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ABSTRACT 

In this paper, direct techniques are applied in constructing the probability 

density functions of Kumaraswamy-Poisson mixture distributions based on 

minimum and maximum order statistics from Kumaraswamy distribution 

and Zero-Trucated Poisson distribution. The resulting mixtures are then 

generalized by exponentiating part of their cumulative density functions 

involving the cumulative density function and survival function of the 

Kumaraswamy distribution. For all the mixtures, probability density 

functions under different parameter values are plated, and the survival and 

hazard functions derived. Some statistical properties of the mixtures such as 

the rth moments, L-moments and quantile functions are explicitly 

expressed. Cumulative density functions of the mixtures are easily invertible 

to obtain simple quantile functions that can be applied in statistical 

modelling. Maximum likelihood estimation of parameters is discussed. 
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1.  Introduction 

When modeling real data, simple models derived from single distributions may fit the data 

poorly due to data heterogeneity. Technological advances and constant creation of more robust 

statistical softwares have made mixture distributions to become more popular among statisticians, 

data scientists and researchers at large. The complex computations of properties of mixture 

distributions such as MLEs, moments and quantiles are now possible by running just a few codes. It is 

common to see research papers where several mixture models are applied on the same data sets, 

comparisons of estimates made across the models and the best performing model selected according 

to model selection criteria such as AIC, BIC, Pearson X squared among other criteria. Mixture 

distributions can be finite, infinite or discrete constituting of a mixture of a single distribution with 

various parameters or more than one distribution. They can comprise of a mixture of either discrete 

or continuous distributions, or a combination of the two. Some examples of mixture distributions 

include Double-Gaussian, COMPoisson, Binomial Poisson, Beta-binomial, Zero-Inflated Negative 

Binomial, Gamma-Poisson, Kurnaraswamy-Binornial,Gaussian-Cauchy and Beta-Weibull-Exponential 

distribution. In count data, for example, COM-Poisson and hyper Poisson models are commonly used 

to model under dispersed and over dispersed counts in place of the classical Poisson model which has 

the assumption of equidispersion (Kaltkawi et al.,2018). In bioinformatics, beta-mixture models are 

fitted to solve a variety of problems arising due to diverse correlation coefficients of genes which can 

be assumed to be coming from several underlying distributions (Yuan Ji et al.,2005).  

2.  Literature review 

Mixture distributions date back to late 19th century when Karl Pearson mixed two univariate 

normal densities to explain observed high skewness in a data set on crabs collected by W.R.Weldon. 

This gave rise to a five parameter finite mixture distribution, popularly known as Double Gaussian 

distribution. By mid 20th century, finite mixture distributions had become increasingly popular and 

found wide application in the field of medicine. Poondi  Kumaraswamy (1980) introduced a 

generalized pdf for random processes bounded at both the lower and upper limits. This was later 

named after him as Kumaraswamy distribution. He initially used the distribution in modelling 

hydrological processes such as daily rainfall and daily stream flow processes, therein its application 

confined for almost three decades. With advent of the computer era, computation of properties of 

the mixtures was much easier thus their increasing popularity among researchers Everitt et al (1981). 

Adamidis and Loukas (1989) introduced Exponential-Geometric mixture distribution derived from 

minimum order exponential statistic and zero truncated geometric distribution. Jones (2009) claimed 

that the distribution resembled the Beta distribution but was simpler to use since its pdf, cdf, and 

quantiles have a closed form. He studied more properties of Kumaraswamy distribution, paving way 

for further study and application of the distribution. The use of order statistics in mixing distributions 

became more common thereafter Mecha et al (2021). The class of Generalization of the 

Kumaraswamy (Kw-G) distribution and its extensions such as the Kumaraswamy-Normal, 

Kumaraswamy-Weibull, and Kumaraswamy-Gamma among others, was first introduced by Cordeiro 

and de Castro (2011). The quantile function of the distribution was used to come up with its 

generalization. Some mathematical and statistical properties of the generalized distribution followed. 

Finally, the application of two Kumaraswamy mixture distributions, Gamma and Beta-Normal in a data 

set was discussed. Based on the results, it was concluded that models built from Beta-Normal and 

Kumaraswamy-Normal distributions outperformed the other models according to AIC and gave rise to 

plots of pdf that were almost indistinguishable when fitted along side the histogram of the data 
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Cordeiro ( 2011). A new family of Kumaraswamy Generalized Poisson (Kw-GP) was proposed by Ramos 

et al (2015). This distribution was obtained by mixing the minimum order Kumaraswamy G 

distribution and Zero Truncated Poisson distribution. Some extensions of the generalized mixture 

distribution, their pdfs and hazard functions were examined. Poisson distribution was applied by 

Cordeiro et al (2015) in modeling survival data alongside other Weibull mixtures. It was concluded that 

Kumaraswamy Weibull Poisson model provided the best model fit. Muhammad H Tahir et al (2016) 

made a review of some compound classes available in the literature and suggested several new classes 

of generalized distributions including the Exponentiated Kumaraswamy Generalized Poisson and their 

cumulative distribution functions. Chakraborty et al (2020) studied a family of distributions based on 

the mixture of Kumaraswamy-G and Generalized Poisson. This generalization was based on the 

mixture of random variables of the minimum order Kumaraswamy statistic and Zero Truncated 

Poisson distribution. Properties of the generalized mixture distribution such as moments, entropy, 

asymptotes, kurtosis and skewness studied. 

3. Methodology 

3.1 Kumaraswamy Distribution 

Kumaraswamy distribution is continuous defined on the interval [0,1] and has two non negative 

shape parameters, a and b. The pdf of this distribution is given by: 

𝑔(𝑥) = 𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1, 0 < 𝑥 < 1, 𝑎, 𝑏 > 0                                                              [1] 

and the cdf is given as 

 𝐺(𝑥) = ∫ 𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1𝑑𝑥
𝑥

0
= 1 − (1 − 𝑥𝑎)𝑏                                                      [2]                     

3.2  Kumaraswamy-Poisson Distribution 

Here we consider the pdf of Kumaraswamy-Poisson mixture distributions based on minimum 

and maximum order Kumaraswamy statistics. Properties of the distribution ie rth moment, L-

moments, quatile function and maximum likelihood estimation are studied.  

(1)  Kw-P (min) Distribution 

The pdf f(x) of Kw-P (min) distribution generated from the minimum order 

Kumaraswamy statistic and Zero-Truncated Poisson distribution is given by:- 

. 𝑓1(𝑥) = ∑ 𝑔1
∞
𝑛=1 (𝑥 | 𝑛) ℎ( 𝑛) 

= ∑ 𝑎𝑏𝑛𝑥𝑎−1(1 − 𝑥𝑎)𝑏𝑛−1
𝜃𝑛𝑒−𝜃

𝑛! (1 − 𝑒−𝜃)

∞

𝑛=1

 

=
𝑎𝑏𝜃𝑥𝑎−1(1−𝑥𝑎)𝑏−1𝑒[−𝜃(1−(1−𝑥𝑎)𝑏)]

1−𝑒−𝜃                                                     [3] 

=
𝜃𝑔(𝑥)𝑒−𝜃𝐺(𝑥)

1−𝑒−𝜃                                                     [4] 

Multiplying through [3] by 𝑒𝜃, we get an alternative expression for𝑓1(𝑥) as                                             

𝑎𝑏𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1𝑒𝜃(1−𝑥𝑎)𝑏

𝑒𝜃 − 1
                                                                                        [5] 

The KwP(min) is a probability distribution with cdf  given as 
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𝐹1(𝑥) = ∫ 𝑓1(𝑥)𝑑𝑥 =
1 − 𝑒−𝜃(1−(1−𝑥𝑎)𝑏

1 − 𝑒−𝜃

𝑥

0

                                                   [6] 

The figure below  illustrates plots of pdfs of the distribution for various parameter values. 

 

For parameter values a= 3,b = 1, 𝜃 = 1, the pdf is unimodal while for a= 1,b = 3, 𝜃 = 0.1, the pdf is 

antimodal. The pdfs when both a= 1,b = 1, 𝜃 = 1 and a= 0.2,b = 1, 𝜃 = 1 are non-increasing, though at 

different rates. 

Survival and Hazard Functions 

The survival function S1(x) and hazard function h1(x) of Kw-P(min) are given by 

𝑆1(𝑥) = 1 − 𝐹1(𝑥) 

=
𝑒−𝜃(𝑒1−(1−𝑥𝑎)𝑏

−1)

1−𝑒−𝜃                                                                         [7] 

and  

ℎ1(𝑥) =
𝑓1(𝑥)

𝑆1(𝑥)
 

 

=
𝑎𝑏𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1𝑒𝜃(1−𝑥𝑎)𝑏

𝑒1−(1−𝑥𝑎))𝑏
− 1

                                              [8] 

Moment 

The , rth moment of Kw-P(min) is given by 

𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝑓1(𝑥)
1

0

𝑑𝑥 

                                           =
𝑏

𝑒𝜃−1
∑

𝜃𝑛+1

𝑛!
∞
𝑛=0 𝐵 (1 +

𝑟

𝑎
, 𝑏(𝑛 + 1))                                            [9] 
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Substituting r=1 in the above equation t h e  expected value  will be 

                                         𝐸(𝑋) =
𝑏

𝑒𝜃−1
∑

𝜃𝑛+1

𝑛!
∞
𝑛=0 𝐵 (1 +

1

𝑎
, 𝑏(𝑛 + 1))                                     [10] 

and the variance is  

  𝑉𝑎𝑟(𝑋) =
𝑏

𝑒𝜃−1
∑

𝜃𝑛+1

𝑛!
∞
𝑛=0 𝐵 (1 +

2

𝑎
, 𝑏(𝑛 + 1)) −

𝑏2

(𝑒𝜃−1)2 [∑
𝜃𝑛+1

𝑛!
𝐵 (1 +

1

𝑎
, 𝑏(𝑛 + 1))∞

𝑛=0 ]
2

 [11] 

L-Moment 

Probability Weighted Moment used to approximate L-moment is given by 

                                          𝑏𝑟 = ∫ 𝑥
1

0
[

𝑒𝜃(1−𝑒(1−𝑥𝑎)𝑏
)

𝑒𝜃−1
]

𝑟
𝑎𝑏𝜃𝑥𝑎−1(1−𝑥𝑎)𝑏−1𝑒𝜃(1−𝑥𝑎)𝑏

𝑒𝜃−1
𝑑𝑥 

                                                  =
𝑎𝑏𝜃𝑥𝑟𝜃

(𝑒𝜃−1)𝑟+1
∑ ∑ (−1)𝑘 (

𝑟
𝑘

)
(𝑘+𝜃)𝑛

𝑛!
𝐵(𝑏(𝑛 + 1),1 + 1/𝑎)𝑟

𝑘=0
∞
𝑛=0      [12] 

This can be used to determine L-Skewness and L-Kurtosis as appropriate. 

Quantile 

Starting from the cdf F1(x) of Kw-P(min) distribution, the quantile function can be 

easily obtained by letting  

                                      𝑢 = 𝐹1(𝑥) =
1−𝑒−𝜃(1−(1−𝑥𝑎)𝑏)

1−𝑒−𝜃  

𝑙𝑜𝑔[ 1 − (1 − 𝑒−𝜃)𝑢] = −𝜃(1 − (1 − 𝑥𝑎)𝑏) 

1 − [
−1

𝜃
𝑙𝑜𝑔( 1 − (1 − 𝑒−𝜃)𝑢)] = (1 − 𝑥𝑎)𝑏 

𝑥𝑎 = [1 − {1 − (−
1

𝜃
𝑙𝑜𝑔( 1 − (1 − 𝑒−𝜃)𝑢))}

1

𝑏] 

𝑥 = [1 − {1 − (−
1

𝜃
𝑙𝑜𝑔( 1 − (1 − 𝑒−𝜃)𝑢))}

1

𝑏]
1

𝑎                                             [13] 

Substituting u = 0.5, we can easily obtain the median as 

                                  𝑀 = {1 − {1 − (−
1

𝜃
𝑙𝑜𝑔( 𝑒−𝜃(1 − 0.5(1 − 𝑒−𝜃))}

1

𝑏
}

1

𝑎

                                       [14] 

Random variable X can be generated using the quantile function in equation [13] where 𝑢 ∼ 𝑈(0,1) 

and parameters 𝑎, 𝑏, 𝜃are preset. 

Maximum Likelihood Estimation 

Given the pdf 𝑓(𝑥; 𝑎, 𝑏, 𝜃) of Kw-P(min) distribution, the maximum likelihood estimators can be 

obtained by 

𝐿1(𝑥𝑖; 𝑎, 𝑏, 𝜃) = ∏ 𝑓1(𝑥𝑖; 𝑎, 𝑏, 𝜃)

𝑛

𝑖=1

 

= (
𝑎𝑏𝜃

1 − 𝑒−𝜃
)

𝑛

∏ 𝑥𝑖
𝑎−1

𝑛

𝑖=1

(1 − 𝑥𝑖
𝑎)𝑏−1𝑒−𝜃(1−(1−𝑥𝑖

𝑎)𝑏) 
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Taking partial derivatives, we have 

𝜕𝑙

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

− (𝑏 − 1) ∑
𝑥𝑖

𝑎𝑙𝑜𝑔𝑥𝑖.

1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

− 𝑏𝜃 ∑ 𝑥𝑖
𝑎

𝑛

𝑖=1

(1 − 𝑥𝑖)𝑏−1 𝑙𝑜𝑔 𝑥𝑖             [15𝑎] 

𝜕𝑙

𝜕𝑏
=

𝑛

𝑏
+ ∑ 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎

𝑛

𝑖=1

) + 𝜃 ∑(1 − 𝑥𝑖
𝑎 )𝑏 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎)

𝑛

𝑖=1

                [15𝑏] 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
−

𝑛𝑒−𝜃

1 − 𝑒−𝜃
− ∑(1 −

𝑛

𝑖=1

(1 − 𝑥𝑖
𝑎)𝑏)                  [15𝑐] 

�̂�, �̂�and 𝜃 can be obtained by solving numerically non-linear equations  above set to zero. 

(2} Kw-P (max) Distribution 

The pdf f(x) of Kw-P (max) distribution generated from the maximum order 

Kumaraswamy statistic and Zero-Truncated Poisson distribution is given by:- 

                       𝑓2(𝑥) = ∑ 𝑔𝑛
∞
𝑖=1 (

𝑥

𝑛
) ℎ(𝑛) =

𝜃𝑔(𝑥)𝑒−𝜃(1−𝐺(𝑥))

1−𝑒−𝜃                                 [16] 

 The KwP(max) is a probability distribution with cdf  given as 

𝐹2(𝑥) =
𝑒−𝜃 (𝑒(1−𝑥𝑎)𝑏

− 1)

1 − 𝑒−𝜃
                                                        [17] 

The figure below  illustrates plots of pdfs of the distribution for various parameter values. 

 

 

For parameter values a= 1,b = 3,𝜃 = 0.1, the pdf is antimodal. As for a= 0.2,b = 3, 𝜃 = 0.5, the pdf is 

non-ncreasing. The pdfs when a= 3,b = 0.1, 𝜃 = 1 and a= 1,b = 1, 𝜃 = 1 are non-decreasing, though at 

different rates. 
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Survival and Hazard Functions 

The survival function𝑆2(𝑥) of Kw-P(max) is given by   

𝑆2(𝑥) =
1 − 𝑒−𝜃(1−𝑥𝑎)𝑏

1 − 𝑒−𝜃
                                                                  [18] 

and hazard function ℎ2(𝑥) of Kw-P(max) are given by 

ℎ2(𝑥) =
𝑎𝑏𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1𝑒−𝜃(1−𝑥𝑎))𝑏

1 − 𝑒−𝜃(1−𝑥𝑎))𝑏                                                  [19] 

 Moment 

The rth moment of Kw-P(max) distribution are given by 

𝐸[𝑋𝑟] = ∫ 𝑥𝑟
1

0

𝑎𝑏𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1𝑒−𝜃(1−𝑥𝑎)𝑏

1 − 𝑒−𝜃
𝑑𝑥 

=
𝑏

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
𝑟

𝑎
, 𝑏(𝑛 + 1))                                                [20] 

The expected  value  thus  becomes 

𝐸[𝑋] =
𝑏

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
1

𝑎
, 𝑏(𝑛 + 1))                                                    [21] 

And the vaeiance is given by  

𝑉𝑎𝑟[ 𝑋] =
𝑏

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
2

𝑎
, 𝑏(𝑛 + 1)) −

𝑏2

(1 − 𝑒−𝜃)2
 

[∑
(−1)𝑛𝜃𝑛+1

𝑛!
𝐵 (1 +

1

𝑎
, 𝑏(𝑛 + 1))

∞

𝑛=0

]

2

                                            [22] 

Probability Weighted Moment used to approximate L-moments is given as 

                𝑎𝑟 = ∫ 𝑥 [
1−𝑒−𝜃(1−𝑥𝑎)𝑏

1−𝑒−𝜃 ]
1

0

𝑟
𝑎𝑏𝜃𝑥𝑎−1(1−𝑥𝑎)𝑏−1𝑒−𝜃(1−𝑥𝑎)𝑏

1−𝑒−𝜃 𝑑𝑥 

=
𝑏

(1 − 𝑒−𝜃)𝑟+1
∑

∞

𝑛=0

∑(−1)𝑛−𝑘

𝑟

𝑘=0

(
𝑟
𝑘

)
(𝑘 + 1)𝑛𝜃𝑛+1

𝑛!
𝐵 (𝑏(𝑛 + 1), 1 +

1

𝑎
)                 [23] 

Quantiles 

Starting from the cdf F2(x) of Kw-P(max) distribution, the quantile function can be easily 

obtained by 

𝑥 = {1 − {𝑙𝑜𝑔[𝑢𝑒𝜃(1 − 𝑒−𝜃) + 1]}
1/𝑏

}
1/𝑎

                               [24] 

Substituting u = 0.5, we obtain the median 

𝑀 = {1 − {𝑙𝑜𝑔[0.5𝑒𝜃(1 − 𝑒−𝜃) + 1]}
1/𝑏

}
1/𝑎

                         [25] 
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Random variable X can be generated using the quantile function in equation [24] where 𝑢 ∼ 𝑈(0,1) 

and parameters 𝑎, 𝑏, 𝜃are preset. 

Maximum Likelihood Estimation 

Given the pdf of Kw-P(max) ,𝑓2(𝑥; 𝑎, 𝑏, 𝜃) the maximum likelihood estimators can 

be obtained by 

𝐿2(𝑥𝑖; 𝑎, 𝑏, 𝜃) = ∏ 𝑓2(𝑥𝑖; 𝑎, 𝑏, 𝜃)

𝑛

𝑖=1

 

= (
𝑎𝑏𝜃

1 − 𝑒−𝜃
)

𝑛

∏ 𝑥𝑖
𝑎−1(1 − 𝑥𝑖

𝑎

𝑛

𝑖=1

)𝑏−1𝑒−𝜃(1−𝑥𝑖
𝑎)𝑏                                   [26] 

Taking partial derivatives, we have 

𝜕𝑙

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑜𝑔 𝑥𝑖 − (𝑏 − 1) ∑

𝑥𝑖
𝑎 𝑙𝑜𝑔 𝑥𝑖

1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝑏𝜃 ∑ 𝑥𝑖
𝑎

𝑛

𝑖=1

(1 − 𝑥𝑖)𝑏−1 𝑙𝑜𝑔 𝑥𝑖             [27𝑎] 

𝜕𝑙

𝜕𝑏
=

𝑛

𝑏
+ ∑ 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎 − 𝜃

𝑛

𝑖=1

∑(1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

)𝑏 𝑙𝑜𝑔( 1 − 𝑥𝑖
𝑎)              [27𝑏] 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
−

𝑛𝑒−𝜃

1 − 𝑒−𝜃
− ∑(1 − 𝑥𝑖

𝑎)                 

𝑛

𝑖=1

[27𝑐] 

�̂�, �̂�and 𝜃 can be obtained by solving numerically non-linear equations  above set to zero. 

4. Exponentiated Kumaraswamy Poisson Distribution 

In this section we construct generalizations of Kw-P(min) and Kw-P(max) to EKw-P(min) and 

EKw-P(max) respectively and study their properties. 

(1) EKw=P(min) Distribution 

The cdf F3(x) of EKw-P(min) generated from the cdf of Kw-P(min) distribution  is 

𝐹3(𝑥) =
1 − 𝑒𝑖𝜃[𝐺(𝑥)]𝑐

1 − 𝑒−𝜃
 

 

=
1 − 𝑒−𝜃(1−(1−𝑥𝑎)𝑏)𝑐

1 − 𝑒−𝜃
                                                                 [28] 

and the corresponding pdf is 

𝑓3(𝑥) =
𝑑

𝑑𝑥
(

1 − 𝑒−𝜃[𝐺(𝑥)]𝑐

1 − 𝑒−𝜃
) 

=
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝑐−1𝑒−𝜃(1−(1−𝑥𝑎)𝑏)𝑐

1 − 𝑒−𝜃
                           [29] 

Thus EKw-P(min) is a continuous probability distribution with parameters a,b,c, 𝜃; x>0. When c = 

1,  [28] and [29] will reduce to the cdf and pdf of Kw-P(min) distribution respectively. 

The figure below illustrates plots of pdfs of the distribution for various parameter values. 
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For parameter values a= 3,b = 1,c = 1, 𝜃 = 1, the pdf is unimodal while for a= 1,b = 3,c = 2, 

𝜃 = 1, the pdf is bimodal. The pdfs when a= 1,b = 1,c = 1, 𝜃 = 1 and a= 0.5,b = 3,,c = 1, 𝜃 

= 1 are both non-increasing, though at different rates. 

Survival and Hazard Functions 

The survival function S(x) and hazard function h(x) of EKw-P(min) are given by 

𝑆3(𝑥) =
1 − 𝑒−𝜃 − 1 + 𝑒−𝜃[𝐺(𝑥)]𝑐

1 − 𝑒−𝜃
 

=
𝑒−𝜃[𝑒[(1−(1−𝑥𝑎)𝑏)𝑐

− 1]

1 − 𝑒−𝜃
                                                                         [30] 

And 

ℎ3(𝑥) =
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝑐−1𝑒−𝜃(1−(1−𝑥𝑎)𝑏)𝑐

𝑒−𝜃(𝑒[(1−(1−𝑥𝑎)𝑏)𝑐
− 1)

 

=
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝑐−1𝑒(1−(1−𝑥𝑎)𝑏)𝑐

(𝑒(1−(1−𝑥𝑎)𝑏)𝑐
− 1)

                           [31] 

 Moment 

The rth moment of EKw-P(min) distribution is given by 

𝐸[𝑥𝑟] = ∫ 𝑥𝑟
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − (1 − 𝑥𝑎)𝑏)𝑐−1𝑒−𝜃(1−(1−𝑥𝑎)𝑏)𝑐

1 − 𝑒−𝜃

1

0

𝑑𝑥                            [32] 

Substituting appropriately, the expected value will be 

𝐸[𝑥] =
𝑏𝑐

1 − 𝑒−𝜃
∑ ∑(−1)𝑛−𝑘

𝑠

𝑘=0

∞

𝑛=0

(
𝑠
𝑘

)
𝜃𝑛+1

𝑛!
𝐵 (1 +

1

𝑎
, 𝑏𝑘 + 1)                        [33] 

and the variance is 
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𝑉𝑎𝑟[ 𝑥] =
𝑏𝑐

1 − 𝑒−𝜃
∑ ∑(−1)𝑛−𝑘

𝑠

𝑘=0

∞

𝑛=0

(
𝑠
𝑘

)
𝜃𝑛+1

𝑛!
𝐵(1 + 2/𝑎, 𝑏𝑘 + 1) 

− [
𝑏𝑐

1 − 𝑒−𝜃
∑ ∑(−1)𝑛−𝑘

𝑠

𝑘=0

∞

𝑛=0

(
𝑠
𝑘

)
𝜃𝑛+1

𝑛!
𝐵 (1 +

1

𝑎
, 𝑏𝑘 + 1)]

2

                                 [ 34] 

 When c=1 [32],[33] and [34] will reduce to the rth moment, expectation and variance of 

Kw-P(mi) distribution. 

L-Moments 

Probability Weighted Moments used to compute L-moments using special case of 𝑏𝑟is 

given by 

)1 (1 (1 ) 1 1 1 (1 (1 ) )
'

0

1 (1 ) (1 (1 ) )
[35]

1 1

ca b a b c
r

x a a b a b c x

r

e abc x x x e
b x dx

e e

 

 

− − − − − − − − −

− −

 − − − −
 =

− −  
  

which can be simplified to 

𝑏𝑐

(1 − 𝑒−𝜃)𝑟+1
∑ ∑ ∑(−1)𝑛−𝑗−𝑘 (

𝑟
𝑗

)

𝑠

𝑘=0

𝑟

𝑗=0

∞

𝑛=0

(
𝑠
𝑘

)
(𝑗 + 1)𝑛𝜃𝑛+1

𝑛!
𝐵 (𝑏(𝑘 + 1),

1

1 + 𝑎
)    [36] 

When c=1, [36] reduces to L-moments for Kw-P(min) distribution. 

Quantiles 

Starting from the cdf F3(x) of EKw-P(min) distribution, the quantile function can be easily 

obtained as 

1/
1/

1/c
11 1 log(1 (1 ) [37]

a
b

x e u − −   = − − − − −     

Substituting u = 0.5, we obtain the median as 

1/
1/

1/c
11 1 log(1 (1 )0.5 [38]

a
b

M e  − −   = − − − − −     

Random variable X can be generated using the quantile function in equation [37] where 𝑢 ∼ 𝑈(0,1) 

and parameters 𝑎, 𝑏, 𝑐, 𝜃are preset. 

Maximum Likelihood Estimation 

Given the pdf 𝑓3(𝑥; 𝑎, 𝑏, 𝑐, 𝜃) of EKw-P(min) distribution, the maximum likelihood 

estimators can be obtained by 

𝐿3(𝑥𝑖; 𝑎, 𝑏, 𝑐, 𝜃) = ∏
𝑎𝑏𝑐𝜃𝑥𝑖

𝑎−1(1 − 𝑥𝑖
𝑎)𝑏−1(1 − (1 − 𝑥𝑖

𝑎)𝑏)𝑐−1𝑒−𝜃(1−(1−𝑥𝑖
𝑎)𝑏)𝑐

1 − 𝑒−𝜃

𝑛

𝑖=1

                 [39] 

Taking partial derivatives, we have 

𝜕𝑙

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑜𝑔 𝑥𝑖 + 𝑏(𝑐 − 1) ∑

𝑙𝑜𝑔( 1 − 𝑥𝑖
𝑎)𝑏−1𝑥𝑖

𝑎 𝑙𝑜𝑔 𝑥𝑖

1 − (1 − 𝑥𝑖
𝑎)𝑏

𝑛

𝑖=1

𝑛

𝑖=1

− (𝑏 − 1) ∑
𝑥𝑖

𝑎 𝑙𝑜𝑔 𝑥𝑖

1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

 



Vol.11.Issue.4.2023 (Oct-Dec.) Bull .Math.&Stat.Res ( ISSN:2348 -0580)  
 

 

86 Halima Mohamed Abubakar & George Muhua 

−𝑏𝑐𝜃 ∑(1 − (1 − 𝑥𝑖
𝑎)𝑏)𝑐−1(1 − 𝑥𝑖)𝑏−1𝑥𝑖

𝑎 𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

                       [40𝑎] 

𝜕𝑙

𝜕𝑏
=

𝑛

𝑏
+ ∑ 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎) + (𝑐 − 1) ∑
(1 − 𝑥𝑖

𝑎)𝑏 𝑙𝑜𝑔( 1 − 𝑥𝑖
𝑎)

1 − (1 − 𝑥𝑖
𝑎)𝑏

𝑛

𝑖=1

𝑛

𝑖=1

                           

−𝑐𝜃 ∑(1 − (1 − 𝑥𝑖
𝑎)𝑏)𝑐−1(1 − 𝑥𝑖)𝑏𝑥𝑖

𝑎 𝑙𝑜𝑔( 1 − 𝑙𝑜𝑔 𝑥𝑖
𝑎)

𝑛

𝑖=1

                         [40𝑏] 

𝜕𝑙

𝜕𝑐
=

𝑛

𝑐
+ ∑(1 − (1 − 𝑥𝑖

𝑎)𝑏) − 𝜃 ∑(1 − (1 − 𝑥𝑖
𝑎)𝑏

𝑛

𝑖=1

)𝑐 𝑙𝑜𝑔( 1 − (1 − 𝑥𝑖
𝑎)𝑏)

𝑛

𝑖=1

             [40𝑐] 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
−

𝑛𝑒−𝜃

1 − 𝑒−𝜃
− ∑(1 − (1 − 𝑥𝑖

𝑎)𝑏)𝑐

𝑛

𝑖=1

                         [40𝑑] 

�̂�, �̂�, �̂�and 𝜃 can be obtained by solving numerically non-linear equations  above set to zero. 

(2) EKw=P(max) Distribution 

The cdf F4(x) of EKw-P(max) generated from the cdf of Kw-P(max) distribution  is 

𝐹4(𝑥) =
𝑒−𝜃[𝑒−𝜃[1−𝐺(𝑥)]𝑐

− 1]

1 − 𝑒−𝜃
 

=
𝑒−𝜃[𝑒−𝜃((1−𝑥𝑎)𝑏)𝑐

− 1]

1 − 𝑒−𝜃
                                                          [41] 

and the corresponding pdf  is  

𝑓4(𝑥) =
𝑑

𝑑𝑥
[
𝑒−𝜃[𝑒−𝜃[1−𝐺(𝑥)𝑐]]

1 − 𝑒−𝜃
] 

 

=
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1((1 − 𝑥𝑎)𝑏)𝑐−1𝑒−𝜃((1−𝑥𝑎)𝑏)𝑐

1 − 𝑒−𝜃
                          [42] 

Thus EKw-P(max) distribution is a continuous with parameters a,b,c, 𝜃 and x> 0.  

The figure below illustrates plots of pdfs of the distribution for various parameter values. 
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For parameter values a = 1,b = 3, c = 2, 𝜃 = 1, the pdf is non-increasing. As for a= 0.5,b = 3,c 

= 1, 𝜃 = 1, the pdf increases then decreases. The pdfs when a= 1,b = 3,c = 2, 𝜃 = 1 and a = 1,b 

= 1,c = 1, 𝜃 = 1 are non-decreasing, though at different rates. 

Survival and Hazard Functions 

The survival function S(x) and hazard function h(x) of EKw-P(max) distribution are given by 

𝑆4(𝑥) =
1 − 𝑒−𝜃 − 𝑒−𝜃[1−𝐺(𝑥)]𝑐

+ 𝑒−𝜃                   

1 − 𝑒−𝜃
                                        [43] 

and 

                    ℎ4(𝑥) =
𝑎𝑏𝑐𝜃𝑥𝑎−1(1−𝑥𝑎)𝑏−1((1−𝑥𝑎)𝑏)𝑐−1𝑒−𝜃((1−𝑥𝑎)𝑏)𝑐

1−𝑒−𝜃((1−𝑥𝑎)𝑏)𝑐                                         [44]       

Moments 

The rth moment of EKw-P(max) distribution is given by 

𝐸[𝑥𝑟] = ∫ 𝑥𝑟
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1((1 − 𝑥𝑎)𝑏)𝑐−1𝑒−𝜃((1−𝑥𝑎)𝑏)𝑐

1 − 𝑒−𝜃

1

0

𝑑𝑥 

 

=
𝑏𝑐

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
𝑟

𝑎
, 𝑏𝑐(𝑛 + 1))                                                            [45] 

Substituting  appropriately, the expectation will be 

𝐸[𝑋] =
𝑏𝑐

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
1

𝑎
, 𝑏𝑐(𝑛 + 1))                                   [46] 

and the variance is 

𝑉𝑎𝑟[ 𝑋] =
𝑏𝑐

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
2

𝑎
, 𝑏𝑐(𝑛 + 1)) 

− [
𝑏𝑐

1 − 𝑒−𝜃
∑

(−1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=0

𝐵 (1 +
1

𝑎
, 𝑏𝑐(𝑛 + 1))]

2

                                                [47] 

When c=1, [45], [46] and [47] will reduce to rth moment, expectation an variance of Kw-P(max) 

distribution. 

 L-Moments 

Probabilty Weighted Moments of EKw-P(max) distribution will be used to 

approximate its L-moments using the special case of 𝑎𝑟 ie 

𝑎𝑟
′ = ∫ 𝑥 [

1 − 𝑒−𝜃((1−𝑥𝑎)𝑏)𝑐

1 − 𝑒−𝜃
]

1

0

𝑟
𝑎𝑏𝑐𝜃𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1(1 − 𝑥𝑎)𝑏(𝑐−1)𝑒−𝜃(1−𝑥𝑎)𝑏𝑐

1 − 𝑒−𝜃
𝑑𝑥[     48] 

which can be simplified to 

𝑎𝑏𝑐

(1 − 𝑒−𝜃)𝑟+1
∑(−1)𝑘

𝑟

𝑘=0

(
𝑟
𝑘

) ∑
(−1)𝑛(𝑘 + 1)𝑛𝜃𝑛+1

𝑛!

∞

𝑛=1

𝐵 (𝑏𝑐(𝑛 + 1), 1 +
1

𝑎
)          [49] 
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When c=1,[49] will reduce Lmoments of Kw-P(max) distribution. 

Quantiles 

Let F4(x) = u, the quantile function will be given by: 

𝑢 =
𝑒−𝜃[𝑒𝜃((1−𝑥𝑎)𝑏)𝑐

− 1]

1 − 𝑒−𝜃
 

After mathematical manipulation this becomes       

1/
1/

1/c

1 log(1 (1 ) [50]

a
b

x e ue −   = − + −     
 

Substituting u = 0.5, we can easily obtain the median as 

1/
1/

1/c

1 log(1 (1 )0.5 [51]

a
b

M e e −   = − + −     
 

Random variable X can be generated using quantile function given in [50] where 𝑢 ∼ 𝑈(0,1) and 

parameters 𝑎, 𝑏, 𝑐, 𝜃are preset. 

Maximum Likelihood Estimation 

Given the pdf f(x;a,b,c,0) of EKw-P(max) distribution, the maximum likelihood function 

is given by 

𝐿(𝑥; 𝑎, 𝑏, 𝜃) = ∏
𝑎𝑏𝑐𝜃𝑥𝑖

𝑎−1(1 − 𝑥𝑖
𝑎)𝑏(𝑐 −1)𝑒−𝜃(1−𝑥𝑖

𝑎)𝑏𝑐

1 − 𝑒−𝜃

𝑛

𝑖=1

                                              [52] 

Taking logs and partial derivatives, we have 

𝜕𝑙

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑜𝑔 𝑥𝑖 − (𝑏 − 1) ∑

𝑥𝑖
𝑎 𝑙𝑜𝑔 𝑥𝑖

1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝑏𝑐𝜃 ∑(1 − 𝑥𝑖
𝑎)𝑏𝑐−1

𝑛

𝑖=1

𝑥𝑖
𝑎 𝑙𝑜𝑔 𝑥𝑖 [53𝑎] 

𝜕𝑙

𝜕𝑏
=

𝑛

𝑏
+ (𝑐 − 1) ∑ 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎) − 𝑐𝜃

𝑛

𝑖=1

∑(1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

)𝑏(𝑐−1)(1 − 𝑥𝑖
𝑎)𝑏 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎)[53𝑏] 

𝜕𝑙

𝜕𝑐
=

𝑛

𝑐
+ 𝑏 ∑(1 − 𝑥𝑖

𝑎) − 𝑏𝜃

𝑛

𝑖=1

∑(1 − 𝑥𝑖
𝑎

𝑛

𝑖=1

)𝑐(𝑏−1)(1 − 𝑥𝑖
𝑎)𝑐 𝑙𝑜𝑔( 1 − 𝑥𝑖

𝑎)[53𝑐] 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
−

𝑛𝑒−𝜃

1 − 𝑒−𝜃
− ∑(1 − 𝑥𝑖

𝑎)𝑏𝑐

𝑛

𝑖=1

                                                               [53𝑑] 

�̂�, �̂�, �̂�and 𝜃 can be obtained by solving numerically non-linear equations  above set to zero. 

5. Conclusion 

Kumaraswamy-Poisson mixture distributions are continuous with random variablex > 

0. This allows for a wider application of the mixtures compared to Kumaraswamy distribu 

tion whose domain is O < x < I. Kw-P(min) and Kw-P(max) distributions are generalized by 

exponentiating part of their cdfs involving the cdf and sf of the parent distribution 

respectively to obtain the cdfs of EKw-P(min) and EKw-P(max) distributions. When the 

exponent c is equated to 1, EKw-P(min) and EKw-P(max) distributions reduce to Kw 
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P(min) and Kw-P(max) distributions respectively. Plots of the pdfs of the mixtures under 

different parameter values are versatile implying the distributions could be applied in 

modelling data sets of a wide variety.The mixture distributions have the benefit of 

quantile functions that are simple to derive, just like their parent distribution. This makes 

it easy to conduct quantile-based statistical analysis and in studying the properties of the 

mixtures through data simulations. The median, on the other hand, can be easily used 

as a measure of central tendency. The expectations and variances of the mixtures are 

versatile and resemble those of Ku maraswamy distribution. This is an improvement on 

Poisson distribution which assumes equidispersion. Skewness and kurtosis can be easily 

defined using the derived PWMs and their numerical computations done using 

programming languages like R. 
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