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ABSTRACT 

This paper is fundamentally involved with the existence of mild solutions for 

a Neutral Fractional Differential Systems (Abbreviated - NFDS) with Non-

Local Conditions  (Abbre- viated - NLC) in Banach space 𝕏 . The main 

objective of this paper is to investigate the existence theory for a variety of 

fractional differential equations with applications. We also discuss some 

definitions, notations about sectorial operators, solution operator, 

preliminary facts, existence theorems and their results. 

Mathematics subject classification : 26A33, 34K40. 
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1 Introduction 

Fractional differential equations uses in various fields such as physics, chemistry, mechanics, 

electricity, biology, economics, control theory, signal and image processing, biophysics, blood flow 

phenomena, aerodynamics, fitting of experimental data, etc. The fractional differential equation 

becomes a huge field of mathematics and the possibility of fractional differential equation has been 

implemented in so many areas of sciences. Now a days the concept of fractional differential equations 

are powerfully tested in so many various ways. The concept of Fractional derivative appeared for the 

first time in a famous correspondence between G.A. deL’Hospital and G.W. Leibniz, in 1695. Many 

mathematicians have further developed this area and we can mention the studies of L. Euler(1730), 

J.L. Lagrange (1772), P.S. Laplace (1812), J.B.J. Fourier (1822), N.H. Abel (1823), J. Liouville (1832), B. 
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Riemann (1847), H.L. greer (1859), H. Holmgreen (1865), A.K. Grunwald (1867), A.V. Letnikov (1868), 

N. Ya. sonin (1869), H. Laurent (1884), P.A. Nekrassov (1888), A.Krug (1890), J. Hadamard (1892), o. 

Heaviside (1892), S. Pincherle (1902), G.H. Hardy and J.E. Littlewood (1917), H. Weyl (1919), P. Levy 

(1923), A. marchaud (1927), H.T. Davis (1924), A.Zygmund (1935), E.R. Love (1938), H.Kober (1940), 

D.V. Widder (1941), M.Riesz (1949) and W. Feller (1952). 

In the last decade, fractional calculus has been recognized as one of the best tools to de- scribe 

long-memory processes. Such models are interesting for engineers and physicists but also for pure 

mathematicians. The most important among such models are those described by dif- ferential 

equations containing fractional-order derivatives. Their evolutions behave in a much more complex 

way than in the classical integer-order case and the study of the corresponding theory is a hugely 

demanding task. Although some results of qualitative analysis for fractional differential equations can 

be similarly obtained, many classical methods are hardly applicable directly to fractional differential 

equations. New theories and methods are thus required to be specifically developed, whose 

investigation becomes more challenging. Comparing with classical theory of differential equuations, 

the researches on the theory of fractional differential equations are only on their initial stage of 

development. 

Fractional differential equations received a great attention as these equations as found to be 

the excellent importance to model the physical concepts and their problems experiencing sudden 

changes at various instants. The starting stage of this paper is the works in papers. 

The starting stage of this paper is the works in papers [5–9]. Some authors in [5] studied the 

existence of solutions for the problem 

𝑑

𝑑𝑡
[x(t) + F (t, x(t), x(b1(t)), ...., (bm(t)))] + Ax(t) = G(t, x(t), x(a1(t)), ...., x(an(t))), 0 ≤ t ≤ a, 

x(0) + g(x) = x0, 

by utilizing the fractional powers of operators and Sadovskii fixed point theorem. And in [4], 

authors also analyzed the subsequent neutral partial partial differential equations of the form 

𝑑

𝑑𝑡
 x(t) − F (t, x(t), x(h1(t))] = −A[x(t) − F (t, x(h1(t)))] + G(t, x(h2(t))), t ∈ j     (1.1) 

x(0) + g(x) = x0 ∈ X        (1.2) 

by applying the fractional powers of operators and Banach contraction fixed point theorem. Lately, 

Alka Chadha et al. [3] extends the problem (1.1) - (1.2) into fractional order problem under suitable 

fixed point theorems. Inspired by the above mentioned works [3–5] the fundamental motivation 

behind this paper is to demonstrate the existence of mild solutions for the accompanying NFDS in a 

Banach space 𝕏 : 

     𝑐𝒟𝑡
𝜂  [z(t) − 𝒰(t, z(t), z(t), z(µ1(t)), ...., z(µm(t)))] = 𝒬 [z(t) − 𝒰 (t, z(t), z(µ1(t)),,  

z(µm(t)))] + 𝒱 (t, z(t), z(µ̃1(t)), ...., z(µ̃n(t))) + 𝒲 (t, z(t), z(µ̂1(t)), ...., z(µ̂q(t))), t≠tk,    (1.3) 

t ∈ J = [0, T ]                                                                              (1.4) 

z(0) = g(z) + z0 ∈ 𝕏 (1.5) 
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t 

where 𝑐𝒟𝑡
𝜂  is the Caputo fractional derivative of order 0 < η < 1 and 𝒬 : 𝒟 (𝒬) ⊂ 𝕏 → 𝕏 is a closed 

linear operator with dense domain 𝒟 (𝒬) in a Banach space 𝕏. The functions 𝒰, 𝒱, 𝒲, and 𝑔 are 

apposite continuous functions to be specified later. 

2. Preliminaries 

In this section, we discuss some definitions and notations about sectorial operators, solution operator 

and analytic solution operators required for establishing our results. Throughout this paper, X is a 

complex banach space equipped with the norm ∥. ∥𝕏. The symbol C(J; 𝕏) stands for the Banach space 

of all continuous functions from J into X with supremum norm, i.e., 

∥ 𝑦 ∥𝐽 =  sup
𝑡∈𝑗

∥ 𝑦(𝑡) ∥  . 

The notation 𝐿(𝕏,𝑌) denotes the Banach spaces of all bounded linear operators from 𝕏 into 𝑌  with  

the  operator  norm  denoted  by  ∥. ∥𝐿(𝕏,𝑌) and  when 𝕏 =  𝑌   then  we  write  simply  𝐿(𝕏) and ∥. ∥𝐿(𝕏,𝑌). 

In addition, 𝒫𝒞 (𝐽, 𝕏) represents the Banach space of all the piecewise continuous functions from 𝐽 

into 𝕏 with the norm 

∥ 𝑢 ∥𝒫𝒞  = max{sup
𝑡∈𝑗

 ∥ 𝑢(𝑡 +  0 ∥𝕏,      sup
𝑡∈𝑗

 ∥ 𝑢(𝑡 −  0 ∥𝕏}, 

and 𝐵𝑟(𝑧, 𝕏) denotes a closed ball with center 𝑧 and radius 𝑟 in 𝕏. 

Definition 2.1 [10]  The  Riemann-Liouville  fractional  integral  operator  J of  order  η  > 0 is defined 

by 

 𝒥𝑡
𝜂

𝒰(𝑡)  =
1

𝛤(𝜂)
∫ (𝑡 −  𝑠)𝜂−1

𝑡

0

 𝒰 (𝑠)𝑑𝑠, 

Where 𝒰 ∈ 𝐿1((0, 𝑇); 𝕏). 

Definition 2.2 [10] The Riemann-Liouville fractional derivative is given by, 

𝒟𝑡
𝜂

 𝒰(𝑡) = 𝒟𝑡
𝑚𝒥𝑡

𝑚−𝑛 𝒰(𝑡), m − 1 < η < m, m ∈ ℕ, 

where 𝒟𝑡
𝑚 =

𝑑𝑚

𝑑𝑡𝑚, 𝒰  ∈ L1((0, T ); 𝕏), 𝒥𝑡
𝑚−𝑛  𝒰∈ Wm,1((0, T ); 𝕏). Here the notation Wm,1((0, T ); 𝕏) 

stand for the Sobolev space defined by 

Wm,1((0, T ); 𝕏) = {y ∈ 𝕏 : ∃z ∈ L1((0, T ); 𝕏) : y(t) ∑ 𝑑𝑘
𝑡𝑘

𝑘!
+ 𝑚−1

𝑘=0
𝑡𝑚−1

𝑚−1
∗ 𝑧(𝑡), 𝑡 ∈ (0, 𝑇)} 

Note that z(t)
 = ym(t), dk = yk(0). 

Definition 2.3 [10] The Caputo fractional derivative is given by 

 𝑐𝒟𝑡
𝜂  𝒰(𝑡) =

1

𝛤(𝑚−𝑛)
 ∫ (𝑡 −  𝑠)𝑚−𝜂−1𝑡

0
 𝒰𝑚 (𝑠)𝑑𝑠, 𝑚 − 1 < 𝜂 < 𝑚 

where U ∈ Cm−1((0, T ); 𝕏) ∩ L1((0, T ); 𝕏) and the following holds, 
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𝒥𝑡
𝜂

(𝑐𝒟𝑡
𝜂  𝒰(𝑡)) = 𝒰(𝑡) −  ∑ 𝑑𝑘

𝑡𝑘

𝑘!
𝒰𝑘(0) 

𝑚−1

𝑘=0

 

The laplace transformation of the Caputo derivative of order 𝜂 >  0 is given by 

𝐿[𝑐𝒟𝑡
𝜂  𝒰(𝑡); λ]= λnL[u(t)] − ∑ 𝜆𝜂−𝑘−1𝒰𝑘(0) 𝑚−1

𝑘=0   m − 1 < η < m. 

Definition 2.4 [7] An operator 𝒬, which is closed and linear, is called sectorial operator if there are 

constants 𝜔 ∈  ℝ, 𝜃 ∈  [
𝜋

2
, 𝜋], 𝑀 >  0 such that the following two conditions are satisfied: 

(1)   𝜌(𝒬)  ⊃  𝛴(𝜃,𝜔) =  {𝜆 ∈  𝐶 ∶  𝜆 ≠ 𝜔, |arg(𝜆 − 𝜔)| < 𝜃} 

(2)  ∥ 𝑅(𝜆, 𝒬) ∥𝐿(𝕏) ≤  
𝑀

|𝜆 − 𝜔|
 , 𝛴(𝜃,𝜔) 

where ρ(𝒬) be the resolvent set of 𝒬. 

For more details we refer to [1]. Consider the following Cauchy problem for the fractional evolution 

equation 

𝑐𝒟𝑡
𝜂  𝑢(𝑡) = 𝒬 𝑢(𝑡), t > 0; u(0) = z, uk(0) = 0, k = 1, ....., m − 1,                                              (2.1) 

where η > 0 and m = [η] + 1. 

Definition 2.5 [1] A solution operator Sη(t) of (2.1) is said to be analytic if Sη(t) admits an analytic 

extension to a sector𝛴𝜃0
for some 𝜃0 ∈ (0, π/2]. 

An analytic solution operator Sη(t) is said to be of analyticity type (𝜃0, ω0 ) if for each θ < 𝜃0, and  ω  >  

ω0 there  exists  a  positive  constant  𝑀  =  𝑀  (𝜃, 𝜔)  such  that  ∥Sη(t)∥ ≤ MeωRet,  for 𝑡 ∈ 𝛴𝜃 =  {𝑡 ∈

 𝐶/{0} ∶  𝑎𝑟𝑔  𝑡 <  𝜃}. Denote 𝒜𝜂  (𝜃0, ω0) ={ 𝒜  ∈ 𝒞𝜂  ; 𝒜 generates analytic solution operator Sη(t) 

of type (𝜃0, ω0)} 

Lemma 2.1 [1] 𝐿𝑒𝑡 𝜂 ∈  (0, 2).  A  linear  closed  densely  defined  operator  𝒬 ∈ 𝒜𝜂 (𝜃0, ω0)  if and 

only if 𝜆𝜂 ∈ ρ(𝒬) for each λ ∈ 𝛴𝜃0
+

𝜋

2
( ω0), and for any ω >  ω0, θ < 𝜃0, there exists a  constant 

C=C(𝜃, 𝜔) such that  

‖ λη−1R(λn , Q)‖ ≤  
𝐶

|𝜆−𝜔|
, λ ∈  ∑ (ω)𝜃+

π

2
 .    ,  

 Before we define the mild solution for the given problem, initially, we present the following theorem. 

Theorem 2.1 Suppose 𝒬 is a sectorial operator and 𝑓 satisfies the uniform Holder condition with 

exponent 𝛽 ∈  (0, 1] then 

u(t) = Sη(t)z0 + ∫ Tη(t −  s)𝑓 (𝑠)𝑑𝑠
𝑡

0
, 𝑡 ∈  [0, 𝑇 ]               (2.2) 

where 

Sη(t)=
1

2𝜋𝑖
   ∫ eλt.

Γ
𝜆η−1R(λn, 𝒬)dλ,                   Tη (t) =  

1

2𝜋𝑖
∫ eλt.

Γ
𝜆η−1R(λn, 𝒬)dλ,                                   (2.3) 
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is the mild solution for fractional Cauchy problem 

𝑐𝒟𝑡
𝜂  𝑢(𝑡)= 𝒬 u(t) + f (t),             0 < η < 1, t ∈ [0, T ],                       (2.4) 

u(0) = z0 ∈ 𝕏. (2.5) 

where 𝛤 is a suitable path lying on 𝛴𝜃𝜔. For o < η < 1, Tη(t) is the η - resolvent family and Sη(t) is the 

solution operator, generated by 𝒬. 

If η ∈ (0, 1) and 𝒬 ∈ 𝒜𝜂  (𝜃0, ω0), then for any 𝑧 ∈  𝕏 and t > 0, we have Sη(t)z ∈ 𝒟 (𝒬) and 

∥ 𝑆𝜂(𝑡) ∥𝐿(𝕏) ≤  𝑀𝑒𝜔𝑡 , ∥ 𝑇𝜂(𝑡) ∥𝐿(𝕏) ≤  𝐶𝑒𝜔𝑡(1 +  𝑡𝜂−1), 𝑡 >  0,  𝜔 >  𝜔0 

Let 

𝑀̃𝑆  =    sup
𝑜≤𝑡≤𝑇

∥ 𝑆𝜂(𝑡) ∥𝐿(𝕏) , 𝑀̃𝑇   =    sup
𝑜≤𝑡≤𝑇

 𝐶𝑒𝜔𝑡(1 + 𝑡𝜂−1).  

Thus we have 

∥ 𝑆𝜂(𝑡) ∥𝐿(𝕏) ≤  𝑀̃𝑆  , 𝑇𝜂(𝑡) ∥𝐿(𝕏) ≤  𝑡𝜂−1 𝑀̃𝑇  .ow, we list the following basic assumptions on the 

functions which will be utilized later to establish main results. 

(H1) For 0 < β < 1, the function 𝒬β 𝒰 : J × 𝕏 m+1 → 𝕏 is continuous function satisfy the Lipschitz condition, 

that is, there exists a constant 𝐿𝒰  >  0 such that, 

‖𝒬β𝒰(𝑠1, 𝑢0, 𝑢1, … , 𝑢𝑚) − 𝒬β𝒰 (𝑠2, 𝑢̅0, 𝑢̅1, … , 𝑢̅𝑚)‖ ≤ 𝐿𝒰(|𝑠1 − 𝑠2|  + max
𝑖=0,1,2…𝑚

‖𝑢̅𝑖, 𝑢̅𝑖‖𝕏)  

For any 0 ≤ s1, s2 ≤ T, ui, 𝑢̅𝑖∈ 𝕏, i = 0, 1, ....m. Moreover, there exist constants 𝐿̃𝒰 > 0 such  that the 

inequality 

‖𝒬β𝒰(𝑡, 𝑢0, 𝑢1, … , 𝑢𝑚)‖ ≤ 𝐿̃𝒰(max{‖u𝑖‖𝕏: 𝑖 = 0, 𝑖, … , 𝑚} + 1) 

holds for any (t, u0, u1, ..., um) ∈ J × 𝕏m+1. 

(H2) The function J × 𝕏n+1.→ 𝕏 is continuous function, and there  exist  a  constant  𝐿𝒱   >   0 such that 

the function satisfies the Lipschitz condition:  

‖𝒱 (𝑠1, 𝑣0, 𝑣1, … , 𝑣𝑛) − 𝒱 (𝑠2, 𝑣̅0, 𝑣̅1, … , 𝑣̅𝑛)  ‖  ≤ 𝐿𝒱  (|𝑠1 − 𝑠2| + max
𝑖=0,1,2…𝑚

‖𝑣̅𝑖, 𝑣̅𝑖‖𝕏) 

for any 0 ≤ s1, s2 ≤ T, vi, 𝑣̅𝑖 ∈ 𝕏, i = 0, 1, 2....n. Moreover there exist a constant 𝐿̃𝒱> 0 such that the 

inequality 

‖𝒱 (𝑡, 𝑣0, 𝑣1, … , 𝑣𝑛) ‖  ≤ 𝐿̃𝒱(max{‖𝑣𝑖‖𝕏: 𝑖 = 0,1, … , 𝑛} + 1) 

holds for any (𝑡, 𝑣0, 𝑣1, … , 𝑣𝑛) ∈ J × 𝕏 n+1 

(H3) The  function 𝒲 ∶   𝐽 × 𝕏𝑞+1   → 𝕏is continuous  function,  and  there exist  a constant 𝐿𝒲  >  0 

such that the function satisfies the Lipschitz condition: 

‖𝒲 (𝑠1, 𝑤0, 𝑤1, … , 𝑤𝑞) − 𝒲(𝑠2, 𝑤̅0, 𝑤1, … , 𝑤̅𝑞)  ‖  ≤ 𝐿𝒲 (|𝑠1 − 𝑠2| + max
𝑖=0,1,2…𝑚

‖𝑤̅𝑖, 𝑤̅𝑖‖𝕏) 
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for any 0 ≤ s1, s2 ≤ T, wi, 𝑤̅𝑖 ∈ 𝕏, i = 0, 1, 2....q. Moreover there exist a constant 𝐿̃𝒲> 0 such that the 

inequality 

‖𝒲 (𝑡, 𝑤0, 𝑤1, … , 𝑤𝑞) ‖  ≤ 𝐿̃𝒱(max{‖𝑤𝑖‖𝕏: 𝑖 = 0,1, … , 𝑞} + 1) 

holds for any (𝑡, 𝑤0, 𝑤1, … , 𝑤𝑛) ∈ J × 𝕏 n+1 

(H4)  The  function  g  :  𝕏  →  𝕏  is  continuous  and  there  exist  constants  𝐿𝑔, 𝐿̃𝑔and  𝐿𝑔1  >  0 such 

that 

∥ 𝑔(𝑦) −  𝑔(𝑦̅) ∥ ≤  𝐿𝑔  ∥ 𝑦 −  𝑦̅ ∥  𝕏,  𝑦, 𝑦̅, ∈ 𝕏  

and 

∥ 𝑔(𝑦) ∥ ≤  𝐿̃𝑔 ∥ 𝑦 ∥  + 𝐿𝑔1,  𝑦 ∈  𝕏. 

 The second inequality can also written as, 

∥ 𝑔(𝑦) −  𝑔(0) ∥  + ∥ 𝑔(0) ∥ ≤  𝐿𝑔 ∥ 𝑦 ∥  + 𝐿𝑔1, with 𝐿̃𝑔   =  𝐿𝑔 and 𝐿𝑔1 = ∥ 𝑔(0) ∥. 

(H5)  µ̃𝑖, µ𝑗, µ̃𝑙   ∈   𝐶(𝐽, 𝐽), 𝑖  =   1, 2, . . . 𝑛, 𝑗  =   1, 2, . . . 𝑚, 𝑙  =   1, 2, . . . 𝑞. Now  we  are  in  a  

position to define the mild solution for the system (1.3). 

Definition 2.6: A function 𝑧 ∈  𝒫𝒞 (𝐽, 𝕏) is said to be a mild solution of the system (1.3), 

 if (i) z(0) = g(z) + z0;  

z(t) = Sη(t)[z0 + g(z) − U (0, z(0), z(µ1(0)), ...., z(µm(0)))] + U (t, z(t), z(µ1(t)),.., z(µm(t))) ∫ 𝑇𝜂(𝑡 −
𝑡

0

 𝑠)[𝒱 (𝑠, 𝑧(𝑠), 𝑧(µ̃1(𝑠)), . . . . 𝑧(µ̃𝑛(𝑠)))  +  𝒲(𝑠, 𝑧(𝑠), 𝑧(µ̃1(𝑠)), … 𝑧 (µ̃𝑞(𝑠)))]𝑑𝑠 is also 

satisfied. 

3 Existence results 

In this section, we present and prove our main results. Our result is based on Banach contraction 

principle. 

Theorem 3.1  

Let (H1) - (H5) holds and 

𝛬 =  [𝑀𝑠̃{ 𝐿𝑔 +  𝑝 𝐿1}  +  𝐿𝒰 ‖𝒬−𝛽‖ {1 + 𝑀𝑠̃}  + 𝑀𝑇̃
𝑇𝜂

𝜂
{𝐿𝒱  +  𝐿𝒲  }]  <  1,              (3.1) 

Proof 

Let z0 ∈ 𝕏 be fixed. For the sake of brevity, we rewrite that 

(t, z(t), z(µ1(t)),.., z(µm(t))) = (t, u(t)) 

(t, z(t), z(µ̃1(t)),..., z(µ̃n(t)))) = (t, v(t)) 

and 
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(t, z(t), z(µ̃1(t)),..., z(µ̃q(t)))) = (t, w(t)). 

Define the mapping 𝛤 ∶ 𝒫𝒞(𝐽, 𝕏)  →  𝒫𝒞 (𝐽, 𝕏) such that  

(Γz)(t) = Sη(t)[z0 + g(z) − 𝒰 (0, u(0))] + 𝒰 (t, u(t)) +  ∫ 𝑡
𝑡

0
 Tη(t − s)[ 𝒱 (s, v(s)) + 𝒲 (s, w(s))]ds for each 𝑡 ∈

 𝐽. Since 𝒰 , 𝒱 and 𝒲 are continuous functions and Sη(t), t ≥ 0 and Tη(t), t ≥ 0 are compact, therefore 

it is easy to show that the map 𝛤 is well defined on 𝒫𝒞(𝐽, 𝕏).To build the result, it is enough to show 

that the mapping Γ is a contraction mapping on 𝒫𝒞(𝐽, 𝕏). For the better way, we break the proof into 

the following steps: 

(i)  

∥Sη(t)[g(z) − g(𝑧̃)]∥ ≤ ∥Sη(t)∥ ∥g(z) − g(𝑧̃)∥ 

≤ 𝑀̃𝑠 Lg ∥z − 𝑧̃ ∥ 𝕏 . 

(ii) 

∥Sη(t)[ 𝒰 (0,u(z)) − 𝒰 (0, 𝑢̅(0)]∥ ≤ ∥Sη(t)∥ ‖𝒬−𝛽‖‖𝒬𝛽𝒰(0, 𝑢, (0)) − 𝒬𝛽𝒰(0, 𝑢̅, (0))‖ 

≤ 𝑀̃𝑠 𝐿𝒰 ‖𝒬−𝛽‖ sup
0≤𝑡≤𝑇

‖𝑧(𝑠) − 𝑧̅(𝑠)‖ . 

≤ 𝑀̃𝑠 𝐿𝒰 ‖𝒬−𝛽‖ ∥ z −  𝑧̃ ∥ 𝕏 . 

(iii) 

‖𝒰(𝑡, 𝑢(𝑡)) − 𝒰(𝑡, 𝑢̅(𝑡))‖ = ‖𝒬−𝛽‖‖𝒬𝛽𝒰(𝑡, 𝑢(𝑡)) − 𝒬𝛽𝒰(𝑡, 𝑢̅, (𝑡))‖ 

≤ 𝐿𝒰 ‖𝒬−𝛽‖ ∥ z − 𝑧̃ ∥ 𝕏 

(iv) 

‖∫ 𝑇𝜂

𝑡

0

(𝑡 − 𝑠) − 𝒱(𝑠, 𝑣̅(𝑠))]𝑑𝑠‖ ≤ ∫ ‖𝑇𝜂(𝑡 − 𝑠)‖‖𝒱(𝑠, 𝑣(𝑠)) − 𝒱(𝑠, 𝑣̅(𝑠))‖
𝑡

0

𝑑𝑠 

≤ 𝑀̃𝑇𝐿𝒱 ∫ (𝑡 − 𝑠)𝜂−1𝑡

0
sup

𝑜≤𝑡≤𝑇
‖(𝑧(𝑠) − 𝑧̅(𝑠)‖𝑑𝑠 

≤ 𝑀̃𝑇𝐿𝒱
𝑇𝜂

𝜂
∥ z − 𝑧̃ ∥ 𝕏 

In similar manner, we have 

‖∫ 𝑇𝜂

𝑡

0

(𝑡 − 𝑠) − 𝒲(𝑠, 𝑤(𝑠)) − 𝒲(𝑠, 𝑤̅(𝑠))]𝑑𝑠‖ ≤ ∫ ‖𝑇𝜂(𝑡 − 𝑠)‖‖𝒲(𝑠, 𝑤(𝑠)) − 𝒲(𝑠, 𝑤̅(𝑠))‖
𝑡

0

𝑑𝑠 

≤ 𝑀̃𝑇𝐿𝒲
𝑇𝜂

𝜂
∥ z −  𝑧̃ ∥ 𝕏 

From the above results, we have 

 ‖𝛤𝑧 (𝑡) − 𝛤𝑧̅(𝑡)‖ ≤ [𝑀̃𝑠{𝐿𝑔} + 𝐿𝑢‖𝒬−𝛽‖‖{1 + 𝑀̃𝑠} + 𝑀̃𝑇‖
𝑇𝜂

𝜂
{𝐿𝒱 + 𝐿𝒲}] sup

𝑜≤𝑡≤𝑇
‖(𝑧(𝑠) − 𝑧̅(𝑠)‖ 



Vol.11.Issue.2.2023 (April-June) Bull .Math.&Stat.Res ( ISSN:2348 -0580)  
 

 

23 D.Venkateshvaran, Dr Anuradha.A 

Thus 

∥ (𝛤𝑧)  −  (𝛤𝑧̅) ∥ ≤  𝛬 ∥ 𝑧 − 𝑧̅ ∥𝒫𝒞 . 

 Since Λ < 1 by the equation (3.1), it indicates that the map Γ is contraction on : 𝒫𝒞(𝐽, 𝕏). Hence,  by 

Banach contraction principle,  there exists a unique fixed point z ∈ : 𝒫𝒞(𝐽, 𝕏)such that Γz(t) = z(t) which 

is a mild solution of the problem (1.3). Now, the proof of the theorem is completed. 

4  Conclusion 

In this manuscript, we have analyzed the mild solution of neutral fractional differential systems with 

nonlocal condition in a Banach space 𝕏 with sectorial operator 𝒬. 
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