## Vol.11.Issue.2.2023 (April-June) ©KY PUBLICATIONS



http://www.bomsr.com Email:editorbomsr@gmail.com

**RESEARCH ARTICLE** 

# BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal



## WEAKLY FAINTLY CONTINUOUS FUNCTIONS

Sarika M. Patil Department of Mathematics, Government First Grade College, Rajnagar, Hubli-580 032 Karnataka State, India. Email: sarupatil@rediffmail.com DOI:<u>10.33329/bomsr.11.2.133</u>



#### ABSTRACT

In this paper a new class of continuous functions called faintly  $\alpha g^*s$ continuous functions and relationship among faintly  $\alpha g^*s$ -continuous functions and  $\alpha g^*s$ -connected spaces,  $\alpha g^*s$ -compact spaces and  $\alpha g^*s$ -regular spaces have been investigated and their properties are obtained.

**Keywords and Phrases:**  $\alpha g^*s$ -closed sets,  $\alpha g^*s$ -connected spaces,  $\alpha g^*s$ -compact spaces,  $\alpha g^*s$ -continuous spaces.

AMS Subject Classification: 54C08, 54C10.

#### 1. Introduction

Generalized open sets play a very important role in General Topology and they arenow the research topics of many topologists worldwide. The weaker forms of continuous functions called faintly continuous functions using  $\theta$ -open sets were introduced byLong and Herrington [4]. They defined number of properties concerning such functions and among them; they have showed that every weakly continuous function is faintly continuous. Later Noiri and Popa[6] investigated the properties of weaker form of faintcontinuity called faint semi-continuity, faint pre-continuity and faint  $\beta$ -continuity.

The purpose of this paper is to introduce and investigate the properties of faintly  $\alpha g^*s$ continuous functions. Some new characterizations and several fundamental properties of these functions along with their relationships with certain other types of functions are investigated.

#### 2. Preliminary

Throughout this paper, X and Y always means topological spaces  $(X, \tau)$  and  $(Y, \sigma)$  and f: $(X, \tau) \rightarrow (Y, \sigma)$  (simply f:X $\rightarrow$ Y) denotes a function f of a space $(X, \tau)$  into a space  $(Y, \sigma)$ .

**Definition 2.1:** A subset A of a topological space  $(X, \tau)$  is called

(i)  $\alpha$ -open [5] if A  $\subseteq$  int(cl(int(A))).

(ii) semi-open [2] if  $A \subseteq cl(int(A))$ .

**Definition 2.2:** A subset A of a topological space  $(X, \tau)$  is called

(i) g-closed [3] cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is open in X.

(ii)  $\alpha g^*s$ -closed [7]  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is gs-open in X.

**Definition 2.3:** A function f:  $X \rightarrow Y$  is said to be  $\alpha g^*s$ -continuous [7] if for each open set V in Y,  $f^{-1}(V)$  is  $\alpha g^*s$ -open in X.

**Definition 2.4:** A function  $f:X \to Y$  is said to be faintly continuous [6] (resp. faintly semicontinuous [6], faintly pre-continuous [6], faintly  $\alpha$ -continuous [1], faintly  $\beta$ - continuous [6], quasi  $\theta$ -continuous [5]) if for each point  $x \in X$  and each  $\theta$ -open set V containing f(x), there exists an open set(resp. semi-open, pre-open,  $\alpha$ -open,  $\beta$ -open) set U containing x such that  $f(U) \subset V$ .

**Definition 2.5 [8]:** A function  $f: X \to Y$  is said to be slightly  $\alpha g^*$ s-continuous if for each clopen set V in Y containing f(x), there exist  $U \in \alpha g^* sO(X, x)$  such that  $f(U) \subset V$ .

### **3.** Faintly αg<sup>\*</sup>s-Continuous Functions

**Definition 3.1:** A function f:  $X \rightarrow Y$  is called faintly  $\alpha g^*s$ -continuous at a point  $x \in X$  if for each  $V \in \theta$ -O(Y, f(x)), there exists  $U \in \alpha g^*s$ -O(X, x) such that f (U)  $\subseteq V$ .

If f has the above property at each point of X, then f is said to be faintly  $\alpha g^*s$ - continuous.

**Theorem 3.2:** The following statements are equivalent for a function  $f: X \rightarrow Y$ :

(i) f is faintly  $\alpha g^*$ s-continuous.

(ii) for each  $V \in \theta$ -O(Y), f<sup>-1</sup>(V)  $\in \alpha g^*s$ -O(X).

(iii) for each  $F \in \theta$ -C(Y),  $f^{-1}(F) \in \alpha g^*s$ -C(X).

(iv) f is  $\alpha g * s$ -continuous.

(v) for every  $B \subseteq Y$ ,  $\alpha g^*s$ -cl(f<sup>-1</sup>(B))  $\subseteq$  f<sup>-1</sup>(cl<sub> $\theta$ </sub>(B)).

(vi) for every  $G \subseteq Y$ ,  $f^{-1}(int_{\theta}(G)) \subseteq \alpha g^*s\text{-int}(f^{-1}(G))$ .

**Proof:** (i)  $\rightarrow$  (ii) Let f be faintly  $\alpha g^*$ s-continuous and  $V \in \theta$ -O(Y) such that  $x \in f - 1(V)$ . Then there exists  $U \in \alpha g^*$ s-O(X, x) with f (U)  $\subseteq V$ , that is  $x \in U \subseteq f^{-1}(V)$ . Thus  $f^{-1}(V) \in \alpha g^*$ s-O(X).

(ii)  $\rightarrow$  (i) Let  $x \in X$  and  $V \in \theta$ -O(Y, f(x)). From (ii), f<sup>-1</sup>(V)  $\in \alpha g^*s$ -O(X, x). Let U = f -1(V), then f (U)  $\subseteq V$ . Hence f is faintly  $\alpha g^*s$ -continuous.

(ii)  $\rightarrow$  (iii) Let  $V \in \theta$ -C(Y), then Y-V  $\in \theta$ -O(X). From (ii),  $f^{-1}(Y-V) = X - f^{-1}(V) \in \alpha g^*s$ -O(X) and hence  $f^{-1}(V) \in \alpha g^*s$ -C(X).

(iii)  $\rightarrow$  (ii) Let  $V \in \theta$ -O(Y), then Y-V  $\in \theta$ -C(Y). From (iii), f<sup>-1</sup>(Y-V) = X-f<sup>-1</sup>(V)  $\in \alpha g^*s$ -C(Y) and hence f<sup>-1</sup>(V)  $\in \alpha g^*s$ -O(X).

From the definition 3.1, we can prove the other equivalent properties.

**Remark 3.3:** Every  $\alpha g^*s$ -continuous function is faintly  $\alpha g^*s$ -continuous. However, the converse is not true in general as shown in the below example.

**Example 3.4:** Let X = {1, 2, 3} and  $\tau$  = {X,  $\Phi$ , 1, 2, 3} and  $\sigma$  = {Y,  $\phi$ , {1}, {2}, {1, 2}, {2, 3}. Then the identity function f: X  $\rightarrow$  Y is faintly  $\alpha$ g\*s-continuous but not  $\alpha$ g\*s-continuous.

**Definition 3.5:** A function  $f: X \to Y$  is said to be weakly  $\alpha g^*s$ -continuous if for each point  $x \in X$  and for each  $V \in O(Y, f(x))$ , there exists  $U \in \alpha g^*s$ -O(X, x) such that  $f(U) \subset cl(V)$ .

**Theorem 3.6:** Every weakly  $\alpha g^*s$ -continuous function is faintly  $\alpha g^*s$ -continuous.

**Proof:** Let  $x \in X$  and  $V \in \theta$ -O(Y, f(x)). Then there exists  $W \in O(Y)$  such that  $f(x) \in W \subset V$ , that is  $f(x) \in W \subset cl(W) \subset V$ . By weakly  $\alpha g^*s$ -continuous, there exists  $U \in \alpha g^*s$ -O(X) such that  $f(U) \subset cl(W)$ , that is  $f(U) \subset cl(W) \subset V$ . Therefore for each  $V \in \theta$ -O(Y, f(x)), there exists  $U \in \alpha g^*s$ -O(X, x) such that  $f(U) \subset V$ . Hence f is faintly  $\alpha g^*s$ -continuous.

**Theorem 3.7:** Let  $f:X \to Y$  be faintly  $\alpha g^*s$ -continuous and Y is regular space. Then f is  $\alpha g^*s$ -continuous.

**Proof:** Let  $V \in O(Y)$ . As Y is regular,  $V \in \theta$ -O(Y). Since f is faintly  $\alpha g^*s$ -continuous and from Theorem 3.6,  $f^{-1}(V) \in \alpha g^*s$ -O(X). Therefore, for every  $V \in O(Y)$ ,  $f^{-1}(V) \in \alpha g^*s$ -O(X). Thus f is  $\alpha g^*s$ -continuous.

**Theorem 3.8:** Every faintly  $\alpha g^*s$ -continuous function is slightly  $\alpha g^*s$ -continuous.

**Proof:** Let  $x \in X$  and V be clopen set in Y containing f(x). Then  $V \in \theta$ -O(Y). Since fis faintly  $\alpha g^*s$  -continuous, there exists  $U \in \alpha g^*s$ -O(X, x) such that  $f(U) \subset V$ . Hence for every  $V \in \theta$ -O(Y),  $f(U) \subset V$ . Therefore, f is slightly  $\alpha g^*s$ -continuous.

**Definition 3.9:** Let X be topological space. Since the intersection of two clopen sets of X is clopen, the clopen sets of X may be use as a base for a topology for X. This topology is called the ultra-regularization of  $\tau$  [5] and is denoted by  $\tau_u$ .

A topological space X is said to be ultra-regular if  $\tau = \tau_u$ .

**Theorem 3.10:** The following statements are equivalent for a function  $f: X \rightarrow Y$ , if Y is ultraregular space:

(i) f is  $\alpha g^*s$ -continuous.

(ii) f is faintly  $\alpha$ g\*s-continuous.

(iii) f is slightly  $\alpha$ g\*s-continuous.

Proof: It follows from the Theorems 3.2, 3.8 and Definition 3.9.

**Definition 3.11:** A  $\alpha g^*s$ -frontier of a subset A of a space X is defined as  $\alpha g^*s$ -Fr(A) =  $\alpha g^*s$ -cl(A)  $\cap \alpha g^*s$ -cl(X-A).

**Theorem 3.12:** The set of all points  $x \in X$  in which a function  $f: X \rightarrow Y$  is not faintly  $\alpha g^*s$ -continuous is the union of  $\alpha g^*s$ -frontier of the inverse images of  $\theta$ -open set containing f(x).

**Proof:** Suppose f is not faintly  $\alpha g^*$ s-continuous at each point  $x \in X$ . Then there exists  $V \in \theta$ -O(Y, f(x)) such that f(U) is not contained in V and hence  $x \in \theta$ -cl(X-f<sup>-1</sup>(V)).

On the other hand, let  $x \in f^{-1}(V) \subset \alpha g^*s$ -cl $(f^{-1}(V))$  and hence  $x \in \alpha g^*s$ -cl $(f^{-1}(V))$ . Therefore, we can observe that  $x \in \alpha g^*s$ -fr $(f^{-1}(V))$ .

Conversely, assume that f is faintly  $\alpha g^*s$ -continuous at each point  $x \in X$  and  $V \in \theta$ -O(Y, f(x)). Then, there exists  $U \in \alpha g^*s$ -O(X, x) such that  $U \subset f^{-1}(V)$ . Hence  $x \in \alpha g^*s$ - int( $f^{-1}(V)$ ). Therefore  $x \notin \alpha g^*s$ -fr( $f^{-1}(V)$ ).

**Theorem 3.13:** Let f:  $X \to Y$  be a function and g :  $(X, \tau) \to (X \times Y, \tau \times \sigma)$  the graph of f defined by g(x) = (x, f(x)) for every  $x \in X$ . If g is faintly  $\alpha g^*s$ -continuous then f is faintly  $\alpha g^*s$ -continuous.

**Proof:** Let  $U \in \theta$ -O(Y), then X x U  $\in \theta$ -O(X x Y). It follows that  $f^{-1}(U) = g^{-1}(X \times U) \in \alpha g^*s$ -O(X, x). Hence f is faintly  $\alpha g^*s$ -continuous.

**Theorem 3.14:** Faintly  $\alpha g^*s$ -continuous image of a  $\alpha g^*s$ -connected space is connected.

**Proof:** Assume that Y is not connected. Then there exist two non empty open sets  $V_1$  and  $V_2$  such that  $V_1 \cap V_2 = \phi$  and  $V_1 \cup V_2 = Y$ . Hence  $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$  and  $f^{-1}(V_1) \cup f^{-1}(V_2) = X$ . As f is surjective,  $f^{-1}(V_1)$ ,  $f^{-1}(V_2)$  are non empty subsets of X. Then  $V_1, V_2 \in \theta$ -O(X), since  $V_1$  and  $V_2$  are both open and closed. As f is faintly  $\alpha g^*s$ -continuous,  $f^{-1}(V_1)$ ,  $f^{-1}(V_2) \in \alpha g^*s$ -O(X) and hence X isnot  $\alpha g^*s$ -connected which is contradiction to the assumption. Hence Y is connected.

**Theorem 3.15:** If f: X  $\rightarrow$  Y is faintly  $\alpha g^*s$ -continuous surjective and X is  $\alpha g^*s$ - compact then Y is  $\theta$ -compact.

**Proof:** Let f be faintly  $\alpha g^*s$ -continuous surjective function. Let  $\{G_{\alpha} : \alpha \in \lambda\}$  be any  $\theta$ -open cover of Y. Since f is faintly  $\alpha g^*s$ -continuous,  $f^{-1}(G_{\alpha})$  is  $\alpha g^*s$ -open cover of X. Then there exists a finite subcover  $\{f^{-1}(G_i) : i = 1, 2, 3, ...\}$  in X, that is  $\{G_i : i = 1, 2, 3..\}$  is a subfamily which covers the space Y. Thus Y is  $\theta$ -compact.

Definition 3.16 [8]: A topological space X is said to be

(i)  $\alpha g^*s-T_1$  space if for each pair of distinct points x, y in X, there exist pair of  $\alpha g^*s$ -opensets, one containing x but not y and the other containing y but not x.

(ii)  $\alpha g^*s-T_2$  space if for each pair of distinct points x, y of X, there exist disjoint  $\alpha g^*s$ -open sets U and V such that  $x \in U$  and  $y \in V$ .

**Theorem 3.17:** Let  $f: X \rightarrow Y$  be faintly  $\alpha g^*s$ -continuous, injective function. If

(i) Y is  $\theta$ -T<sub>1</sub> then X is  $\alpha$ g\*s-T<sub>1</sub>.

(ii) Y is  $\theta$ -T<sub>2</sub> then X is  $\alpha$ g\*s-T<sub>2</sub>.

**Proof:** (i) Let Y be  $\theta$ -T<sub>1</sub>. Then for any  $x_1, x_2 \in X$  with  $x_1 \cap x_2 = \varphi$ , there exists  $V_1, V_2 \in \theta$ -O(Y) such that  $f(x_1) \in V_1$ ,  $f(x_2) \notin V_1$  and  $f(x_1) \notin V_1$ ,  $f(x_2) \in V_2$ . Then  $f^{-1}(V_1)$ ,  $f^{-1}(V_2) \in \alpha g^*s$ -O(X) as f is faintly  $\alpha g^*s$ -continuous such that  $x_1 \in f^{-1}(V_1)$ ,  $x_1 \notin f^{-1}(V_2)$  and  $x_2 \notin f^{-1}(V_1)$ ,  $x_2 \in f^{-1}(V_2)$  implies that X is  $\alpha g^*s$ -T<sub>1</sub>.

(ii) Let Y be  $\theta$ -T<sub>2</sub>. Then for any  $x_1, x_2 \in X$ , there exist  $V_1, V_2 \in \theta$ -O(Y) such that  $f(x_1) \in V_1$  and  $f(x_2) \in V_2$ . Then  $f^{-1}(V_1), f^{-1}(V_2) \in \alpha g^*s$ -O(X) containing  $x_1$  and  $x_2$  respectively such that  $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$  as  $V_1 \cap V_2 = \phi$ . Thus X is  $\alpha g^*s$ -T<sub>2</sub>.

#### References

- [1] S. Jafari an T. Noiri, On faintly  $\alpha$ -continuous functions, Indian Jl. Math., 42,(2000), 203-210.
- [2] N. Levine, Semi-open Sets and Semi Continuity in Topological Spaces, Amer. Math.Monthly, 70(1963), 36-41.
- [3] N. Levine, Generalized closed sets in Topology, Rend. Circ. Mat. Palerno,,19(1970), 89-96.
- [4] P. E. Long and L. L. Herrington, The  $T_{\theta}$ -topology and faintly continuous functions, Kyungpook Math. Jl. 22, (1982), 7-14.
- [5] O. Njasted, On some classes of nearly open sets, Pacific Jl. Math., 15, (1965),961-970.
- [6] T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math.Roumanie, 34 (82), (1990), 263-270.
- [7] P. G. Patil and T. D. Rayanagoudar, Generalization of New Closed Sets in Topological Spaces, Int. Jl. of Advances in Science and Technology, Vol. 5 No. 2, (2012), 68-78.
- [8] T.D.Rayanagoudar, On Some Recent Topics in Topology, Ph.D Thesis, Karnatak University, Dharwad, (2007).