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ABSTRACT 

Motor insurance is a necessity in most States and thus records an 

overwhelming number of claims in any given period. Actuaries therefore 

need to determine a reward structure in a manner that is fair to the 

policyholder and with certainty of maximum profits to the insurer. This 

paper aims at reviewing the methodology behind the generalized linear 

models used in the pricing of premiums paid in by policyholders in the motor 

insurance industry based on the general risk factors, policyholder and 

vehicle characteristics, policy type among others that an insurer may wish to 

include in their rating plan. Negative binomial regression is presented with 

comparison to the Poisson regression as rating techniques among others 

such as credibility, BM, multi-state and BS approaches. It is clear that motor 

insurance industry still experiences heterogeneity within the given risk 

categories such as the drinking habits, temperament or knowledge of the 

traffic rules of every policyholder. An accurate rating system is crucial to the 

actuary as it would precisely reflect the observed losses. Classifying the 

observed losses according to the appropriate risk factors is very substantial 

in determining how accurate the rating system is, in the sense that, the risk 

factors tell us exactly which level of which risk factor causes more claims 

which would result to the biggest loss and therefore to be charged the 
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highest premium, and which causes little claims which would result to the 

smallest loss, to be charged the lowest premium.  

Keywords: Motor insurance, GLM, Claim frequency, Over-dispersion, Count 
data, Risk factors, heterogeneity, homoscedasticity 

 

1. INTRODUCTION 

Kenya’s Insurance industry has flourished since the conquest of Kenya as a British colony. The 

settlers initiated various economic activities like farming and extraction of various agricultural 

products. Such substantial investments needed some form of protection against various risk 

exposures. The Kenya Insurance Industry is governed by the Insurance Act (KIA) which was enacted in 

1985. The Insurance Act of 2006 then established the Insurance Regulatory Authority (IRA), a body 

that ensures the effective administration, supervision, regulation and control of insurance and 

reinsurance business in Kenya. Section 4 of the Kenya insurance Act expressly provides that no person 

shall use, cause to use or permit any person to use a motor vehicle unless there is in force a policy of 

insurance or such a security in respect of third party risks. 

General insurance under which auto insurance is classified is perhaps the fastest growing 

investment areas for actuaries (Boland, 2006). It is also known as the non-life insurance. The policies 

under this insurance would include personal insurance (such as home and automobile or car 

insurance), mortgage protection insurance, business insurance, travel insurance among others. Motor 

policy is a non-life insurance policy. Motor insurance is a necessity in most States thus records an 

overwhelming number of claims in any given period. It remains a very competitive industrial sector 

with high possibility of insured exit. Such exit may be as a result of overcharge or simply for better 

incentives from other insurers.  

Historically, actuarial science has been limited to using the standard Gaussian linear regression 

in order to quantify the exogenous variables impact over the phenomenon of interest such as those 

of the motor insurance industry. The linear model has taken the lead in econometrics, but the 

applicability of this model in insurance has been found to be difficult as it implies a series of 

assumptions that are not compatible with the reality imposed by the claim frequency and costs of the 

damages generated by the risk occurrence. Considering this, the most important assumptions of such 

linear regression models are the Gaussian probability density, the linearity of the predictor and 

homoscedasticity. The count regression analysis is seen to allow for the identification of the risk 

factors and the prediction of the expected frequency of claims given the characteristics of the 

policyholders. The other technique evident in the auto insurance industry is the Bonus-malus system, 

known to be one of the simplest rating techniques used in most countries. The method explores 

certain principles and methods for adjusting insurance premium as claim experience is obtained. The 

future premiums are adjusted according to the insured claim history. Black and Scholes model also 

known as the BS model has now gained application in the pricing of auto insurance policies. The model, 

however, has some restrictive limitations that limit its use in the insurance industry. The multi-state 

models also present its application in the motor insurance industry. The drivers are rated into various 

states such as Preferred, standard and sub-standard with the possibilities of moving back and forth 

among the states by a constant force of transition at any given time due to certain factors that may 

contribute to the same. The credibility approach to auto rating studies the automobile insurance claim 

counts past data. Observation of the claim events of the past are used to forecast the future claim 

counts of the policyholders by considering the risk factors associated with them. In this study, the 
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generalized linear model (GLM) will be used to explore the idea that the claim frequency and pure 

premium in the motor insurance industry can be modeled based on the policyholders’ claim 

experience for the given risk exposure. 

2. LITERATURE REVIEW 

2.1 Generalized Linear Model 

Nelder and Wedderburn (1972) discovered that the regression models where the response 

variable is distributed as a member of the exponential family share the same characteristics. The 

normal, binomial, Poisson, gamma and inverse gamma belong to the exponential dispersion family. It 

extends the framework of linear regression models with normal distribution to the class of 

distributions from the exponential family (Silvie and Lenka, 2014). The GLM are not limited by 

inflexible preconditions. The GLM specifies the distribution of the dependent variable. It has the ability 

to specify a non-normal distribution and non-identity link function unlike the general linear model. 

GLMs extend the framework of linear regression models with normal distribution to the class 

of distributions from the exponential family. It therefore allows for the modeling of large number of 

variable types such as counts, frequencies, and binary and even to treat skewed probability 

distributions of the data (Kafkova and Krivankova, 2014). The paper assumes that the number of claims 

is a dependent variable which follows Poisson distribution and depends on known and observable 

predictors that characterize the insured individual or vehicle, i.e. vehicle body type, vehicle age, area 

of residence, gender of policyholder and age band of the policyholder. 

The auto insurance is seen to hold an increased interest because it manages a large number of 

situations i.e. both the number of insured vehicles and of accidents with a variety of risks (David and 

Jemna, 2015). Boucher and Guillen (2009) express the need to model the claim frequency as it is the 

basis of premium calculation by the insurers. Antonio et al (2012) proposed the Poisson distribution 

for modeling the claim frequency. In connection to that, Cameroon and Trivedi (1999) argued out that 

the Poisson distribution has an equi-dispersion property i.e. the equality of the mean and variance. 

Unobserved heterogeneity is usually a common feature in an automobile insurance and therefore we 

would expect over-dispersion. 

Jong and Heller (2008) analyzed an automobile portfolio using GLM. Drivers in the motor 

insurance portfolio are observed and the numbers of claims produced over the past years are 

recorded. Both the binomial and Poisson distributions are used. The Poisson regression model has 

gained application in the analysis of ship damage rates. The GLM fits a Poisson regression for the 

analysis of count data (Collet, 2003). The incident counts are then modeled as occurring at a Poisson 

rate given the values of the predictors. The data under consideration contains information on certain 

types of damage caused by the waves. The risk of damage is associated with three variables; the ship 

type, the year of ship construction and the block of years the ship saw service. Collect’s idea can be 

extended to model insurance claim count data. 

2.2 Credibility theory 

This is one of the commonly used experience rating method that involves premium rating for a 

risk class that lies within a risk group (Whitney, 1918). Typically there are some mix data for the risk 

class, some data for the other risk classes within the risk group and some data for the risk group as a 

whole. Behan (2009) describes the need for ensuring a balance between class-experience on one hand 

and risk-experience on the other. A recent study by Mawuli (2016) on the application of Buhrmann’s 
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credibility theory to an automobile insurance claims considers insurance claims counts past data for 

commercial vehicles having third party liability cover. The number of automobile insurance claims is 

then estimated using Buhrmann credibility theory without actually considering the risk factors that 

are associated with them. 

Buhlmann and Gisler (2005) proposed the concept of credibility approach to designing an 

experience rating system of the bonus type used in the motor insurance. A group of motor vehicles 

risks which is homogeneous with respect to some directly observable risk factors (vehicle type, 

residence, vehicle use…). Within a group, there will still be accident proneness differentials due to 

unobservable risk factors (skill, temperament of the driver...). Both the individual driver and group 

claim experiences of risk should therefore be considered for the purpose of fair premium calculations. 

2.3 Bonus-malus system 

Future premiums are adjusted by certain motor insurers according to the insured claim history 

(Mahmoudvand and Aziznasiri, 2014). According to Norberg (1979), at the outset, all automobile 

drivers in a particular classification group are charged the same premium. The premiums are 

thereafter adjusted annually according to the insurance company bonus rules, which are usually to 

the effect that drivers with a favorable claims record are allowed a premium deduction (bonus), while 

those with an unfavorable ones experience premium increase (malus). 

The NCD schemes represent an attempt to categorize the policyholders into relatively 

homogeneous risk groups who pay premiums relative to their claim experience. Those who have made 

few claims in recent years are rewarded with discounts on their initial premium. Denuit et al (2007) 

outlines a wide range of variables an actuary would consider when calculating a motorist’s insurance 

premium such as age, gender and type of vehicle. The rating system penalizes insured responsible for 

one or more accidents by premium surcharges, and rewarding the claim-free policyholders by 

awarding them discount. The premium amounts are adjusted each year on the basis of the individual 

claims experience. The discussion revolves around a closed portfolio. The same approach is seen in 

the works of (Soren Asmussen, 2013), Arato and Martinek (2014) and Pinquet (2012).   

2.4 Multi-state model 

Boland (2006), Machado et al (2009) and Noor et al (2014) explains how an actuary would 

frequently use Markov chain methods to investigate how premiums and insured movements would 

take place over time. The model is used to predict the dynamics of the insurance purchase made by a 

policyholder using the transition probability matrix. 

Motor car insurance can be a function of many factors such as the type of the car, mileage, age 

of the driver, region, and sex as presented by Amico et al (2010). Transition matrix with constant forces 

of transition i.e. a time-homogenous Markov process is obtained from the available data with the 

payment of a claim by the insurer to the insured seen as a lump sum (impulse or transition reward. In 

many actuarial applications though, this is impractical as we would require forces which vary with age. 

Daniel (2004) outlines the areas of application of the multi-state model as basic survival model, 

multi-decrement survival models, multiple-life models, disability, Continuous Care Retirement 

Communities (CCRC’s) and the driver ratings. In modeling insured motor driver’s ratings, one would 

consider the states such as Preferred, Standard and Sub-standard. The model describes the 

probabilities of moving back and forth among the states. An additional state ’Gone’ can be included 

to represent a state for those no longer insured. 
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2.5 Black-Scholes model 

The BS formula is a well-known pricing formula for the put and call options developed in the 

early 1970s by Black and Scholes (1973). Some actuarial researchers have opted that the payoff 

functions of a European call option and a stop-loss reinsurance contract are similar, and have 

proposed an option-pricing approach to pricing insurance risks (Wang, 2002). The model applies the 

lognormal distributions of market returns.  

Holtman (2004) demonstrates the pricing of non-life insurance contracts within a financial 

option pricing context. The claims risk of an insurance customer is interpreted as an option object. 

Holder of an insurance contract gives the right to get covered all the incurred insurance claims within 

a predetermined date (maturity date) and at a predetermined price. In addition, a complete market 

set up with perfectly efficient buying and selling of insurance contracts is presented with the pure risk 

and cost based premiums as the sufficient pricing tasks to handle for an insurance company. Robustein 

(1999) relaxes the requirement of risk-neutrality of BS and that it holds for the risk-averse investors 

like the investors in the insurance sector with the other conditions unchanged. The same concept is 

explained by Goodwin et al (2016). 

3. METHODOLOGY 

3.1 Data 

Secondary data is used from an Insurance Brokerage firm in Kenya regarding the Third party 

compulsory, comprehensive, third party property and fire and theft policies for 2014-2016. Three 

assumptions were made on the data before used including; 

1. All the claims came from the same distribution (they were independent and identically 

distributed) 

2. There were no zero claims for any motor vehicle registered under the given policies 

3. All future claims were to be generated from the same distribution. 

4. The data will be collected from the auto insurance claims department with a random selection 

using the inclusion criteria with the policyholders selected known to have been in contract for 

at least two consecutive years with or without a claim during the period. If no claim will be 

made in a given policy year, then it will be recorded as zero (0), and if a claim will be made in 

policy year then it will be recorded as one (1).  

3.2 Premium calculation 

The annual frequency of claims is calculated from the number of auto claims on the contract. 

The numbers of claims depend on several factors believed to have direct impact on the expected cost 

of future claims. The number of claims is a random variable with a Poisson-gamma distribution. 

Policyholders are usually classified into groups depending on the expected values of claims incurred. 

3.2.1 Generalized linear model. 

The model is seen to extend the framework of linear regression models with normal distribution 

to the class of distributions from the exponential family. The GLM are not limited by inflexible 

preconditions. The GLM specifies the distribution of the dependent variable. It has the ability to 

specify a non-normal distribution and non-identity link function unlike the general linear model. 

GLMs are a means of modeling the relationship between a variable whose outcome we wish to 

predict and one or more explanatory variables under consideration. The predicted variable is the 
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target variable denoted by in this care the pure premium. The explanatory variables, also called the 

predictors, are denoted as X1, X2, X3…Xp, where p is the number of predictors in the GLM. The predictors 

in this case will be the automobile policyholder characteristics that an insurer may wish to include in 

their rating plan, e.g. the type of vehicle, age, marital status etc. 

Not all the statistical analyses involve data with normal error (Crawley, 2007). Many kinds of 

data have non- normal errors, for example, the strongly skewed errors, kurtotic errors, strongly 

bounded and those that cannot lead to negative fitted values as in the case of count data. A GLM 

allows for the specification of a variety of different error distributions including the Poisson error 

which is useful with data count and therefore will be our main point of focus. Other commonly used 

error distributions include the binomial errors that are useful with data on proportions, gamma errors 

that are useful with data showing a constant coefficient of variation and the exponential errors that 

are useful with data on time to death (survival analysis). 

3.2.2 Assumptions of GLM 

I. The error term follows any distribution from the exponential family not necessarily the normal 

distribution 

II. The variance does not have to be assumed as constant 

3.2.3 Negative binomial regression model 

A way of dealing with the over-dispersion in the Poisson distribution resulting from the random 

variation is to treat the Poisson mean from any given risk as a random variable itself. This will involve 

another probability distribution to model the Poisson mean; for this study the gamma distribution 

resulting to a Poisson-gamma distribution also called the negative binomial distribution. The negative 

binomial GLM allows for the variance to be non-proportional to the mean. 

Over-dispersion is often seen in practice in the motor insurance. Portfolio heterogeneity is a 

common feature in automobile insurance (Wangui, 2015). Every policyholder is expected to have a 

constant but unequal underlying risk of having an accident. The mixed Poisson distributions usually 

have thicker tail than the commonly used Poisson distribution and therefore will provide a good fit to 

claim frequency data when the portfolio is heterogeneous. Such Poisson mixture distributions that are 

relevant in the actuarial modeling of claim frequency include the Poisson-gamma distribution, 

Poisson-exponential distribution, Poisson-erlang distribution and the Poisson-lindley distribution. 

The negative binomial distribution has the following properties, 

Probability Mass Function;    
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Negative binomial distribution includes a third parameter, k, called the over-dispersion parameter 

which is related to the variance of the gamma distribution.  
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By expressing the PMF of negative binomial distribution in the form of the frequency function of an 

exponential family distribution, we have; 
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But since the frequency function of any distribution belonging to the exponential family takes the 

form; 

 

4. RESULTS 

The paper estimates the annual claim amounts from which the premium is derived. It is 

considered that the annual claim amount depend on many risk factors. Twelve factors are taken into 

account; the customer life value, education level, income, employment status, gender, location, 

marital status, type of policy, channel of the contract, class and size of the insured vehicle.  

The main part of the research involves the application of GLM in the motor insurance based on 

the policyholders’ claims experiences. A data set based on 1,500 policyholders’ claims experiences is 

observed for the periods 2014-2015. The drivers are divided into groups on the basis of the risk factors. 

For each group, the expected claim amounts per policyholder are modeled. The aim is to find a well-

fitting GLM for the claim amounts in terms of the risk factors. Both the Poisson and the negative 

binomial are assumed for the claim amounts and the log-link function is used. GLM extends the 

framework of the linear regression models with normal distribution to the class of distributions from 

the exponential family. Annual claim amount of the policyholders is the response variable and whose 

outcome is predicted from the given explanatory variables in the dataset. 

The two-parameter negative binomial regression used in this study is not a standard member 

of the exponential family. Dispersion parameter  is treated as a known and a fixed constant so as to 

make the distribution a member of the family. Log link is used as the canonical link for both Poisson 

and negative generalized linear models instead of the canonical link for the negative binomial 

distribution so as to facilitate comparison with the Poisson regression model. 

The R software is used to obtain the coefficients of the explanatory variables with the output 

displayed in a table. The coefficients show how statistically the various variables would influence the 

change in the annual claim amounts. Some of these variables lead to an increase while for others it is 

to a decrease in the annual claim amount. It was also used to obtain the p-values for testing the 

significance of the parameters and the deviance for testing the goodness of fit of our model. The main 

predictor variables among them the customer life value, location and the marital status of the insured 

are also outlined. Analysis of deviance, based on a comparison of goodness of fit is used to select the 

best model between the Poisson and the negative binomial generalized linear models. 
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5. CONCLUSION  

Every person, when applying for a vehicle insurance policy, is usually assigned to a class that is 

known to be homogeneous in terms of the risk. One of the criteria used for assigning an individual to 

a certain class is the number of claims recorded for the policyholder. Modeling of the annual claim 

amounts therefore remains an important task for the motor insurance companies that are known to 

record more claims compared to other general insurance policies. 

Based on the study findings, the research concludes that the motor insurance actuary needs to 

completely know and understand the essentials of decision and game theory so as to thrive well in the 

competitive insurance market. An understanding of probability and statistical distribution is necessary 

to absorb and evaluate risk when balancing claims, reserves and premiums. Considering that the real 

data from vehicle insurance is not normally distributed, we cannot use the standard linear regression 

model. This research represents a work devoted to better understand, using data of motor insurance, 

and how GLM can be used to explain the relation of annual claim amounts on given risk factors. 

Overall, the study concludes that the Credibility theory and Bayesian statistics play a big role in 

evaluating the sample and collateral information in introducing and developing new insurance 

products. Markov chains on the other hand are essential in predicting the success of the rating 

methods, including the No Claim Discount, also called the bonus-malus. The time-series methods are 

used in various ways to predict trends. The Generalized Linear models are considered the essential 

tools in finding the risk factors for fair premium calculations. 

The study also concludes that the negative binomial regression is the best for modeling the 

motor claims data due to the expected over-dispersion in the distribution of such data. It also 

accommodates several factors of interest by the insurer with a key on the main parameters for 

premium estimation as well as considering interaction between them. 

Notes 

Note 1.  

In order to obtain the estimated value of the claim amounts for these groups, we have to take into 

consideration that the link function for the negative binomial distribution is the logarithm function 

as presented in the methodology section of this paper, that is; 
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Note 2. 

Given the explanatory variables X1, X2, X3, X4…Xn (CLV, EdL, Income, MS, loc_code...). Considering 

the regression coefficients for the negative binomial regression, the predicted mean claim amount 

for insurance policy i from the Binomial regression model is given by; 
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Table 1. Analysis of variables 

Variable Mean Median Std.Dev Min Max 

Claim_amt 424.7571 379.2 284.7106 0.3821 2893.24 

CLV 7892 5759 6506.949 2004 58167 

Income 37986 34486 30016.51 0 99960 

 

Mean of 424.7571 and variance of 81060.13 shows that the variance of claim amount exceeds 

its mean, an indication of overdispersion. In addition, the distribution of the independent variable, 

Income for example, shows that a good number of the policyholders records no income but with high 

claim amounts recorded. This indicates lack of homogeneity in the data. 

Table 2. Parameter Estimation 

Estimate Std. Error  t value  Pr (>|t|) 

Intercept) 4.428 0.09754 45.393 <2E-16*** 

CLV 0.016 
1.98E-

06 11.659 <2E-16*** 

EdLCollege -0.321 0.0333 -0.712 0.47647 

EdLDoctor 0.956 0.07247 0.975 0.32961 

EdL(High School or 
Below) 0.151 0.03356 0.333 0.73884 

EdL(Master) 0.726 0.05226 1.027 0.30476 

Emp(StatusEmployed) 0.138 0.07344 0.038 0.96981 

Emp(Status Medical 
Leave) -0.113 0.08705 -0.026 0.97925 

EmpStatus(Retired) 0.982 0.09571 0.758 0.44842 

EmpStatus(Unemployed) 0.396 0.07393 1.457 0.14531 

GenderM 0.511 0.02592 1.458 0.14516 

Income 
-

0.00398 
7.41E-

07 -0.589 0.55588 

loc_code(Suburban) 1.594 0.03619 44.035 <2E-16*** 

loc_code(Urban) 1.156 0.04341 26.63 <2E-16*** 

marital_status(Married) 0.505 0.03797 0.982 0.3264 

marital_status(Single) 0.523 0.04368 3.257 0.00115 

Policy(Personal  Auto) -0.462 0.03176 -1.074 0.28283 

Policy(Special Auto) -0.138 6.238 -0.163 0.87059 

Channel(Branch) -2.257 0.03219 -0.07 0.94412 

Channel(Call Center) -1.056 0.03587 -2.175 0.02981 

Channel(Web) 0.431 0.03988 0.217 0.82805 

Size(Medsize) 0.205 0.04411 0.34 0.73157 

Size(Small) 0.911 0.05088 1.34 0.18581 

 

The table shows the R output for the negative binomial regression model that relates the annual 

claim amount to the risk factors by estimating a parameter for each of the risk factors. Reviewing the 

coefficient signs, an increase in the claim amount can be observed along with an increase in the 
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Customer life value, the Education level, gender, location, marital status and the size of the vehicle. 

When the level of education, income, type of policy and channel of business increase, there is an 

expected decrease in claim amount recorded from the policyholder. 

For example, the variable CLV has a coefficient of 0.016 implying that for each unit increase in 

the Customer life Value, the expected count of claim amount increases by 0.016 units when holding 

other explanatory variables constant, which is statistically significant. A unit increase in EdL (college) 

will result to a decrease in the expected count of claims by 0.321. The same applies for the other 

explanatory variables. 

Table 3. Test of Goodness of Fit 

 Deviance Degree of freedom 

Null deviance 920.51 1499 

Residual deviance 395.92 1477 

 

Additionally to the null and residual deviances, we get that the AIC is 20679. 

The residual deviance is not significantly large and the model is therefore good as far as the 

residuals are concerned. 

The negative binomial regression model also leads to an estimated dispersion of =0.2442958 

which is clearly larger than one confirming that overdispersion is present in our claims data. 

To check the residuals, we do the hypothesis test: 

H0: the residual deviance is not significantly large and the model is good as far as the residuals are 

concerned 

H1: otherwise 

Since D= 395:92 on 1477 degree of freedom, then 2395,92,1477 = 1.000 > 0.05. 

Hence we have no evidence to reject H0 at 5% significance level and the model is good as far as the 

residuals are concerned. 

Table 4. Significance of parameters 

Parameter Pr(>|z|)     

CLV    < 2e-16 *** 

EdL(College) 0.47647 

EdL(Doctor)    0.32961 

EdL(High School or Below) 0.73884 

EdL(Master) 0.30476 

EmpStatus(Employed)    0.96981 

EmpStatus(Medical Leave) 0.97925 

EmpStatus(Retired) 0.44842 

EmpStatus(Unemployed) 0.14531 
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GenderM     0.14516 

Income   0.55588 

loc_code(Suburban) < 2e-16 ***   

loc_code(Urban) < 2e-16 ***   

marital_status(Married) 0.3264 

marital_status(Single) 0.00115 **  

Policy(Personal Auto)   0.28283 

Policy(Special Auto)    0.87059 

Channel(Branch) 0.94412 

Channel(Call Center)  0.02981 *   

Channel(Web)     0.82805 

Size(Medsize)   0.73157 

Size(Small)               0.18581 

 

From Table 4, we can test the significance of the parameters by looking at their Pr(>|z|) values. 

The parameters EdL (Doctor, High School or Below, Master), Emp Status (Employed, Medical Leave, 

Retired, Unemployed), Gender (M), Income,marital_status (Married), Policy (Personal Auto, Special 

Auto), Channel (Branch,Web) and Size (Medsize, Small) are statistically insignificant at 5% significance 

level, because their Pr(>|z|) values are greater than 0.05. For example, the variable denoting the 

Education level (College) is not statistically significant as it yields a p-value of 0.47647 which is greater 

than the level of significance  of 0.05. In consequence, such variables can be excluded from the model 

to obtain an optimal combination of factors with p-values<0.05 which can explain the variation of the 

claim amount. 

The variables CLV, loc_code (Suburban), loc_code (Urban), marital status (Single) and Channel 

(Call Centre) are seen to have p-values less than 0.05 and thus considered significant predictors that 

will contribute to the process of understanding and predicting the amount of claims made on the 

motor insurance policies. 

Table 5. Link Functions 

Error Link Function 

Normal Identity 

Poisson log 

Binomial logit 

Gamma reciprocal 

Negative Binomial 1/x or log 
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In order to obtain the estimated value of the claim amounts for the groups, the link function 

is taken into  consideration. In this paper, the logarithm link function is used for the negative binomial 

distribution. 
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