
Vol.11.Issue.4.2023 (Oct-Dec.) Bull .Math.&Stat.Res ( ISSN:2348 -0580)  
 

 

1 Rohit Kumar Verma 

Vol.11.Issue.4.2023 (Oct-Dec) 

©KY PUBLICATIONS  

 

  

  

 

    

 

 

 
ANALOGOUS COMPATIBLE M-DISTANCE METRIC ASSOCIATED WITH KL-DISTANCE 

METRIC IN IF-SETTINGS  
 

ROHIT KUMAR VERMA 
Associate Professor, Department of Mathematics, 

Bharti Vishwavidyalaya, Durg, C.G., India. 
E-mail- rohitkverma73@rediffmail.com 

DOI:10.33329/bomsr.11.4.1  

 

ABSTRACT 

Here, a method for creating new metrics for intuitionistic fuzzy M-distance 

(divergence) is suggested. A probability distribution's distance from 𝑃 =

𝑝1, … , 𝑝𝑛 to another probability  distribution 𝑄 = 𝑞1, … , 𝑞𝑛 is measured 

using the M-distance (divergence) metric when the probabilities in both 

distributions are monotonically increasing or monotonically decreasing. In 

the field of image segmentation, the intuitionistic fuzzy M-distance 

(divergence) metric has a variety of uses.  The suggested solution 

additionally separates and minimizes the imperfect and perfect threshold 

pictures.   

Keywords:  Intuitionistic fuzzy set, M-distance (divergence), Image 

segmentation, Convex function, Monotonic function etc.   

 

1. INTRODUCTION  

Information theory (IT) was developed by Shannon [15] in 1948 as a new area of mathematics 

and an effective tool for comprehending the complexities of communication. Renyi [13] took the 

initiative and generalized the Shannon measure as a result of the Shannon measure's restrictions in 

some circumstances.  Following Renyi, numerous generalized metrics for various circumstances were 

developed.  The measure of discrimination between two probability distributions—one ideal and the 

other observed—was developed by Kullback and Leibler [10]. In the final two decades of the 20th 

century, there has been a significant expansion of the body of literature on divergence measures. 
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Generalized information and divergence measurements have been developed, according to Besseville 

[4], Esteban, and Morales [9]. Research and progress in the field were revolutionized by Zadeh's [20] 

introduction of the idea of fuzziness. The measure of fuzzy entropy that corresponds to Shannon's [1] 

measure of entropy was established by De-Luca and Termini [8].   

1.1 DIVERGENCES FOR FUZZY SETS 

To quantify the difference between two fuzzy sets, several measures have been developed [4], 

[6], and [20] apart from  that, in 2023 Verma [18, 19] also developed some new concepts regarding 

this.While a specific situation was extensively investigated in [20], where an axiomatic formulation of 

a divergence [14] measure for fuzzy sets was introduced, a full study on the comparison of fuzzy sets 

was presented in [6]. It was based on the following characteristics of nature. 

(𝑖) It is a symmetric, nonnegative function of the two fuzzy sets (i). 

(𝑖𝑖) A fuzzy set has zero divergence with itself. 

(𝑖𝑖𝑖) The divergence between two fuzzy sets decreases the "more similar" they are. The following 

formal description applies to these characteristics. 

DEFINITION 1.2 (found in [20]): Consider the universe 𝑋. If each pair of fuzzy sets 𝐴 and 𝐵 meets the 

requirements, then the map 𝐷: 𝐹𝑆(𝑋) × 𝐹𝑆(𝑋) → 𝑅 is a divergence measure.  

Div.1: 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴).   

Div.2: 𝐷(𝐴, 𝐴) = 0. 

Div.3: 𝐷(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) ≤ 𝐷(𝐴, 𝐵), for every 𝐶 ∈ 𝐹𝑆(𝑋). 

Div.4: 𝐷(𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶) ≤ 𝐷(𝐴, 𝐵), for every 𝐶 ∈ 𝐹𝑆(𝑋). 

The preceding axioms do not demand that the divergence be non-negative. The axioms Div.2 and Div.3 

(or Div.2 and Div.4) can be used to easily deduce it. Measurements of fuzzy entropy equivalent to 

Renyi [13] entropy and measurements of fuzzy directed divergence equivalent to Kullback Leibler [10] 

divergence measure were defined by De-Luca and Termini [8]. The body of knowledge about the 

creation of divergence metrics has grown significantly in recent years.  Fuzzy information and 

divergence measurements were surveyed by De-Luca and Termini [8]. Here, we use threshold, a well-

liked image segmentation method, to extract the items from a picture. The threshold values for 

segmentation can be selected at the multimodal histogram's valley points if the objects can be easily 

distinguished from the background.  To maximize the class separatability, which was based on within-

class variation, between-class variance, and total variance of grey levels, Otsu [12] chose the  

threshold. The literature reports a lot of great investigations on various thresholding strategies.  

Information-theoretic metrics were utilized by Verma [17] and Kapur et al. [11], Brink and Pendcock 

[5] to threshold a picture. 

1.3 INTUITIONISTIC FUZZY SETS  

IFSs model scenarios in which each point in the universe is given a level of membership and a 

level of non-participation. Accordingly, Atanassov provided the following description of an IFS (see 

[1]): 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥))| 𝑥 ∈ 𝑋} 
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where 𝜇𝐴 and 𝜈𝐴 signify the degree of membership and non-membership of the element to the  set, 

respectively, and 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 is a function of 𝜇𝐴, 𝜈𝐴: 𝑋 → [0, 1]. The function 𝜋𝐴(𝑥) = 1 −

𝜇𝐴(𝑥) − 𝜈𝐴(𝑥), also known as the intuitionistic fuzzy index or the hesitant index, denotes ignorance 

regarding membership in A. We may occasionally refer to 𝐴 = (𝜇𝐴, 𝜈𝐴) as just 𝐴 when there is no 

possibility of a mistake.   

The comparable representation of IF-sets [2, 3] is an interval-valued set, where each element's 

𝑥 ∈ 𝑋  corresponding interval is [𝜇𝐴(𝑥), 1 − 𝜈𝐴(𝑥)]. It implies that the interval includes the element's 

real degree of set membership as a result. The breadth of the interval matches the hesitancy index.  

We can think of a fuzzy set 𝐴 on 𝑋 as an IFS with non-membership degree 1 − 𝐴 and 𝜋𝐴 = 0. 

Therefore, if 𝐹𝑆(𝑋) =  set of all fuzzy sets on X and 𝐼𝐹𝑆𝑠(𝑋) =  set of all IFSs on 𝑋, then 𝐹𝑆(𝑋) ⊂

𝐼𝐹𝑆𝑠(𝑋). 

For 𝐴, 𝐵 ∈ 𝐼𝐹𝑆𝑠(𝑋), the union, intersection, complement, inclusion, and inclusion relations 

are defined. 

(𝑖) Union of 𝐴 and 𝐵: 

 𝐴 ∪ 𝐵 = {(𝑥, 𝜇𝐴∪𝐵(𝑥), 𝜈𝐴∪𝐵(𝑥))| 𝑥 ∈ 𝑋} where 𝜇𝐴∪𝐵(𝑥) = max{𝜇𝐴(𝑥), 𝜈𝐴(𝑥)} and 𝜇𝐴∪𝐵(𝑥) =

min{𝜈𝐴(𝑥), 𝜈𝐵(𝑥)}.  

(𝑖𝑖) Intersection of 𝐴 and 𝐵: 

 𝐴 ∩ 𝐵 = {(𝑥, 𝜇𝐴∩𝐵(𝑥), 𝜈𝐴∩𝐵(𝑥))| 𝑥 ∈ 𝑋}where 𝜇𝐴∩𝐵(𝑥) = min {𝜇𝐴(𝑥), 𝜈𝐴(𝑥)} and 𝜇𝐴∩𝐵(𝑥) =

max {𝜈𝐴(𝑥), 𝜈𝐵(𝑥)}. 

(𝑖𝑖𝑖) Complement of 𝐴: 𝐴𝑐 = {(𝑥, 𝜈𝐴(𝑥), 𝜇𝐴(𝑥))| 𝑥 ∈ 𝑋}. 

(𝑖𝑣) 𝐴 is a subset of 𝐵 (denoted by 𝐴 ⊆ 𝐵) if and only if for every 𝑥 ∈ 𝑋 it holds that 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) 

and 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥). 

1.4 DIVERGENCE MEASURES FOR INTUITIONISTIC FUZZY SETS 

We define a measure of comparison between two IFSs axiomatically. We first present the 

axioms and look at how distances, IF-divergences, and IF-dissimilarities relate to one another. Then, 

we give various IF-divergences and IF-dissimilarities instances, as well as some fundamental properties 

and construction techniques for IF-divergences. 

To measure the differences between IFSs, numerous functions have been published in the 

literature [6, 7] apart from that, in 2023 Verma [16] also developed some new concepts regarding this. 

The most frequent ones are differences. Remember that an IFSs dissimilarity measure, or IF-

dissimilarity for short, is a function 𝐷 from 𝐼𝐹𝑆𝑠(𝑋) × 𝐼𝐹𝑆𝑠(𝑋) to 𝑅 that satisfies the following criteria 

for each 𝐴, 𝐵, 𝐶 ∈ 𝐼𝐹𝑆𝑠(𝑋): 

IF-Diss.1: 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴). 

IF-Diss.2: 𝐷(𝐴, 𝐴) = 0. 

IF-Diss.3: 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 𝐷(𝐴, 𝐶) ≥ max(𝐷(𝐴, 𝐵), 𝐷(𝐵, 𝐶)). 

The literature has a few instances of dissimilarity metrics. In reality, [6, 7] provides an outline. 

Some of these comparisons have limitations because there are cases in which such differences lead to 

paradoxical metrics for IFSs. Consider, for instance, Chen's definition of the dissimilarity  [6, 7] and the 

universe = {𝑥1, … , 𝑥𝑛} :   
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𝐷𝐶(𝐴, 𝐵) =
1

2𝑛
∑|𝑆𝐴(𝑥𝑖) − 𝑆𝐵(𝑥𝑖)|

𝑛

𝑖=1

 

𝑆𝐴(𝑥𝑖) = |𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)| and 𝑆𝐵(𝑥𝑖) = |𝜇𝐵(𝑥𝑖) − 𝜈𝐵(𝑥𝑖)| respectively. 𝐷𝐶(𝐴, 𝐵) = 0 for this  

dissimilarity measure whenever 𝑆𝐴(𝑥𝑖) = 𝑆𝐵(𝑥𝑖) for all 𝑖 = 1, … , 𝑛. In reality, the dissimilarity 

between them is zero if 𝜇𝐴(𝑥𝑖) = 𝜈𝐴(𝑥𝑖) = 0 and 𝜇𝐵(𝑥𝑖) = 𝜈𝐵(𝑥𝑖) = 0.5 for all 𝑖 = 1, … , 𝑛. The two 

sets, however, are distinctly different. 

To avoid such absurd circumstances, a measure of comparison must be introduced that has 

stronger properties than dissimilarities. An IF-divergence can be described as a measure of difference 

that must satisfy the following rational properties, which is the same concept as fuzzy divergences. 

(𝑖) The two IF-sets are measured by this nonnegative, symmetric quantity.  

(𝑖𝑖) An IF-set has zero IF-divergence with itself. 

(𝑖𝑖𝑖) The IF-divergence between two IF-sets decreases as they become "more" similar to one another. 

(𝑖𝑣) The IF-divergence turns into a divergence for fuzzy sets. 

Formally, the following axiomatic definition describes the idea of a divergence measure for IFSs. 

DEFINITION 1.5 Assuming 𝑋 is a finite universe, 𝐼𝐹𝑆𝑠(𝑋) is the collection of all 𝐼𝐹𝑆𝑠 on 𝑋. If a map 

𝐷𝐼𝐹: 𝐼𝐹𝑆𝑠(𝑋) × 𝐼𝐹𝑆𝑠(𝑋) → 𝑅 has the properties listed below for any 𝐴, 𝐵 ∈ 𝐼𝐹𝑆𝑠(𝑋), it is an 𝐼𝐹𝑆𝑠 

divergence measure (also known as an IF-divergence).    

IF-Diss.1: 𝐷𝐼𝐹(𝐴, 𝐵) = 𝐷𝐼𝐹(𝐵, 𝐴). 

IF-Diss.2: 𝐷𝐼𝐹(𝐴, 𝐴) = 0. 

IF-Div.3: 𝐷𝐼𝐹(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) ≤ 𝐷𝐼𝐹(𝐴, 𝐵), for every 𝐶 ∈ 𝐼𝐹𝑆𝑠(𝑋). 

IF-Div.4: 𝐷𝐼𝐹(𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶) ≤ 𝐷𝐼𝐹(𝐴, 𝐵), for every 𝐶 ∈ 𝐼𝐹𝑆𝑠(𝑋).  

2. OUR RESULTS 

2.1 THE FIRST MEASURE OF M-DIVERGENCE METRIC IN INTUITIONISTIC FUZZY SETTING 

The first such measure is defined by 

  𝐷1(𝐴, 𝐵) = 𝜇𝐴(𝑥1) ln
𝜇𝐴(𝑥1)

𝜇𝐵(𝑥1)
+ 𝜈𝐴(𝑥1) ln

𝜈𝐴(𝑥1)

𝜈𝐵(𝑥1)
+ (𝜇𝐴(𝑥2) − 𝜇𝐴(𝑥1)) ln

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1)
+ 

(𝜈𝐴(𝑥2) − 𝜈𝐴(𝑥1)) ln
𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)

𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)
+ … … … + (𝜇𝐴(𝑥𝑛) − 𝜇𝐴(𝑥𝑛−1)) ln

𝜇𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)

𝜇𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)
+  

               (𝜈𝐴(𝑥𝑛) − 𝜈𝐴(𝑥𝑛−1)) ln
𝜈𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛−1)

𝜈𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛−1)
+ (1 − 𝜇𝐴(𝑥𝑛)) ln

1−𝜇𝐴(𝑥𝑛)

1−𝜇𝐵(𝑥𝑛)
+     

                                                (1 − 𝜈𝐴(𝑥𝑛)) ln
1−𝜈𝐴(𝑥𝑛)

1−𝜈𝐵(𝑥𝑛)
 

subject to 𝜇𝐵(𝑥1) < 𝜇𝐵(𝑥2) < ⋯ < 𝜇𝐵(𝑥𝑛) and 𝜈𝐵(𝑥1) < 𝜈𝐵(𝑥2) < ⋯ < 𝜈𝐵(𝑥𝑛).  

Also,        𝜇𝐴(𝑥1) < 𝜇𝐴(𝑥2) < ⋯ < 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1) < 𝜈𝐴(𝑥2) < ⋯ < 𝜈𝐴(𝑥𝑛). 

Now, 
𝜕𝐷1

𝜕𝜇𝐴(𝑥1)
= ln

𝜇𝐴(𝑥1)

𝜇𝐵(𝑥1)
+ ln

𝜈𝐴(𝑥1)

𝜈𝐵(𝑥1)
− ln

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1)
− ln

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)

𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)
 

and 

      
𝜕

𝜕𝜇𝐴(𝑥1)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥1)
) =

1

𝜇𝐴(𝑥1)
+

1

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)
+

1

𝜈𝐴(𝑥1)
+

1

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)
> 0 
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similarly 

𝜕𝐷1

𝜕𝜇𝐴(𝑥2)
= ln

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1)
+ ln

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)

𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)
− ln

𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2)

𝜇𝐵(𝑥3)−𝜇𝐵(𝑥2)
− ln

𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2)

𝜈𝐵(𝑥3)−𝜈𝐵(𝑥2)
  

and 

 
𝜕

𝜕𝜇𝐴(𝑥2)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥2)
) =

1

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)
+

1

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)
+

1

𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2)
+

1

𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2)
> 0 

…   …   
𝜕𝐷1

𝜕𝜇𝐴(𝑥𝑛)
= ln

𝜇𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)

𝜇𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)
+ ln

𝜈𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛−1)

𝜈𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛−1)
− ln

1−𝜇𝐴(𝑥𝑛)

1−𝜇𝐵(𝑥𝑛)
− ln

1−𝜈𝐴(𝑥𝑛)

1−𝜈𝐵(𝑥𝑛)
  

𝜕

𝜕𝜇𝐴(𝑥2)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥2)
) =

1

𝜇𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)
+

1

𝜈𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛−1)
+

1

1−𝜇𝐴(𝑥𝑛)
+

1

1−𝜈𝐴(𝑥𝑛)
> 0  

and 
𝜕2𝐷1

𝜕𝜇𝐴(𝑥𝑖)𝜕𝜇𝐴(𝑥1+1)
= −

1

𝜇𝐴(𝑥𝑖+1)−𝜇𝐴(𝑥𝑖)
−

1

𝜈𝐴(𝑥𝑖+1)−𝜈𝐴(𝑥𝑖)
.      

Hence, 
𝜕

𝜕𝜇𝐴(𝑥𝑖)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥𝑖)
) .

𝜕

𝜕𝜇𝐴(𝑥𝑖+1)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥𝑖+1)
) − (

𝜕2𝐷1

𝜕𝜇𝐴(𝑥𝑖)𝜕𝜇𝐴(𝑥𝑖+1)
)

2

> 0.  

Obviously, 𝐷1(𝐴, 𝐵) is a convex function of 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … , 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1), 𝜈𝐴(𝑥2), …     

… , 𝜈𝐴(𝑥𝑛). Its minimum value subject to ∑ 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) = 1𝑛
𝑖=1  is given as follows  

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1)

𝜇𝐴(𝑥1)+𝜈𝐴(𝑥1)
=

𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1)

𝜇𝐵(𝑥1)+𝜈𝐵(𝑥1)
, 

               
𝜇𝐴(𝑥3)+𝜈𝐴(𝑥3)−𝜇𝐴(𝑥2)−𝜈𝐴(𝑥2)

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1)
=

𝜇𝐵(𝑥3)+𝜈𝐵(𝑥3)−𝜇𝐵(𝑥2)−𝜈𝐵(𝑥2)

𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1)
, … …, 

                             
𝜇𝐴(𝑥𝑛)+𝜈𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)−𝜈𝐴(𝑥𝑛−1)

𝜇𝐴(𝑥𝑛−1)+𝜈𝐴(𝑥𝑛−1)−𝜇𝐴(𝑥𝑛−2)−𝜈𝐴(𝑥𝑛−2)
=

𝜇𝐵(𝑥𝑛)+𝜈𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)−𝜈𝐵(𝑥𝑛−1)

𝜇𝐵(𝑥𝑛−1)+𝜈𝐵(𝑥𝑛−1)−𝜇𝐵(𝑥𝑛−2)−𝜈𝐵(𝑥𝑛−2)
 

                                           
𝜇𝐴(𝑥𝑛)+𝜈𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)−𝜈𝐴(𝑥𝑛−1)

1−𝜇𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛)
=

𝜇𝐵(𝑥𝑛)+𝜈𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)−𝜈𝐵(𝑥𝑛−1)

1−𝜇𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛)
.  

This condition is met if 𝜇𝐴(𝑥1) + 𝜈𝐴(𝑥1) = 𝜇𝐵(𝑥1) + 𝜈𝐵(𝑥1), 𝜇𝐴(𝑥2) + 𝜈𝐴(𝑥2) = 𝜇𝐵(𝑥2) +

𝜈𝐵(𝑥2), … … , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) 𝑖. 𝑒. 𝐴 = 𝐵. So that when 𝐴 = 𝐵 and 𝐷1(𝐴, 𝐵) ≥

0, 𝐷1(𝐴, 𝐵) has its minimal value. In intuitionistic fuzzy settings where both 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) and 

𝜇𝐵(𝑥𝑖) + 𝜈𝐵(𝑥𝑖) are monotonically increasing, we can utilize this 𝐷1(𝐴, 𝐵) as an M-distance metric. 

As a result, the minimal M-distance probability distribution is provided  when there are no constraints 

other than the natural constraint ∑ 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) = 1𝑛
𝑖=1  and  the inequality constraints 𝜇𝐴(𝑥𝑖) +

𝜈𝐴(𝑥𝑖) ≥ 0, 1 ≥ 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) ≥ 𝜇𝐴(𝑥𝑖−1) + 𝜈𝐴(𝑥𝑖−1), 𝑖 = 1, … , 𝑛, the minimum M-distance 

probability distribution is given by 𝜇𝐴(𝑥1) + 𝜈𝐴(𝑥1) = 𝜇𝐵(𝑥1) + 𝜈𝐵(𝑥1), 𝜇𝐴(𝑥2) + 𝜈𝐴(𝑥2) =

𝜇𝐵(𝑥2) + 𝜈𝐵(𝑥2), … … … … , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) and is same as the apriori 

distribution.     

2.2 THE SECOND MEASURE OF M-DIVERGENCE METRIC IN INTUITIONISTIC FUZZY SETTING 

The second such measure is defined by 

𝐷2(𝐴, 𝐵) = (1 + 𝜇𝐴(𝑥1)) ln
1+𝑎𝜇𝐴(𝑥1)

1+𝑎𝜇𝐵(𝑥1)
+ (1 + 𝜈𝐴(𝑥1)) ln

1+𝑎𝜈𝐴(𝑥1)

1+𝑎𝜈𝐵(𝑥1)
+  

         𝑎(𝜇𝐴(𝑥2) − 𝜇𝐴(𝑥1)) ln
𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1)
+ 𝑎 (𝜈𝐴(𝑥2) − 𝜈𝐴(𝑥1)) ln

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)

𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)
+ … … 

subject to 𝜇𝐵(𝑥1) < 𝜇𝐵(𝑥2) < ⋯ < 𝜇𝐵(𝑥𝑛) and 𝜈𝐵(𝑥1) < 𝜈𝐵(𝑥2) < ⋯ < 𝜈𝐵(𝑥𝑛).  

Also,        𝜇𝐴(𝑥1) < 𝜇𝐴(𝑥2) < ⋯ < 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1) < 𝜈𝐴(𝑥2) < ⋯ < 𝜈𝐴(𝑥𝑛). 

Now, 
𝜕𝐷2

𝜕𝜇𝐴(𝑥1)
= 𝑎 ln

1+𝑎𝜇𝐴(𝑥1)

1+𝑎𝜇𝐵(𝑥1)
+ 𝑎 ln

1+𝑎𝜈𝐴(𝑥1)

1+𝑎𝜈𝐵(𝑥1)
− 𝑎 ln

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1)
− 𝑎 ln

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)

𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)
, 
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so        
𝜕

𝜕𝜇𝐴(𝑥1)
(

𝜕𝐷2

𝜕𝜇𝐴(𝑥1)
) =

𝑎2

1+𝑎(𝜇𝐴(𝑥2)+𝜇𝐴(𝑥1))
+

𝑎

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1)
> 0 

similarly  

𝜕𝐷2

𝜕𝜇𝐴(𝑥2)
= 𝑎 ln

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)

𝜇𝐵(𝑥2)−𝜇𝐵(𝑥1)
+ 𝑎 ln

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)

𝜈𝐵(𝑥2)−𝜈𝐵(𝑥1)
− 𝑎 ln

𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2)

𝜇𝐵(𝑥3)−𝜇𝐵(𝑥2)
− 𝑎 ln

𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2)

𝜈𝐵(𝑥3)−𝜈𝐵(𝑥2)
  

and 

 
𝜕

𝜕𝜇𝐴(𝑥2)
(

𝜕𝐷2

𝜕𝜇𝐴(𝑥2)
) =

𝑎

𝜇𝐴(𝑥2)−𝜇𝐴(𝑥1)
+

𝑎

𝜈𝐴(𝑥2)−𝜈𝐴(𝑥1)
+

𝑎

𝜇𝐴(𝑥3)−𝜇𝐴(𝑥2)
+

𝑎

𝜈𝐴(𝑥3)−𝜈𝐴(𝑥2)
> 0 

…   
𝜕𝐷2

𝜕𝜇𝐴(𝑥𝑛)
= 𝑎 ln

𝜇𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)

𝜇𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)
+ 𝑎 ln

𝜈𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛−1)

𝜈𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛−1)
− 𝑎 ln

𝜇𝐴(𝑥𝑛+1)−𝜇𝐴(𝑥𝑛)

𝜇𝐵(𝑥𝑛+1)−𝜇𝐵(𝑥𝑛)
− 𝑎 ln

𝜈𝐴(𝑥𝑛+1)−𝜈𝐴(𝑥2)

𝜈𝐵(𝑥𝑛+1)−𝜈𝐵(𝑥2)
  

𝜕

𝜕𝜇𝐴(𝑥2)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥2)
) =

𝑎

𝜇𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)
+

𝑎

𝜈𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛−1)
+

𝑎

𝜇𝐴(𝑥𝑛+1)−𝜇𝐴(𝑥𝑛)
+

𝑎

𝜈𝐴(𝑥𝑛+1)−𝜈𝐴(𝑥𝑛)
> 0  

and 
𝜕2𝐷1

𝜕𝜇𝐴(𝑥𝑖)𝜕𝜇𝐴(𝑥1+1)
= −

𝑎

𝜇𝐴(𝑥𝑖+1)−𝜇𝐴(𝑥𝑖)
−

𝑎

𝜈𝐴(𝑥𝑖+1)−𝜈𝐴(𝑥𝑖)
.      

Hence, 
𝜕

𝜕𝜇𝐴(𝑥𝑖)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥𝑖)
) .

𝜕

𝜕𝜇𝐴(𝑥𝑖+1)
(

𝜕𝐷1

𝜕𝜇𝐴(𝑥𝑖+1)
) − (

𝜕2𝐷1

𝜕𝜇𝐴(𝑥𝑖)𝜕𝜇𝐴(𝑥𝑖+1)
)

2

> 0.  

Obviously, 𝐷2(𝐴, 𝐵) is a convex function of 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … , 𝜇𝐴(𝑥𝑛) and 𝜈𝐴(𝑥1), 𝜈𝐴(𝑥2), …     

… , 𝜈𝐴(𝑥𝑛). Its minimum value subject to ∑ 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) = 1𝑛
𝑖=1  is given as follows  

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1)

1+𝑎(𝜇𝐴(𝑥1)+𝜈𝐴(𝑥1))
=

𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1)

1+𝑎(𝜇𝐵(𝑥1)+𝜈𝐵(𝑥1))
, 

               
𝜇𝐴(𝑥3)+𝜈𝐴(𝑥3)−𝜇𝐴(𝑥2)−𝜈𝐴(𝑥2)

𝜇𝐴(𝑥2)+𝜈𝐴(𝑥2)−𝜇𝐴(𝑥1)−𝜈𝐴(𝑥1)
=

𝜇𝐵(𝑥3)+𝜈𝐵(𝑥3)−𝜇𝐵(𝑥2)−𝜈𝐵(𝑥2)

𝜇𝐵(𝑥2)+𝜈𝐵(𝑥2)−𝜇𝐵(𝑥1)−𝜈𝐵(𝑥1)
, … …, 

                             
𝜇𝐴(𝑥𝑛+1)+𝜈𝐴(𝑥𝑛+1)−𝜇𝐴(𝑥𝑛)−𝜈𝐴(𝑥𝑛)

𝜇𝐴(𝑥𝑛)+𝜈𝐴(𝑥𝑛)−𝜇𝐴(𝑥𝑛−1)−𝜈𝐴(𝑥𝑛−1)
=

𝜇𝐵(𝑥𝑛+1)+𝜈𝐵(𝑥𝑛+1)−𝜇𝐵(𝑥𝑛)−𝜈𝐵(𝑥𝑛)

𝜇𝐵(𝑥𝑛)+𝜈𝐵(𝑥𝑛)−𝜇𝐵(𝑥𝑛−1)−𝜈𝐵(𝑥𝑛−1)
. 

This condition is met if 𝜇𝐴(𝑥1) + 𝜈𝐴(𝑥1) = 𝜇𝐵(𝑥1) + 𝜈𝐵(𝑥1), 𝜇𝐴(𝑥2) + 𝜈𝐴(𝑥2) = 𝜇𝐵(𝑥2) +

𝜈𝐵(𝑥2), … … , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) 𝑖. 𝑒. 𝐴 = 𝐵. So that when 𝐴 = 𝐵 and 𝐷2(𝐴, 𝐵) ≥

0, 𝐷2(𝐴, 𝐵) has its minimal value. In intuitionistic fuzzy settings where both 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) and 

𝜇𝐵(𝑥𝑖) + 𝜈𝐵(𝑥𝑖) are monotonically increasing, we can utilize this 𝐷2(𝐴, 𝐵) as an M-distance metric. 

As a result, the minimal M-distance probability distribution is provided  when there are no constraints 

other than the natural constraint ∑ 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) = 1𝑛
𝑖=1  and  the inequality constraints 𝜇𝐴(𝑥𝑖) +

𝜈𝐴(𝑥𝑖) ≥ 0, 1 ≥ 𝜇𝐴(𝑥𝑖) + 𝜈𝐴(𝑥𝑖) ≥ 𝜇𝐴(𝑥𝑖−1) + 𝜈𝐴(𝑥𝑖−1), 𝑖 = 1, … , 𝑛, the minimum M-distance 

probability distribution is given by 𝜇𝐴(𝑥1) + 𝜈𝐴(𝑥1) = 𝜇𝐵(𝑥1) + 𝜈𝐵(𝑥1), 𝜇𝐴(𝑥2) + 𝜈𝐴(𝑥2) =

𝜇𝐵(𝑥2) + 𝜈𝐵(𝑥2), … … … … , 𝜇𝐴(𝑥𝑛) + 𝜈𝐴(𝑥𝑛) = 𝜇𝐵(𝑥𝑛) + 𝜈𝐵(𝑥𝑛) and is same as the apriori 

distribution.                                            

CONCLUSION 

In  this  communication  an  approach  to  develop measures  of  intuitionistic fuzzy  M-  

distance metric  using aggregation  operators is proposed. The proposed measure is  a  distance  

measure. To add flexibility  in  applications  the  divergence  (distance) measures may be generalized 

by using a parameter. In the  literature  related  to  image  segmentation is not done, but this is a 

measure to its own right and can be  used  for  thresholding  in  some  situations  because different  

measures  have  their  suitability  in  different situations. Finally, we have studied the most usual 

measures of IF-sets, concluding that they are IF-M-distance metric.      
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