

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

http://www.bomsr.com
Email:editorbomsr@gmail.com
2348-0580

```
RESEARCH ARTICLE
```


INVENTORY CONTROL USING ABC ANALYSIS

K. KARPAGAM ${ }^{1}$, KEERTHANA ${ }^{2}$
${ }^{1,2}$ PG \& Research Department of Mathematics, Sri Ramakrishna College of Arts \& Science, Coimbatore, Tamil Nadu-641006.
Email:kkarpagam@srcas.ac.in ${ }^{1}$, 20pgmat06@srcas.ac.in ${ }^{2}$
DOI:10.33329/bomsr.11.2.138

Abstract

In this paper a new class of continuous functions called faintly $\alpha \mathrm{g}^{*} \mathrm{~s}^{-}$ continuous functions and relationship among faintly $\alpha g^{*} s$-continuous functions and αg^{*} s-connected spaces, αg^{*} s-compact spaces and $\alpha g^{* s}$-regular spaces have been investigated and their properties are obtained.

Keywords and Phrases: αg^{*} s-closed sets, αg^{*} s-connected spaces, $\alpha g^{*} s$ compact spaces, $\alpha \mathrm{g}^{*} \mathrm{~s}$-continuous spaces.

AMS Subject Classification: 54C08, 54C10.

INTRODUCTION

Operation Research mostly deals with optimization. It is a scientific approach to decision making. It is the Mathematical study of resource allocation problems, decisions, games, uncertainty, scheduling and optimization. Application of the scientific and especially Mathematical methods to the study and analysis of problems involving complex systems.

Inventory is the stock of goods, kept for future use which has some Economic value.
Inventory control or stock control can be broadly defined as "the activity of checking a shop's stock". It is the process of ensuring that the right amount of supply is available within a business. The Inventory may be kept in any one of the following forms:

- Raw material Inventory: Raw material which are kept in stock for using in production of goods.
- Work-in process Inventory: Semi-finished goods which are stored during production
process.
- Finished goods Inventory: Finished goods awaiting shipments from the factory.

PRELIMINARIES

1 TYPES OF INVENTORIES:

Definition 1.1 Fluctuation Inventories

In real-life problems, there are fluctuations in the demand and lead times that affect the productionof the items. Such types of safety stock are called fluctuations Inventories.

Definition 1.2 Anticipated Inventories

These are built up in advance for the season of large sales, a promotion programme or a plant shut down period. Anticipated Inventories keep men and machine hours for future participation.

Definition 1.3

Lot-size Inventories

Generally, rate of consumption is different from rate of consumption is different from rate of production or buying. Therefore, the items are produced in larger quantities, which result in lot- size Inventories.

2 Cost Involved in Inventory ProblemsDefinition 2.1

Holding $\operatorname{Cost}\left(\mathbf{C}_{1}\right)$

The cost associated with carrying or holding the goods in stock is known as holding cost (or) carrying cost per unit per unit of time. Holding cost is assumed to directly vary with the size ofinventory as well as the time the item is held in stock. The following components constitute holding cost.

- Interested capital cost: This is the interest charge over the capital invested.
- Record keeping and administrative cost.
- Handling cost: These include costs associated with movement of stock, such as cost of labor etc.
- Storage costs.
- Depreciation costs.
- Taxes and Insurance costs.
- Purchase price or production costs.

Purchase price per unit item is affected by the quantity purchased due to quantity discounts or price breaks. If P is the purchases price of an item and I is the stock holding cost per unit time expressedas a fraction of stock value (in rupees), then the holding cost $\mathbf{C}_{1}=I P$.

Definition 2.2 Shortage Cost (C2)

The penalty costs that are incurred as a result of running out of stock (i.e., shortage) are known as shortage or stock-out costs. These are denoted by C2. In case where the unfilled demand for the goods may be satisfied later, these costs are assumed to vary directly with both the shortage
quantity and the delaying time. On the other hand, if the unfilled demand is lost (no backlog case) shortage costs become proportional to shortage quantity only.

Definition 2.3 Set-up Cost (C3)

These costs are associated with obtaining goods through placing an order or purchasing or manufacturing or setting up a machinery before starting production. So, they include costs of purchase, requisition, follow-up receiving the goods, quality control etc. These are called ordering costs or replenishment costs, or set-up cost usually denoted by C3 per production run (cycle). They are assumed to be independent of the quantity ordered or purchased.

3 Basics Definitions

Definition 3.1 Lead Time

Elapsed time between the placement of the order and its receipts in inventory is known as lead time.

Definition 3.2 Reorder level

This is the time when we should place an order by taking into consideration the interval between placing the order and receiving the supply.

For e.g., we would like to place a new order precisely at the time when inventory level reaches zero.

Definition 3.3

Economic order quantity (EOQ)

This is the size of order which minimizes total annual cost of carrying inventory and the cost of ordering under the assumed conditions of certainty and that annual demands are known.

4 ABC Analysis

(ABC = Always better control) ABC analysis based on cost criteria. It helps to exercise selective control when confronted with large number of items it rationalizes the number of orders, number of items and reduce the inventory.

Category ' A ' Items

- The most important items of the company.
- Accounts for only 10 to 25% of the total inventory items.
- Accounts for 70 to 80% of the annual consumption value of the company. (Which is the highest value)
- Have very Tight Inventory Control.
- Managed by top level management.

Category 'B' Items

- Less important items than ' A ' items but more important than ' C ' items of the company.
- Accounts for 25 to 30% of the total inventory items.
- Accounts for 15 to 25% of the annual consumption value of the company.
- Have Intermediate Inventory control.
- Managed by middle level management.

Category ' ${ }^{\prime}$ ' items

- Marginally important items of the company.
- Accounts for 45 to 50% of the total inventory items.
- Accounts for 5 to 10% of the annual consumption value of the company.
- Have low inventory control.
- Managed by middle and lower-level managements.

ABC Analysis

S.No	Name of the parts	Annual requirements in units	Unit price	Annual Consumption	Ranking
1	M12 Hinged foot	1835	262	4,80,770	7
2	D58 Damping ring	1615	81	1,30,815	19
3	M16 Hinged foot	24	246	5904	51
4	D90 Damping ring	37	124	4588	54
5	Profile bracket 45*45	424	82	34,768	39
6	Profile bracket 90*90	139	282	39,198	37
7	Cover cap 30*30	528	22	11,616	47
8	Cover cap 45*45	5173	27	1,39,671	17
9	Cover cap 45*90	303	104	31,512	40
10	Cover cap 60*60	208	51	10,608	48
11	Cubic connector 30*30	858	394	3,38,052	8
12	Cubic connector 45*45	2442	291	7,10,622	4
13	T_NUT_M5 for 8MM SLOT	4850	19	92,150	23
14	T_NUT_M5 for 10MM SLOT	17623	19	3,34,837	9
15	T_NUT_M8 for 10MM SLOT	47327	16	7,75,232	2
16	T_NUT_M5 for 10MM SLOT	47482	16	7,59,712	3
17	Profile variofix_45*45	14558	92	13,39,336	1
18	Profile variofix_30*30	537	82	44,034	35
19	T_NUT_M6 for 8MM SLOT	6891	19	1,30,929	18
20	T_NUT_M4 for 8MM SLOT	1265	19	24,035	43
21	T_NUT_M4 for 10MM SLOT	179	19	60,401	29
22	Cover cap 90*90	261	78	20,358	45
23	Swivel bearing standard_45*90	148	751	1,11,148	22
24	Connector 30*30	277	104	28,808	41
25	45*45 Bracket	59	158	9,322	49
26	60*60 Bracket	25	195	4,875	53
27	30*30 Bracket	32	124	3,968	57
28	90*90 Bracket	5	450	2,250	62
29	30*45 Hinge	191	1360	2,59,760	10

30	40*40 Hinge	25	1556	38,900	38
31	45*45 Hinge	378	450	1,70,100	15
32	Handles	1704	342	5,82,768	6
33	DYSC-4-4-Y1F Shock Absorber	169	4088	6,90,872	5
34	DYSC-5-5-Y1F Shock Absorber	34	2546	86,564	24
35	DYSC-7-5-Y1F Shock Absorber	20	2823	56,460	32
36	Coupler KSG-M12*1.25	69	1247	86,043	25
37	Cylinder ADN-50-30-A-P-A	35	2059	72,065	28
38	Rod clevis SG-M4	59	86	5,074	52
39	Coupling piece KSG-M10*1.25	88	1348	1,18,624	21
40	Coupler KSG-M16*1.5	156	1569	2,44,764	11
41	Coupling piece KSG-M20*1.5	47	3635	1,70,845	14
42	Coupling piece KSZ-M8	35	1650	57,750	31
43	Coupling KSZ-M10*1.25	77	784	60,368	30
44	ROD EYE SGS-M16*1.5	268	674	1,80,632	12
45	Foot mounting HP-25	256	196	50,176	34
46	Foot mounting HP-32	114	752	85,728	26
47	MOM COM, DARD-L1-32-S	57	2211	1,26,027	20
48	Moment compensator DARD- L1-40-S	48	3589	1,72,272	13
49	Distributor block FR-8-1/4	58	400	23,200	44
50	Distributor block FR-4-3/8-B	89	810	72,090	27
51	Distributor block FR-4-1/4-C	142	172	24,424	42
52	Branch module FRM-D-MIDI	159	58	9,222	50
53	Push-in fitting_QS-1/8-4-I	78	40	3,120	59
54	Push-in fitting_QS-G1/8-6-I	56	70	3,920	58
55	Push-in fitting_QSL-3/8-16	9	328	2,952	60
56	Push-in fitting_QSLV-M5-6	18	123	2,214	63
57	Push-in fitting_QST-12	27	166	4,482	55
58	Push-in fitting_QST-16	159	319	50,721	33
59	Push-in fitting_QSY-16-12	45	400	18,000	46
60	Push-in fitting_CRQS-1/4-6	65	675	43,875	36
61	Flow count val_CRGRLA-1/4-B	78	1851	1,44,378	16
62	Blanking plug_B1/8	92	19	1,748	64
63	Push-in fitting_QS-1/8-8	32	43	1,376	65

64	Push-in fitting_QS-1/4-4	56	51	2,856	61
65	Push-in fitting_QS-G1/8-4	80	50	4,000	56

Rank	Name of the part	Cumulative \% of product	Annual consumption	Cumulative annual consumpti on (Rs)	Cumulative \% of annual consumption
1	Profile variofix_45*45	1.53	13,39,336	13,39,336	14.23671601
2	T_NUT_M8 for 10MM SLOT	3.07	7,75,232	21,145,68	22.47718578
3	T_NUT_M5 for 10MM SLOT	4.61	7,59,712	28,74,280	30.55268288
4	Cubic connector 45*45	6.15	7,10,622	35,84,902	38.10636889
5	DYSC-4-4-Y1F Shock Absorber	7.69	6,90,872	42,75,774	45.45011868
6	Handles	9.23	5,82,768	48,58,542	51.6447573
7	M12 Hinged foot	10.76	4,80,770	53,39,312	56.7551896
8	Cubic connector 30*30	12.30	3,38,052	56,77,364	60.34857492
9	T_NUT_M5 for 10MM SLOT	13.84	3,34,837	60,12,201	63.90778581
10	30*45 Hinge	15.38	2,59,760	62,71,961	66.66895205
11	Coupler KSG-M16*1.5	16.92	2,44,764	65,16,725	69.27071558
12	ROD EYE SGS-M16*1.5	18.46	1,80,362	66,97,087	71.18790631
13	Moment compensator DARD-L1-40-S	20	1,72,272	68,69,359	73.01910292
14	Coupling piece KSG-M20*1.5	21.53	1,70,845	70,40,204	74.83513097
15	45*45 Hinge	23.07	1,70,100	72,10,304	76.64323991
16	Flow count val_CRGRLA-1/4-B	24.61	1,44,378	73,54,682	78.17793216
17	Cover cap 45*45	26.15	1,39,671	74,94,353	79.6625905
18	T_NUT_M6 for 8MM SLOT	27.69	1,30,929	76,25,282	81.05432416
19	D58 Damping ring	29.23	1,30,815	77,56,097	82.44484603
20	MOM COM, DARD-L1-32-S	30.76	1,26,027	78,82,124	83.78447299
21	Coupling piece KSG-M10*1.25	32.30	1,186,24	80,00,748	85.04540841
22	Swivel bearing standard_45*90	33.84	1,11,148	81,11,896	86.22687632
23	T_NUT_M5 for 8MM SLOT	35.38	92,150	82,04,046	87.20640153
24	DYSC-5-5-Y1F Shock Absorber	36.92	86,564	82,90,610	88.12654934
25	Coupler KSG-M12*1.25	38.46	86,043	83,76,653	89.04115909
26	Foot mounting HP-32	40	85,728	84,62,381	89.95242048
27	Distributor block FR-4-3/-B8	41.53	72,090	85,34,471	90.71871427
28	Cylinder ADN-50-30-A-P-A	43.07	72,065	86,06,536	91.48474231
29	T_NUT_M4 for 10MM SLOT	44.61	60,401	86,66,937	92.12678575
30	Coupling KSZ-M10*1.25	46.15	60,368	87,27,305	92.7684784
31	Coupling piece KSZ-M8	47.69	57,750	87,85,055	93.38234255
32	DYSC-7-5-Y1F Shock Absorber	49.23	56,460	88,41,515	93.9824944
33	Push-in fitting_QST-16	50.76	50,721	88,92,236	94.52164251
34	Foot mounting HP-25	52.30	50,176	89.42,412	95.05499744
35	Profile variofix_30*30	53.84	44,034	89,86,446	95.52306487
36	Push-in fitting_CRQS-1/4-6	55.38	43,875	90,30,321	95.98944217
37	Profile bracket 90*90	56.92	39,198	90,69,519	96.40610446
38	40*40 Hinge	58.46	38,900	91,08,419	96.81959909
39	Profile bracket 45*45	60	34,768	91,43,187	97.18917188

40	Cover cap 45*90	61.53	31,512	$91,74,699$	97.52413443
41	Connector 30*30	63.07	28,808	$92,03,507$	97.83035431
42	Distributor block FR-8-1/4	64.61	24,424	$92,27,931$	98.08997367
43	T_NUT_M4 for 8MM SLOT	66.15	24,035	$92,51,966$	98.34545808
44	Distributor block FR-4-1/4-C	67.69	23,200	$92,75,166$	98.59206671
45	Cover cap 90*90	69.23	20,358	$92,95,524$	98.80846578
46	Push-in fitting_QSY-16-12	70.76	18,000	$93,13,524$	98.99980006
47	Cover cap 30*30	72.30	11,616	$93,25,140$	99.12327444
48	Cover cap 90*90	73.84	10,608	$93,35,748$	99.23603411
49	$45 * 45$ Bracket	75.38	9322	$93,45,070$	99.33512401
50	Branch module FRM-D-MIDI	76.92	9222	$93,54,292$	99.43315094
51	M16 Hinged foot	78.46	5904	$93,60,196$	99.49590858
52	ROD clevis SG-M4	80	5074	$93,65,270$	99.54984359
53	60*60 Bracket	81.53	4875	$93,70,145$	99.60166329
54	D90 Damping ring	83.07	4588	$93,74,733$	99.65043227
55	Push-in fitting_QST-12	84.61	4482	$93,79,215$	99.69807451
56	Push-in fitting_QS-G1/8-4	86.15	4000	$93,83,215$	99.74059324
57	30*30 Bracket	87.69	3968	$93,87,183$	99.78277182
58	Push-in fitting_QS-G1/8-6I	89.23	3920	$93,91,103$	99.82444017
59	Push-in fitting_QS-1/8-4-I	90.76	3120	$93,94,223$	99.85760478
60	Push-in fitting_QSL-3/8-16	92.30	2952	$93,97,175$	99.8889836
61	Push-in fitting_QS-1/4-4	93.84	2856	$94,00,031$	99.91934197
62	90*90 Bracket	95.38	2250	$94,02,281$	99.94325876
63	Push-in fitting_QSLV-M5-6	96.92	2214	$94,04,495$	99.96679287
64	Blanking plug_B1/8	98.46	1748	$94,06,243$	99.98537356
65	Push-in fitting_QS-1/4-4	100	1376	$94,07,619$	

ABC GRAPH

Cumulative \% of product

ABC CLASSIFICATION

A- CLASS ITEMS

Name of the part	Annual requirement in units	Unit price	Annual consumption
Profile variofix_45*45	14558	92	$13,39,336$
T_NUT_M8 for 10MM SLOT	47327	16	$7,75,232$
T_NUT_M5 for 10MM SLOT	47482	16	$7,59,712$
Cubic connector 45*45	2442	291	$7,10,622$
DYSC-4-4-Y1F Shock Absorber	169	4088	$6,90,872$
Handles	1704	342	$5,82,768$

B- CLASS ITEMS

Name of the part	Annual requirement in units	Unit price	Annual consumption
M12 Hinged foot	1835	262	$4,80,770$
Cubic connector 30*30	858	394	$3,38,052$
T_NUT_M5 for 10MM SLOT	17623	19	$3,34,837$
30*45 Hinge	191	1360	$2,59,760$
Coupler KSG-M16*1.5	156	1569	$2,44,764$
ROD EYE SGS-M16*1.5	268	674	$1,80,362$
Moment compensator DARD-L1-40-S	48	3589	$1,72,272$
Coupling piece KSG-M20*1.5	47	3635	$1,70,845$
45*45 Hinge	378	450	$1,70,100$
Flow count val_CRGRLA-1/4-B	78	1851	$1,44,378$
Cover cap 45*45	5173	27	$1,39,671$
T_NUT_M6 for 8MM SLOT	6891	19	$1,30,929$
D58 Damping ring	1615	81	$1,30,815$
MOM COM, DARD-L1-32-S	57	2211	$1,26,027$
Coupling piece KSG-M10*1.25	88	1348	$1,186,24$
Swivel bearing standard_45*90	148	751	$1,11,148$
T_NUT_M5 for 8MM SLOT	4850	19	92,150
DYSC-5-5-Y1F Shock Absorber	34	2546	86,564
Coupler KSG-M12*1.25	69	1247	86,043
Foot mounting HP-32	114	752	85,728
Distributor block FR-4-3/-B8	89	810	72,090
Cylinder ADN-50-30-A-P-A	35	2059	72,065
T_NUT_M4 for 10MM SLOT	179	19	60,401
Coupling KSZ-M10*1.25	77	784	60,368
Coupling piece KSZ-M8	35	1650	57,750
DYSC-7-5-Y1F Shock Absorber	20	2823	56,460

C - CLASS ITEMS

Name of the parts	Annual requirementin units	Unit price	Annual consumption
Push-in fitting_QST-16	159	319	50,721
Foot mounting HP-25	256	196	50,176
Profile variofix_30*30	537	82	44,034
Push-in fitting_CRQS-1/4-6	65	675	43,875
Profile bracket 90*90	139	282	39,198

$40^{* 40 ~ H i n g e ~}$	25	1556	38,900
Profile bracket 45*45	424	82	34,768
Cover cap 45*90	303	104	31,512
Connector 30*30	277	104	28,808
Distributor block FR-8-1/4	142	172	24,424
T_NUT_M4 for 8MM SLOT	1265	19	24,035
Distributor block FR-4-1/4-C	58	400	23,200
Cover cap 90*90	261	78	20,358
Push-in fitting_QSY-16-12	45	400	18,000
Cover cap 30*30	528	22	11,616
Cover cap 90*90	208	51	10,608
$45^{* 45 ~ B r a c k e t ~}$	59	158	9322
Branch module FRM-D-MIDI	159	58	9222
M16 Hinged foot	159	58	5904
Rod clevis SG-M4	59	86	5074
60*60 Bracket	25	195	4875
D90 Damping ring	37	124	4588
Push-in fitting_QST-12	27	166	4482
Push-in fitting_QS-G1/8-4	80	50	4000
30*30 Bracket	32	124	3968
Push-in fitting_QS-G1/8-6I	56	70	3920
Push-in fitting_QS-1/8-4-I	78	40	3120
Push-in fitting_QSL-3/8-16	78	40	2952
Push-in fitting_QS-1/4-4	56	51	2856
90*90 Bracket	5	450	2250
Push-in fitting_QSLV-M5-6	18	123	2214
Blanking plug_B1/8	92	19	1748
Push-in fitting_QS-1/4-4	32	43	1376

Conclusion

This study on industrial application of Inventory Control has given a better Control Policy on the different types of Inventory existing in this manufacturing industry. This has helped to classify the inventory into 3 classes, namely A, B, C. According to the study nearly 10\% of the total items fall under A - class items, 40% of the items fall under B - class items and the rest of 50% comes under C - class items. Based on the classification the inventory in each class can be controlled as per the guidelines given by the ABC classification.

References

[1]. Keskin, Gulsen \& Ozkan, Coskun. (2013). Multiple criteria ABC analysis with FCM clustering. Journal of Industrial Engineering. 2013. 10.1155/2013/827274.
[2]. Ravinder, Handanhal and Ram B. Misra. "ABC Analysis For Inventory Management: Bridging The Gap Between Research And Classroom." American Journal of Business Education 7 (2014): 257-264.
[3]. Ramakrishnan Ramanathan, (2006), ABC inventory classification with multiple-criteria using weighted linear optimization, Computers \& Operations Research, Volume 33, Issue 3, Pages 695-700
[4]. Rohan Nadkarni, Dr. Asita Ghewari (2020),An Inventory Control using ABC Analysis and FSN Analysis.International Journal of Engineering, Business and Enterprise Applications (IJEBEA), 16-124, page 24-28
[5]. Marin Rusaneseu, "ABC analysis, Model for classifying inventory", Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics, "HIDRAULICA" (No.2/2014).
[6]. Hamdy A. Taha , Operations Research: An Introduction: United States Edition, 1996,Pearson; 6th edition

