi$, there exists $V_{1}, V_{2} \in \theta-O(Y)$ such that $\mathrm{f}\left(\mathrm{x}_{1}\right) \in \mathrm{V}_{1}, \mathrm{f}\left(\mathrm{x}_{2}\right) \notin \mathrm{V}_{1}$ and $\mathrm{f}\left(\mathrm{x}_{1}\right) \notin \mathrm{V}_{1}, \mathrm{f}\left(\mathrm{x}_{2}\right) \in \mathrm{V}_{2}$. Then $\mathrm{f}^{-1}\left(\mathrm{~V}_{1}\right), \mathrm{f}^{-1}\left(\mathrm{~V}_{2}\right) \in \alpha g^{*} \mathrm{~s}-\mathrm{O}(\mathrm{X})$ as f is faintly $\alpha g^{*} s$-continuous such that $x_{1} \in f^{-1}\left(V_{1}\right), x_{1} \notin f^{-1}\left(V_{2}\right)$ and $x_{2} \notin f^{-1}\left(V_{1}\right), x_{2} \in f^{-1}\left(V_{2}\right)$ implies that X is $\alpha g^{*} s-T_{1}$.
(ii) Let Y be $\theta-T_{2}$. Then for any $x_{1}, x_{2} \in X$, there exist $V_{1}, V_{2} \in \theta-O(Y)$ such that $f\left(x_{1}\right) \in V_{1}$ and $f\left(x_{2}\right)$ $\in V_{2}$. Then $f^{-1}\left(V_{1}\right), f^{-1}\left(V_{2}\right) \in \alpha g^{*} s-O(X)$ containing x_{1} and x_{2} respectively such that $f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right)=$ φ as $V_{1} \cap V_{2}=\varphi$. Thus X is $\alpha g^{*} s-T_{2}$.

References

[1] S. Jafari an T. Noiri, On faintly α-continuous functions, Indian JI. Math., 42,(2000), 203210.
[2] N. Levine, Semi-open Sets and Semi Continuity in Topological Spaces, Amer. Math.Monthly, 70(1963), 36-41.
[3] N. Levine, Generalized closed sets in Topology, Rend. Circ. Mat. Palerno,,19(1970), 8996.
[4] P. E. Long and L. L. Herrington, The T_{θ}-topology and faintly continuous functions, Kyungpook Math. JI. 22, (1982), 7-14.
[5] O. Njasted, On some classes of nearly open sets, Pacific J. Math., 15, (1965),961-970.
[6] T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math.Roumanie, 34 (82), (1990), 263-270.
[7] P. G. Patil and T. D. Rayanagoudar, Generalization of New Closed Sets in Topological Spaces, Int. JI. of Advances in Science and Technology, Vol. 5 No. 2, (2012), 68-78.
[8] T.D.Rayanagoudar, On Some Recent Topics in Topology, Ph.D Thesis, Karnatak University, Dharwad, (2007).

