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ABSTRACT 

The primary objective of the present research is on the approximate 

controllability of mild solutions for fractional neutral integro-differential 

inclusions with state-dependent delay in Banach spaces. Applying the 

Dhage-derived fixed point theorem for multi-valued operators. With the 

assistance of the highly continuous -order fractional cosine family, we put 

up the existence result. The theoretical results are finally expressed through 

a concrete instance. 

Keywords: Neutral fractional integro-differential inclusions, α-order cosine 

family, fixed point theorem. 
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1 Introduction 

Differential equations are used in many scientific fields to characterise physical processes 

mathematically. However, it has recently been demonstrated that due to material and inherited 

characteristics, the majority of these models may be better described by fractional order equations 
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(or inclusions). As a result, fractional order differential systems have several applications (see [16, 17, 

22, 31]). 

Delay differential equations allow the incorporation of past activities into mathematical models, 

in contrast to ordinary differential equations. A delay differential equation with discrete delay is often 

presented in the type 

x˙(t) = f (t, x(t), x(t − τ ))                                                        (1.1) 

with f : R × Rn × Rn  → Rn. Depending on the complexity of the problem, the delay τ may be a 

constant value (τ ≥ 0), a function of the time (τ (t) ≥ 0), or a function of the solution x itself (τ (x(t)) 

≥ 0). Accordingly, equation (1.1) is called a differential equation with constant delay, time-

dependent delay, or state-dependent delay, respectively. For more details refer [5, 16, 19]. When 

the right-hand side of the problem depends not only on the history of the solution x, but also on 

the history of the derivative x˙, that is, 

x˙(t) = g(t, x(t), x(t − τ ), x˙(t − τ )), 

we have a neutral delay differential equation or neutral functional differential equation [6, 14].  

Fractional differential equations with state-dependent delays are a prevalent sort of problem, 

and as a result, study of this type of equation has attracted a lot of attention in recent years. We 

recommend the reader consult the handbook by Canada et al. [9] and the scientific papers for further 

information on differential equations with state-dependent delay and their applications, see [1, 2, 4, 

6, 7, 14, 19]. 

Abstract linear second order differential equations are linked to the idea of the cosine function. 

We advise the reader to review Fattorini [12] and Travis and Webb [25] for the fundamental principles 

and applications of this approach. 

The most active field of research is on the existence, controllability, and other qualitative and 

quantitative elements of fractional differential systems; in specific, see [3, 17, 23, 24, 28, 29]. 

Santos et al. investigated in [3] whether fractional integro-differential equations with 

unbounded delay had solutions in Banach spaces. The authors of [28, 29] showed the existence and 

roughly controllability of stochastic differential systems with indefinite latency and fractional order 

neutral differentials. By utilising the suitable fixed point theory, Sakthivel et al. [23] recognised the 

approximative controllability of the fractional dynamical system. 

The authors recently used the appropriate fixed point theorem to explain the approximation 

controllability results for fractional neutral integro-differential systems with state-dependent delay in 

[26, 30].   The existence findings for fractional differential equations with nonlocal conditions of order 

α ∈ (1, 2) were examined by Shu and Wang et al. [24]. The controllability of nonlocal fractional 

differential equations of order α ∈ (1, 2] was later examined by Kexue et al. [17]. Recent research on 

optimum controllers for fractional stochastic functional differential equations of rank α ∈ (1, 2] in 

Hilbert spaces was conducted by Yan and Jia [27]. 

However, existence results for fractional neutral integro-differential inclusions with state-

dependent delay in 𝐵 phase space adages have not yet been fully investigated. 

Motivated by the above mentioned works [17, 24, 27], in this manuscript, we are concerned 

with the existence of mild solutions for fractional neutral differential inclusions with state-dependent 

delay of the form 
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t 

t 

C𝐷𝑡
𝛼 [y(t) + k(t, yt)] ∈ A[y(t) + k(t, yt)] + F (t, yρ(t,yt) ) + Bu(t), t ∈ Q = [0, T ], (1.1) 

y(t) = ϕ(t), t ∈ (−∞, 0], y′(0) = x0 ∈ H, (1.2) 

where C𝐷𝑡
𝛼 is the Caputo’s fractional derivatives of order α ∈ (1, 2]. A is the infinitesimal generator of 

a strongly continuous α-order cosine family {Cα(t)}t≥0 on H, the state y(·) takes values in H, the control 

function u(·) is given in L2([0, T ]; U ), a Banach space of admissible control functions, with U  a Banach 

space, B is a bounded linear from U  into H.  The function k : Q × ℬ → H is a continuous function and F 

: Q × ℬ → P(H) is a multi-valued map. For any function y described on (−∞, T ] and any t ∈ Q, we 

represent by yt the element of ℬ described by yt(θ) = y(t + θ), θ ∈ (−∞, 0]. Here yt represents the 

history of the state up to the current time t and ρ : Q × ℬ → (−∞, ∞) is an apposite function. ℬ is the 

theoretical phase space axioms characterized in Section 2. 

 Further, we additionally consider the subsequent fractional neutral integro-differential 

inclusions with state-dependent delay of the form 

C𝐷𝑡
𝛼[𝑦(𝑡) + 𝑘 (𝑡, 𝑦𝑡 , ∫ 𝐾1(𝑡, 𝑠

𝑡

0
, 𝑦𝑠)𝑑𝑠)]   ∈ 𝐴[𝑦(𝑡) + 𝑘 (𝑡, 𝑦𝑡, ∫ 𝐾1(𝑡, 𝑠

𝑡

0
, 𝑦𝑠)𝑑𝑠)] +

𝐹 (𝑦𝑝(𝑡,𝑦𝑡)  ∫ 𝐾2(𝑡, 𝑠
𝑡

0
, 𝑦𝑝(𝑠,,𝑦𝑠))𝑑𝑠)+𝐵𝑢(𝑡), 𝑡 ∈ 𝑄 = [0,𝑇],                   (1.3) 

𝑦(𝑜) = 𝜙(𝑡),       𝑡 ∈ (−∞, 0],    𝑦′ = 𝑥0 ∈ 𝐻,                           (1.4) 

where C𝐷𝑡
𝛼, A, ℬ, ρ, B, u, ϕ  and y0 are same as defined in (1.1) - (1.2).  Further Ki   : Q × Q × ℬ → H, 

(for i  =  1, 2) and k  :  Q × ℬ × H  →  H are continuous functions and F : J × ℬ × H → P(H) is a multi-

valued map. 

This is way the manuscript was put together. In the second section, we review a number of 

findings, definitions, and lemmas that will be applied later to support our key findings. The primary 

conclusions in the third portion are based on Dhage’s fixed point theorem. An instance of the 

application is provided in the final section to illustrate how well our key findings worked. 

2 Preliminaries 

In this part, we remember some basic definitions, lemmas and notations which will be utilized 

all through this manuscript. Let 𝐻 be a Banach space. By 𝐶(𝑄,𝐻) we denote the Banach space of 

continuous functions from 𝐽 into 𝐻 with norm 

∥ 𝑦 ∥ =  𝑠𝑢𝑝{|𝑦| ∶  𝑡 ∈  𝑄}. 

𝐵(𝐻) denotes the Banach space of all bounded linear operators from H into H, with the norm 

∥N ∥B(H) = sup{|N (y)| : |y| = 1}. 

L1(Q, H) denotes the Banach space of measurable functions y : Q → H which are Bochner integrable, 

normed by 

∥ 𝑦 ∥𝐿1= ∫ ⌈𝑦(𝑡)⌉ 𝑑𝑡
𝑇

0

 

L∞(Q, H) denotes the Banach space of measurable functions y : Q → H which are bounded equipped 

with the norm 
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∥y∥L∞ = inf{d > 0 : ∥y(t)∥ < d, a.e t ∈ Q}. 

We denote the notation P(H) is the family of all subsets of H. Next, we denote the subsequent 

notations: 

Pcl(H) = {x ∈ P(H) : x is closed}, Pbd(H) = {x ∈ P(H) : x is bounded}, Pcv(H) = {x ∈ P(H) : x is convex}, 

Pcp(H) = {x ∈ P(H) : x is compact}. 

The definitions of multi-valued analysis like, convexity, bounded, upper semi-continuous, 

completely continuous and closed graph theorem are well-known results[10, 13, 15],  for this reason, 

we omit here. 

Here, we will utilize a common axioms for the phase space ℬ which is identical to those 

presented by Hale and Kato. In particular, ℬ will be a linear space of function mapping (−∞, 0] into H 

endowed with a semi norm ∥ · ∥ ℬ and fulfills the next conditions: 

(i) y ∈ (−∞, T ] → H is continuous on Q and y0 ∈ ℬ, then yt  ∈ ℬ and y is continuous in t ∈ Q and 

∥y(t)∥ ≤ L∥yt∥ ℬ 

where L ≥ 0, is a constant. 

(ia) From the above condition is equivalent to ∥ϕ(0)∥ ≤ L∥ϕ∥ ℬ, for all ϕ ∈ ℬ. 

(ii) There exists a continuous function c1(t) ≥ 0 and a locally bounded function c2(t) ≥ 0 in t ≥ 0 

such that 

∥ 𝑦𝑡 ∥ ℬ ≤ 𝑐1(𝑡) sup
𝑠∈[0,𝑡]

|𝑦(𝑠)|   +  𝑐2(𝑡) ∥ 𝑦0 ∥ ℬ, 

for t ∈ [0, T ] and y as in (i). 

(iii) The space ℬ is complete. 

Designate  𝑐1
∗ = sup{𝑐1 (t) : t ∈ Q} and 𝑐2

∗= sup{𝑐2 (t) : t ∈ Q}.  

Set 

ℝ(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ Q × ℬ, ρ(s, ϕ) ≤ 0}. 

We generally assume that ρ : Q × ℬ → (−∞, 0] is continuous, we make the subsequent assumption: 

(H0*) The function t → ϕ is continuous from ℝ(ρ−) into ℬ and we can find a continuous and bounded 

function Lϕ : ℝ (ρ−) → (0, ∞) in a way that 

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ ℝ(ρ−). 

Lemma 2.1. [4] If y : (−∞, T ] → H is a function to ensure that y0 = ϕ, then 

∥ 𝑦𝑠 ∥ ℬ ≤ (𝑐2
∗ + (𝐿𝜙)‖𝜙‖ℬ sup

𝜃∈[0,𝑠]
|𝑦(𝜃)| , 𝑠 ∈  ℝ(𝜌−) ∪ 𝑄  

where𝐿𝜙 = sup
𝑡∈ℝ(𝜌−)

𝐿𝜙 (𝑡) 
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Let I be the identity operator on H. If A is a linear operator on H, then R(λ, A) = (λI − A)−1 means the 

resolvent operator of A. Next, we utilize the note for η > 0, 

where Γ(η) is the Gamma function. If η = 0, we fixed k0(t) = δ(t), the delta distribution. Next, we recall 

some basic definitions and concepts of fractional integral and derivative of order α ∈ (1, 2] from [27], 

Definitions 2.1-2.7, Remark 2.1]. 

Before we define the mild solution for the system (1.1) - (1.2), first we consider the following linear 

problem, 

𝑘𝜂(𝑡) =
𝑡𝜂−1

Γ(𝜂)
,   𝑡 > 0,                                                                      (2.1) 

C𝐷𝑡
𝛼  [y(t) + k(t)] = A[y(t) + k(t)] + F (t), t ∈ [0, T ],                          (2.2) 

y(t) = ϕ(t), t ∈ B. y′(0) = x0 ∈ H.                                     (2.3) 

Assume that the Laplace transform of y(t), k(t) and F (t), with respect to t exists. Taking the Laplace 

transform to (2.2) - (2.3), by (2.3) of [27], we receive 

𝜆𝛼[𝑦̂(𝜆)  + 𝑘̂(𝜆)]  −  𝜆𝛼−1[𝑦(0)  +  𝑘(0)]  − 𝜆𝛼−2[𝑦0 +  𝜂]  =  𝐴[𝑦̂(𝜆)  +  𝑘̂(𝜆)]  + 𝐹̂(𝜆), 

where 𝑦̂(𝜆), 𝑘̂(𝜆) and  𝐹̂(𝜆) denote the Laplace transform of 𝑦(𝑡), 𝑘(𝑡), 𝐹 (𝑡) and  𝑑 𝑘(𝑡)|𝑡 = 0 = 𝜂, 

where η is independent of 𝑦. Then 

𝑦(𝜆) +  𝑘(𝜆) = 𝜆𝛼−1𝑅(𝜆𝛼 , 𝐴)[𝜙 +  𝑘(0)]  + 𝜆𝛼−2𝑅(𝜆𝛼 , 𝐴)[𝑥0 +  𝜂]  +  𝑅(𝜆𝛼 , 𝐴)𝐹̂(𝜆) 

By (2.5)-(2.7) of [27] and the properties of Laplace transforms, 

𝑦(𝑡)  =  𝐶𝛼(𝑡)[𝜙 +  𝑘(0)]  + 𝑆𝛼(𝑡)[𝑥0 +  𝜂]  −  𝑘(𝑡)  + ∫ 𝑃𝛼(𝑡 − 𝑠)𝐹 (𝑠)𝑑𝑠.
𝑡

0
                  (2.4) 

Let 

SF,y = {v ∈ L1(Q, H) : v(t) ∈ F (t, y),  a.e. t ∈ Q} 

is nonempty. 

Let Ω = {y : (−∞, T ] → H such that y|(−∞,0] ∈ B, y|Q ∈ C(Q, H)}. 

Based on the above results, we define the mild solution for the given system (1.1)-(1.2). 

Definition 2.1. We say that a continuous function 𝑦 ∈  Ω is a mild solution of problem (1.1)-(1.2) if 

𝑦(𝑡) =  𝜙(𝑡)for all 𝑡 ≤  0, the constraint of 𝑦(·)to the interval [0, 𝑇 ]is continuous and there exists 

𝑣(·) ∈  𝐿1(𝑄,𝐻), such that 𝑣(𝑡)  ∈  𝐹 (𝑡, 𝑦𝜌(𝑡,𝑦𝑡)) a.e. 𝑡 ∈  [0, 𝑇 ] and 𝑦 fulfills the consecutive integral 

equation 

𝑦(𝑡) =  𝐶𝛼(𝑡)[𝜙(0) +  𝑘(0, 𝜙(0))] + 𝑆𝛼(𝑡)[𝑥0 +  𝜂] −  𝑘 (𝑡, 𝑦𝑡) + ∫ 𝑃𝛼(𝑡 − 𝑠)
𝑡

0

𝑣(𝑠)𝑑𝑠

+ ∫ 𝑃𝛼(𝑡 − 𝑠)
𝑡

0

𝐵𝑢(𝑠)𝑑𝑠, 𝑡 ∈  𝑄.                                                                       (2.5) 



Vol.11.Issue.3.2023 (July-Sept.) Bull .Math.&Stat.Res ( ISSN:2348 -0580)  
 

 

89  A. Stephan Antony Raj; M. Muthuchelvam; A. Anuradha 

In order to address the problem, it is convenient at this point to introduce two relevant 

operators and basic assumptions on these operations: 

𝛶0
𝑇  = ∫ 𝑃𝛼(𝑇 − 𝑠)

𝑡

0

𝐵𝐵∗𝑃𝛼
∗(𝑇  −  𝑠)𝑑𝑠 ∶  𝐻  →  𝐻, 

𝑅(𝑎, 𝛶0
𝑇  )  =  (𝑎𝐼 + 𝛶0

𝑇  )−1 ∶  𝐻 →  𝐻. 

It is straightforward that the operator 𝛶0
𝑇 is a linear bounded operator. 

To investigate the approximate controllability of system (1.1) − (1.2) and (1.3) − (1.4), we impose the 

following condition: 

(𝐻0) 𝑎𝑅(𝑎, 𝛶0
𝑇)  →  0+ +  𝑎𝑠 𝑎 →  0+ in the strong operator topology. 

3 Main Results 

We show below the controllability results for the systems (1.1) - (1.2) and (1.3) - (1.4) under Dhage’s 

fixed point theorem. To establish the existence result for the system (1.1) - (1.2), we list the 

subsequent conditions: 

(𝑯𝟏) 𝐴 ∶  𝐷(𝐴)  ⊂  𝐻 →  𝐻 is the infinitesimal generator of a uniformly continuous cosine family 

{𝐶𝛼(𝑡)}𝑡≥0. Let 

Mc = sup{∥Cα(t)∥; t ≥ 0} and Ms = sup{∥Sα(t)∥; t ≥ 0}. 

(H2) The multi-valued map F : Q × ℬ → Pcv(H) is an L1-Caratheodory function and there exists a function 

µ ∈ L1(Q, ℝ+) and a continuous non-decreasing function ψ : ℝ+ → (0, ∞) in a way that 

F (t, u) ≤ µ(t)ψ(∥u∥B), for every (t, u) ∈ Q × ℬ, 

(H3) (i) The function k : Q × ℬ → H is continuous on Q and there exist constants Lk > 0 and 𝐿̃𝑘 > 0 

such that 

∥k(t, u)∥ ≤ Lk∥u∥B + 𝐿̃𝑘,   for each  u ∈ ℬ. 

(ii)  There exist a function Lk∗  ∈ L1(Q, R+) in a way that  

∥k(t, u) − k(t, v)∥ ≤ L ∥u − v∥B, t ∈ Q, u, v ∈ ℬ. 

Theorem 3.1. Assume that the hypotheses (H0) and (H1) - (H3) holds. Then the problem (1.1) - (1.2) 

has at least one mild solution such that,  

Λ = 𝐿𝑘
∗ 𝑐1

∗𝑀∗ < 1 𝑎𝑛𝑑 ∫ 𝜇(𝑠)𝑑𝑠 < ∫
𝑑𝑢

𝜓 (𝑢)

∞

𝑤1

𝑇

0
                                   (3.1) 

Where 𝑀∗ = [1 +
𝑀2𝑀𝐵

2  𝑇

𝛼
] , ‖ℬ‖ = 𝑀𝐵,‖ℬ

∗‖ = 𝑀𝐵, 𝑎𝑛𝑑 

𝓌1 = 𝑐𝑛 +
𝑐1
∗

1 − 𝐿𝑘 𝑐1
∗ {𝑀𝑐(𝐿𝑘 𝕃‖𝜙‖ℬ + 𝐿̃𝑘) + 𝑀𝑠,‖𝑥0 + 𝜂‖ + 𝐿𝑘 𝑐𝑛

∗ + 𝐿̃𝑘} 
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Proof. Now, we define the the multi-valued operator 𝛶 ∶  Ω →  𝑃 (Ω) described by 𝛶(𝑒)  =  {𝑒 ∈  Ω} 

with 

𝑒𝑡 =

{
 
 

 
 ∅(𝑡),   𝑡 ∈ (−∞, 𝑜)

𝐶𝛼(𝑡)[∅(0) + 𝑘(0, ∅(0)] + 𝑆𝛼(𝑡)[𝑦0 + 𝜂] − 𝑘(𝑡, 𝑦𝑡)

+∫ 𝑃𝛼(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠 + ∫ 𝑃𝛼(𝑡 − 𝑠)𝐵𝑢(𝑠)𝑑𝑠,    𝑡 ∈ 𝑄,
𝑡

0

𝑡

0

  (3.2) 

𝑤ℎ𝑒𝑟𝑒 𝑣 ∈  𝑆𝐹,𝑦𝜌(𝑠,𝑦𝑠) 𝑎𝑛𝑑 𝑢(𝑡) =  𝐵
∗𝑃𝛼

∗ (𝑇, 𝑡)𝑅(𝑎, 𝛶0
𝑇 )𝑃(𝑥(・)), 𝑤ℎ𝑒𝑟𝑒 

 
𝑃(𝑦(·))  =  𝑦𝑇  −  𝐶𝛼(𝑇)[𝜙(0)  +  𝑘(0,𝜙(0))]  − 𝑆𝛼(𝑇)[𝑦0 +  𝜂]  +  𝑘(𝑇, 𝑦𝑇  )  

− ∫ 𝑃𝛼(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠
𝑡

0

. 

𝐹𝑜𝑟 𝜙 ∈  ℬ,𝑤𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑥(・) ∶  (−∞, 𝑇]  →  𝐻 𝑏𝑦 

𝑥(𝑡) = {
∅(𝑡),   𝑡 ≤ 0

𝐶𝛼(𝑡)[∅(0)   𝑡 ≤ 𝑄
 

𝐼𝑓 𝑦(・) 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑠 (2.5), we can able to decompose 𝑦(𝑡)  =  𝑥(𝑡) + 𝑧(𝑡), 𝑡 ∈ 𝑄, with infer that 𝑦𝑡 =
𝑥𝑡 + 𝑧𝑡 , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ∈  𝑄 and the function 𝑧(・) fulfills 
 

𝑧(𝑡) =  𝐶𝛼(𝑡)𝑘(0, 𝜙(0)) + 𝑆𝛼(𝑡)[𝑥0  +  𝜂] −  𝑘(𝑡, 𝑧𝑡 +  𝑥𝑡) + ∫ 𝑃𝛼(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠
𝑡

0

+ ∫ 𝑃𝛼(𝑡 − 𝑠)𝐵𝑢(𝑠)𝑑𝑠,    𝑡 ∈ 𝑄,
𝑡

0

                                                                   (3.3) 

𝑤ℎ𝑒𝑟𝑒 𝑣 ∈  𝑆𝐹,zρ(s,zs+xs)+xρ(s,zs+xs) . 

Let Z0 = {z ∈ Ω : z0 = 0}. For any z ∈ 𝕫0, we receive 

∥ 𝑧 ∥𝕫0  =  𝑠𝑢𝑝
𝑡∈𝐽

∥ 𝑧(𝑡) ∥  + ∥ 𝑧0 ∥ℬ = 𝑠𝑢𝑝
𝑡∈𝐽

∥ 𝑧(𝑡) ∥. 

Therefore (𝑧0 ∥. ∥𝑧0) is a Banach space. Now, we designate the operator 𝛷 ∶  𝑧0  →

 𝑃(𝑧0) 𝑏𝑦 𝛷(𝑧)  =  {ℎ ∈  𝑧0} with 

ℎ(𝑡)  =  𝐶𝛼(𝑡)𝑘(0, 𝜙(0))  +  𝑆𝛼(𝑡)[𝑥0 +  𝜂]  −  𝑘(𝑡, 𝑧𝑡 +  𝑥𝑡)  + ∫ 𝑃𝛼(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠
𝑡

0

+ ∫ 𝑃𝛼(𝑡 − 𝑠)𝐵𝑢(𝑠)𝑑𝑠,    𝑡 ∈ 𝑄,
𝑡

0

       

where v ∈ SF,zρ(s,zs+xs)+yρ(s,zs+xs) . 

From this, we observe that the operator Υ having a fixed point is equivalent to Φ having one, so it 

turns to prove that Φ has a fixed point.  

Now, we are in a position to utilize the Dhage’s fixed point theorem [11]. To apply this, first, we split 

the multi-valued operator Φ as 

𝛷1(𝑧) = {ℎ ∈  𝑧0 ∶  ℎ(𝑡)

=  𝐶𝛼(𝑡)𝑘(0, 𝜙(0)) + 𝑆𝛼(𝑡)[𝑥0 +  𝜂]

−  𝑘(𝑡, 𝑧𝑡 +  𝑥𝑡)∫ 𝑃𝛼(𝑡 − 𝑠) 𝐵
∗𝑃𝛼

∗ (𝑇 − 𝑠)𝑅(𝑎, 𝛶0
𝑇  )[𝑦𝑇 − 𝐶𝛼(𝑇)𝑘(0, 𝜙(0))

𝑡

0

− 𝑆𝛼(𝑇)[𝑥0 +  𝜂] + 𝑘(𝑇, 𝑧𝑇 + 𝑥𝑇)] , 𝑡 ∈ 𝑄}  
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𝛷1(𝑧) = {ℎ ∈  𝑍0 ∶  ℎ(𝑡)

=  ∫ 𝑃𝛼(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠
𝑡

0

+ ∫ 𝑃𝛼(𝑡 − 𝑠) 𝐵
∗𝑃𝛼

∗ (𝑇 − 𝑠)𝑅(𝑎, 𝛶0
𝑇 )(×)∫ 𝑃𝛼(𝑇 − 𝜏)𝑣(𝜏)𝑑𝑠 𝑣(𝑠)

𝑡

0

𝑡

0

∈  SF, zρ(s, zs + xs) + yρ(s, zs + xs), t ∈  Q} 

Now, our aim is to show that the multi-valued operators Φ1 and Φ2 satisfy all the conditions of Dhage’s 

fixed point theorem[11]. For better readability, we break the proof into sequence of steps. 

Step 1. Φ1 is a contraction. 

Let z, 𝑧∗∈ Z0 and h ∈ Φ1(z) 

‖𝛷1(𝑧) − 𝛷1(𝑧
∗)‖  

≤  ‖𝑘(𝑡, 𝑧𝑡  + 𝑥𝑡) −  𝑘(𝑡, 𝑧𝑡
∗  +  𝑥𝑡)‖ℬ

+ ‖∫ 𝑃𝛼(𝑡 − 𝑠) 𝐵𝐵
∗𝑃𝛼

∗ (𝑇 − 𝑠)𝑅(𝑎, 𝛶0
𝑇  )𝑘(𝑇, 𝑧𝑇 + 𝑥𝑇) + 𝑘(𝑇, 𝑧𝑇

∗ + 𝑥𝑇)]
𝑡

0

‖
ℬ

≤ 𝐿𝑘
∗ ‖𝑧𝑡  + 𝑧𝑡

∗ ‖ℬ +∫
𝑀2𝑀𝐵

2

𝑎
𝐿𝑘
∗ ‖𝑧𝑡  + 𝑧𝑡

∗ ‖ℬ𝑑𝑠
𝑡

0

 

≤ 𝐿𝑘
∗ 𝑐1(𝑡)𝑠𝑢𝑝

𝑡∈𝐽
|𝑧(𝑡) − 𝑧∗(𝑡)|+𝑐2(𝑡)‖𝑧0  + 𝑧0

∗ ‖

+
𝑀2𝑀𝐵

2

𝑎
𝐿𝑘
∗ ∫ 𝑐1(𝑡)𝑠𝑢𝑝

𝑡∈𝐽
|𝑧(𝑡) − 𝑧∗(𝑡)|+𝑐2(𝑡)‖𝑧0  + 𝑧0

∗ ‖
𝑡

0

𝑑𝑠

≤ 𝐿𝑘
∗
.
𝑐1 [1 +

𝑀2𝑀𝐵
2

𝑎
] ‖𝑧 + 𝑧∗ ‖ℬ 

≤ 𝐿𝑘
∗ 𝑐1

∗𝑀∗‖𝑧 + 𝑧∗ ‖ℬ 

Since 

‖(𝑧𝑡  +  𝑥𝑡)‖ℬ ≤ ‖(𝑧𝑡)‖ℬ + ‖(𝑥𝑡)‖ℬ 

≤ 𝑐1
∗𝑠𝑢𝑝
𝑡∈𝐽

|𝑧(𝑡)|+𝑐2(𝑡)‖𝑧0 ‖ℬ + 𝑐1
∗𝑠𝑢𝑝
𝑡∈𝐽

|𝑥(𝑠)| + ‖(𝑥0)‖ℬ 

≤ 𝑐1
∗𝑠𝑢𝑝
𝑡∈𝐽

|𝑧(𝑡)| + 𝑐1
∗𝑀𝑐𝕃‖∅‖ℬ + 𝑐2

∗‖∅‖ℬ 

≤ 𝑐1
∗𝑟 + [𝑐1

∗𝑀𝑐𝕃‖∅‖ℬ + 𝑐2
∗‖∅‖ℬ 

≤ 𝑐1
∗𝑟 + 𝑐𝑛

∗ , 𝑤ℎ𝑒𝑟𝑒 𝑐𝑛
∗ = [𝑐1

∗𝑀𝑐𝕃+𝑐2
∗]‖∅‖ℬ 

Then 

‖𝛷1(𝑧) − 𝛷1(𝑧
∗)‖ ≤  𝛬 ∥ 𝑧 − 𝑧∗ ∥. 

From (3.1), we see that Φ1 is a contraction. 

Step 2. Φ2 has compact, convex valued and it is completely continuous. This will show in several steps. 

Claim (i). Φ2 is convex for each z ∈ Z0. 

Indeed, if h1, h2 ∈ Φ2, then there exist v1, v2 ∈ SF,zρ(t,zt+xt)+xρ(t,zt+xt) , such that for t ∈ Q, we receive 
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ℎ𝑖 = ∫ 𝑃𝛼(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠
𝑡

0

+ ∫ 𝑃𝛼(𝑡 − 𝑠) 𝐵𝐵
∗𝑃𝛼

∗ (𝑇 − 𝑠)𝑅(𝑎, 𝛶0
𝑇  )(×)∫ 𝑃𝛼(𝑇 − 𝜏)𝑣𝑖(𝜏)𝑑𝜏 𝑑𝑠 𝑓𝑜𝑟 𝑖 = 1,2,

𝑡

0

𝑡

0

t ∈  Q 

Let d ∈ [0, 1]. Then for each t ∈ J, we get 

 

[𝑑ℎ1  + (1 −  𝑑)ℎ2](𝑡)  

= ∫ 𝑃𝛼(𝑡 − 𝑠)[𝑑𝑣1(𝑠) + (1 − 𝑑)𝑣2(𝑠)]𝑑𝑠
𝑡

0

− ∫ 𝑃𝛼(𝑡 − 𝑠) 𝐵𝐵
∗𝑃𝛼

∗ (𝑇
𝑡

0

− 𝑠)𝑅(𝑎, 𝛶0
𝑇 )(×)∫ 𝑃𝛼(𝑇 − 𝜏)[𝑑𝑣1(𝜏) + (1 − 𝑑)𝑣2(𝜏)]𝑑𝜏𝑑𝑠

𝑡

0

 

Actually 𝑆𝐹𝑧𝜌(𝑡,𝑧𝑡+𝑥𝑡)+𝑥𝜌(𝑡,𝑧𝑡+𝑥𝑡) ,is convex (because F has convex values), we have 𝑑ℎ1  +  (1 −  𝑑)ℎ2 ∈ 

Φ2. 

Claim (ii). Φ2 maps bounded sets into bounded sets in Z0. 

In fact, it is sufficient to demonstrate that for any r > 0, there exists a positive constant l in ways that 

for every z ∈ Br = {z ∈ Z0 : ∥z∥Z0 ≤ r}, we sustain ∥Φ2(z)∥Z0 ≤ l. Then for every h ∈ Φ2(z), there exists v ∈ 

𝑆𝐹𝑧𝜌(𝑡,𝑧𝑡+𝑥𝑡)+𝑥𝜌(𝑡,𝑧𝑡+𝑥𝑡) such that,  

 

 
Since, 
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Thus Φ2(Br) is bounded. 

Claim (iii). Φ2 maps bounded sets into equi-continuous sets of Z0. 

Let h ∈ Φ2(z) for z ∈ Zo and let τ1, τ2 ∈ [0, T], with τ1 < τ2, we have 

 
Where 

 

 
And 
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From I1 and I2, we get 

 

Clearly the right-hand side of the above inequality tends to zero as τ2 → τ1. 

Then, Φ2(Br) is equi-continuous. 

Claim (iv). Φ2(Br) is relatively compact for every t ∈ J, we sustain 

Φ2(Br)(t) = {h(t) : h ∈ Φ2(Br)}. 

Allow 0 ≤ t ≤ T be fixed and let ϵ be a real number fulfilling 0 < ϵ < t. For δ > 0, we specify 

 

 

where v(s) ∈ SF,zρ(s,zs+xs)+yρ(s,zs+xs) . Since Cα(t) is a compact operator, 

hϵ,δ = {hϵ,δ(t) : h ∈ Φ2(Br)} 

is relatively compact. Furthermore, 
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Therefore, (Φ2(Br))(t) is relatively compact. 

As a consequence of claim (ii) - (iv) together with the Arzela-Ascoli’s theorem we can 

conclude 

that Φ2 is completely continuous. 

Claim (v). Φ2 has a closed graph. 

Let zn → z∗, hn ∈ Φ2(zn) and hn → h∗.We will prove that h∗ ∈ Φ2(z∗). Indeed, hn ∈ Φ2(zn) 

means that there exists vn ∈ SF,zρ(n,zn+xn)+xρ(n,zn+xn) such that 

 

We must prove that there exists v∗ ∈ SF,zρ(∗,z∗+x∗)+xρ(∗,z∗+x∗) such that 

 

Consider the linear and continuous operator Y : L1(Q,H) → C(Q,H), defined by 

 

From[18], it follows that Y ◦ SF is a closed graph operator and from the definition of hn(t) 

∈YSF,zρ(n,zn+xn)+xρ(n,zn+xn) . 

As zn → z∗ and hn → h∗, there is a v∗ ∈ SF,zρ(∗,z∗+x∗)+xρ(∗,z∗+x∗) such that 

 

Therefore, the multi-valued operator Φ2 is a completely continuous multivalued map, 

upper semi-continuous with convex, closed and compact values. 

Claim (vi). A priori bounds. 

Γ = {z ∈ Z0 : z ∈ λΦ1(z) + λΦ2(z), for some 0 < λ < 1} is bounded 

Let z ∈ Γ be any element, then there exists v ∈ SF,zρ(s,zs+xs)+yρ(s,zs+xs) , such that 
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Then 

 
Where 

 
and 

 
Denote 

 

From the above mentioned inequality, we receive 

 

Let us take the right hand side of the above inequality as ν(t). Thus, we get 

m(t) ≤ ν(t), for every t ∈ Q, 

with 
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ν(0) = ω1 

and 

ν′(t) = ω2μ(t)ψ(m(t)), a.e. t ∈ Q. 

Utilizing the non-decreasing character of ψ, we obtain 

ν′(t) ≤ ω2μ(t)ψ(ν(t)), a.e. t ∈ Q. 

Integrating from 0 to t we get 

 

By change the variable, we get 

 

In view of (3.1), this ensures that for every t ∈ Q, we have 

 

Therefore, for every t ∈ Q, there exists a constant Λ1 such that v(t) ≤ Λ1 and hence m(t) ≤ 

Λ1. 

Since ∥ 𝑧 ∥ 𝑍0 ≤ m(t), we have ∥ 𝑧 ∥ 𝑍0 ≤ Λ1. 

This shows that the set Γ is bounded. As a consequence of Dhage’s fixed point 

theorem[11], we realize that Φ1 + Φ2 has a fixed point z defined on the interval (−∞, T] 

which is the mild solution of the system (1.1)-(1.2). The proof is now completed. Our next 

existence results for the problem (1.3)-(1.4) is based on Dhage’s fixed point theorem. 

Before we present and prove the existence result for the problem, first we define the mild 

solution of (1.3)-(1.4). 

Definition 3.1. We say that a continuous function x ∈ Ω is a mild solution of problem 

(1.3)-(1.4) if y(0) = ϕ ∈ ℬ, y′(0) = x0 ∈ ℋ, we have 

 

Where  

 

 
Next, to prove the existence result for the problem (1.3)-(1.4), we list the following 

additional hypotheses: 

(H2*) The multivalued map F : Q ×ℬ × ℋ → Pcl,cv,bd(ℋ) is an L1-Caratheodory function. 
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(H3*) t ∈ J, the function F(t, ・, ・) : ℬ × ℋ → Pcl,cv,bd(ℋ) is upper semicontinuous and for 

each (u, v) ∈ ℬ ×ℋ, the function F(・, u, v) : Q → ℋ is strongly measurable. Also, for each 

fixed u ∈ ℬ and the set 

 

is nonempty. 

(H4*) (i) There exist a continuous function μ1 ∈ L1(Q,R+) and a continuous non 

decreasing 

function ψ1 : R+ → (0,∞) in a way that 

∥ 𝐹(𝑡, 𝑢, 𝑣) ∥H ≤ μ1(t)ψ1(∥ 𝑢 ∥B + ∥ 𝑣 ∥H), for a.e. t ∈ Q, u ∈ ℬ, v ∈ H, 

(ii) We can find Lf ∈ L1(Q,R+) to ensure that 

∥ 𝐹(𝑡, 𝑢1, 𝑣1)  −  𝐹(𝑡, 𝑢2, 𝑣2) ∥H ≤ Lf [∥ 𝑢1 −  𝑣1 ∥B + ∥ 𝑢2 −  𝑣2 ∥H], for a.e. t ∈ Q, 

u1, v1 ∈ ℬ, u2, v2 ∈ H. 

(iii) There is a function m ∈ L1(Q,R+) and a non decreasing function Ω1 : R+ → (0,∞) 

to ensure that  

∥ 𝑘2(𝑡, 𝑠, 𝑢) ∥H ≤ m(s)Ω1(∥ 𝑢 ∥B), for every (t, s, u) ∈ Q × Q ×ℬ. 

(iv) There is a constant C1 > 0, in a way that 

 

(H5*) (i) The function k : Q×ℬ × ℋ → ℋ is continuous on Q and there exist a positive 

constant Mk > 0 such that for each u1, v1 ∈ ℬ, u2, v2 ∈ ℋ. 

∥k(t, u1, v1) − k(t, u2, v2)∥ ≤ Mk(∥u1 − v1∥B + ∥u2 − v2∥H). 

(ii) There exist positive constants Lk1 > 0 and ˜Lk1 > 0, such that 

(iii)∥k(t, u, v)∥ ≤ Lk1(∥u∥B + ∥v∥H) + ˜Lk1 , t ∈ J, u ∈ B, v ∈ H. 

(H6*) The function K1 : Q×Q×H → H are continuous maps and there exists a positive 

constant LK1 > 0 such that 

 

 
and 

 

Theorem 3.2. Assume that the hypotheses (H0), (H1) and (H2*) - (H6*) holds. Then the 

problem (1.3) - (1.4) has at least one mild solution such that 
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Proof. Consider the multivalued operator 𝛶̅ : Ω → P(Ω) defined by Υ(h) = {h ∈ Ω} with 

 

where v∗(s) ∈ SF,y∗ . 

Next, we split the multi-valued operator Φ∗ as 

 

 

The proof of this theorem is very similar to Theorem 3.1. With necessary modifications, 

we can prove the steps 1 and 2 (Claims (i)-(v)) clearly, so we omit these steps. Now, we 

prove a priori bounds only. 

Claim (vi). A priori bounds. 

Γ = {z ∈ Z0 : z ∈ λΦ∗ 1(z) + λΦ∗ 2 (z), for some 0 < λ < 1} is bounded. 

Let z ∈ Γ be any element, then there exists v∗ ∈ SF,x∗ , such that 
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Then 

 

Where 

 

and 

 

Denote 

 

From the above inequality, we receive 

 

Let us take the right hand side of the above inequality as W(t). Thus, we get 

β(t) ≤ W(t), for every t ∈ Q, 

with 

 
and 

 

Utilizing the non-decreasing character of ψ1, we obtain 

 

We characterize the function γ(t) = max{𝜔2
∗μ1(t),m(t)}, t ∈ Q, we suggests that 

 

Integrating from 0 to t we get 
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In view of (3.5), this implies that for each t ∈ Q, we sustain 

 

Therefore, for each t ∈ Q, there exists a constant Λ1 in a way thatW(t) ≤ Λ2 and hence β(t) 

≤ Λ2. Since ∥ 𝑧 ∥Z0 ≤ β(t), we have ∥ 𝑧 ∥Z0 ≤ Λ2. 

From this, we observe that the set Γ is bounded. As a consequence of Dhage’s fixed point 

theorem[11], we realize that Φ∗1 + Φ∗2 has a fixed point z defined on the interval (−∞, T] 

which is the mild solution of the problem (1.3)-(1.4). 

Definition 3.2. The control system (1.1) − (1.4) are said to be approximately controllable 

on Q if 𝑅(𝑇)̅̅ ̅̅ ̅̅ ̅ = H, where R(T) = {x(T; u) : u2L(J,U)} is a mild solution of the system (1.1) − (1.4). 

Theorem 3.3. Suppose that the assumptions (H0) − (H8) holds. Assume additionally that 

there exists Ni ∈ L1(Q, [0,∞)), i = 1, 2, such that sup y∈H ∥ 𝐹(𝑡, 𝑦) ∥ ≤ N1(t) and 
𝑠𝑢𝑝
y ∈ H 

 ∥

𝐹(𝑡, 𝑦, 𝑥) ∥ ≤ N2(t) for a.e. t ∈ Q, then the nonlinear fractional differential inclusion (1.1) − 

(1.4) are approximate controllable on Q. 

Proof. Let 𝑦̂a(・) and 𝑦̅a(・) be fixed point of Φ in B. By Theorem 3.1 and Theorem 3.2, any 

fixed point of Φ are mild solution of (1.1) − (1.4) under the control 

 
and 

 

and satisfies the following inequalities 

 

Define 

 
and 

 

By using infinite-dimensional version of the Ascoli-Arzela theorem, one can show that an 

operator F(・) →R ・∫ 𝑆.
0

(・, s)F(s)ds : L1(Q,H) → C is compact. Therefore, we obtain that 

∥ 𝑃(𝑦̂a)  −  𝑤 ∥ → 0 and ∥ 𝑃(𝑦̅a)  −  𝑤 ∥ → 0 as a → 0+, respectively. Moreover, from (1.1) − 

(1.4) 
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we get 

 

It follows from (H0), we have that 

 
This proves the approximate controllability of differential inclusion (1.1) − (1.4). 

4 Application 

In this section an illustration is provided for the existence results to the following neutral 

fractional integro-differential inclusion with state-dependent delay of the structure 

 

 
where 𝐷t 

α denotes the Caputo’s fractional derivatives of order α ∈ (1, 2],B = 1. We 

consider H = L2[0,P] having the norm ∥ . ∥2L. 

Define the operators A : D(A) ⊆ H → H by Aω = ω’’ with the norm 

D(A) = {ω ∈ H : ω, ω’ are absolutely continuous, ω’’ ∈ H, ω(0) = ω(P) = 0}. 

Then 

 

where ωn(x) =√
2

𝑝
 sin(nx), n = 1, 2, . . . is the orthogonal set of eigenvectors of A. it is well 

known that A is the infinitesimal generator of a strongly continuous cosine family C(t), 

and 

 

For α = 2, the associated sine family is given by 
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It is clear that ∥ 𝐶(𝑡) ∥ ≤ 1 for all t ∈ R. Thus, C(t) is uniformly bounded on R. It follows that 

A is the infinitesimal generator of a strongly continuous exponentially bounded fractional 

cosine family Cα(t) such that Cα(t) = I, and 

 

 

 

Then, there is a constant Mc ≥ 1 such that ∥Cα(t)∥ ≤ Mc for all t ≥ 0. 

 

Furthermore, by applying the given conditions we can modify the system (4.1)-(4.4) into 

the abstract form of equation (1.3)-(1.4) and all the conditions of Theorem 3.2 are fulfilled. 

5 Conclusion 

We conclude that the overall focus of this work is on the approximate controllability of 

mild solutions for fractional neutral integro-differential inclusions with state-dependent 

delay in Banach spaces. Applying the Dhage-derived fixed point theorem for multi-valued 

operators. With the concourse of the highly continuous -order fractional cosine family, we 

put up the existence result. Ultimately, a scenario has been offered that illustrates the 

conclusions of the theory. 
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