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ABSTRACT 

In this paper, a finite capacity queueing system with state dependent service 

operating in different environments with catastrophes is studied. The 

service rate increases (decreases) according as n, the number of units in the 

system, is less (greater) than N, a pre-assigned number. We undertake the 

transient analysis of a limited capacity queueing system with two 

environmental states in the presence of catastrophes. Transient state 

solution is obtained by using the technique of probability generating 

function. The steady state results of the model is obtained by using the 

property of Laplace transform. Finally, some particular cases of the queueing 

model are also derived and discussed.  

Keywords: Catastrophes, Environment, Service rate, Probability generating 

function, Laplace transform. 

 

1. Introduction 

From the last few decades, the M/M/1 queue has been the object of systematic and through 

investigations. In recent years, the attention has been focused on certain extensions that include the 

effect of catastrophes. In this connection, a special reference may be made to the paper by A. Di 

Crescenzo et al. [6]. In paper [6], the authors have recognized the role played by the notion of 

catastrophe in various areas of science and technology, in particular birth and death models. This 

consists of adding to the standard assumptions the hypothesis that the number of customers are 

instantly reset to zero at certain random times. The catastrophes occur at the service- facility as a 
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Poisson process with rate ξ. Whenever a catastrophe occurs at the system, all the customers there are 

destroyed immediately, the server gets inactivated momentarily, and the server is ready for service 

when a new arrival occurs. 

A large number of research papers have appeared dealing with population processes under the 

influence of catastrophes (see. e.g., Brockwell [2], Brockwell et al., [3] and Bartoszynski et al., [3]). 

These works are also concerned with various quantities of interest, such as transition probabilities, 

the stationary probabilities and the time to extinction. It is also well known that computer networks 

with a virus may be modeled by queueing networks with catastrophes [5]. Jain and Kanethia [8] 

studied the transient analysis of a queue with environmental and catastrophic effects. 

A. Di Crescenzo et al. [6] proved that the M/M/1 catastrophized processes may be suitable to 

approach a current hot topic of great biological relevance, concerning the interaction between myosin 

heads and actin filaments that is responsible for force generation during muscle contraction. However, 

the force of contraction may rise on changing other conditions like a change in temperature or pH or 

a slight stretching of the fiber. Now, in the present paper, we have added another factor of 

environmental change, i.e. the change in the environment affects the state of the queueing system. 

In other words, the state of the queueing system is a function of environmental change factors. 

The direct application of the model can be ascribed to a biological phenomenon that there are 

many creatures such as cockroaches, ants, mosquitoes etc whose movement is restricted with the 

change of temperature (environment). As the temperature drops below a critical temperature say T0, 

the movement (production) of such like creatures becomes almost zero. On the other hand, as the 

temperature goes higher than T0 the movement becomes normal. The catastrophes may occur with 

these creatures in both the environmental states i.e., spray etc which make them zero 

instantaneously. Then the number of such like creatures present in any area can be estimated by using 

the described queueing model with environmental change and catastrophes.  

The layout of this paper is as follows. In the next section we present the assumptions and 

definitions of the model. Section 3 provides a detailed analysis of the main model, which is used in 

section 4 in proving some particular cases. Steady state results are also derived and shown in section 

5. 

2. Assumptions and Definitions: 

(i) The customers arrive in the system one by one in accordance with a Poisson  process at a single 

service station. The arrival pattern is non-homogeneous, i.e.  there may exist two arrival rates, 

namely 
1
 and 0 of which only one is operative  at any instant.  

(ii) The customers are served one by one at the single channel. The service time is exponentially 

distributed. Further, it has been assumed that corresponding to arrival rate 
1
 the Poisson service 

rate is na and the service rate corresponding to the arrival rate 0 is nb . The state of the queueing 

system when operating with  arrival rate 
1
 and service rate na  is designated as E whereas the 

other with arrival rate 0 and service rate nb  is designated as F.  

(iii) The Poisson service rate na is assumed to depend on the number waiting in the queue, including 

the one in service in such a manner that whenever this number (say n) is equal to some fixed number 

(say N), we have some normal rate as 
1
 and for number of units greater than N, the rate is higher 

and for number of units less than N it is lower than the normal rate. We therefore, define   
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( ) Nnε1μa 1n −+=       with  
ε

1
Nn −  

and    Mn
ε

1
N0 −  

Where M denotes the size of the waiting space and ε  is a positive number
N

1
 . This 

restriction on M is necessary to avoid a negative value of na . Similarly, the Poisson service rate nb  is 

defined as 

   ( ) Nnε1μb 2n −+=      with    
ε

1
Nn −  

    and   Mn
ε

1
N0 −  

(iv) The Poisson rates at which the system moves from environmental states F to E and E to F are 

denoted by α  and β  respectively.  

(v) When the system is not empty, catastrophes occur according to a Poisson process with rate . The 

effect of each catastrophe is to make the queue instantly empty. Simultaneously, the system 

becomes ready to accept the new customers.  

(vi) The queue discipline is first- come- first- served.  

(vii) The capacity of the queueing system is limited to M. i.e., if at any instant there are M units in the 

queue then the units arriving at that instant will not be permitted to join the queue, it will be 

considered lost for the system.  

3. Formulation of Model and Analysis (Time Dependent Solution): 

Define,  

P
n
 (t) = Joint probability that at time t the system is in state E and n units are in the queue, 

including the one in service.   

Q
n
(t) = Joint probability that at time t the system is in state F and n units are in the queue, 

including the one in service.  

R
n
(t) = The probability that at time t there are n units in the queue, including the  one in service.  

Obviously, 

  R
n
(t) = P

n
(t) + Q

n
(t)  

Let us reckon time t from an instant when there are zero customers in the queue and the system is in 

the environmental state E so that the initial conditions associated with P
n
(t) and Q

n
(t) becomes,  

 P
n
(0) = 



 =

otherwise;0

0n;1
 

 Q
n
(0) = 0 ;     for all n.  
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The differential -difference equations governing the system are: 

( ) ( ) ( ) ( ) ( ) ( ) ;tPξtαQtPatPξβλtP
dt

d M

0n

n011010 
=

+++++−=  n = 0  ..... (1) 

( ) ( ) ( ) ( ) ( ) ( ) ;tαQtPλtPatPξβaλtP
dt

d
n1n11n1nnn1n ++++++−= −++

 0 < n < M      .... (2)  

( ) ( ) ( ) ( ) ( ) ;tαQtPλtPξβatP
dt

d
M1M1MMM ++++−= −

 
n = M     .... (3) 

( ) ( ) ( ) ( ) ( ) ( ) ;tQξtβPtQbtQξαtQ
dt

d M

0n

n01100 
=

++++−=

  

 n = 0   .... (4) 

( ) ( ) ( ) ( ) ( ) ;tβPtQbtQξαbtQ
dt

d
n1n1nnnn ++++−= ++

 
0 < n < M   ..... (5) 

( ) ( ) ( ) ( ) ;tβPtQξαbtQ
dt

d
MMMM +++−=   n = M     ..... (6) 

Define, the Laplace Transform as 

L.T. [f (t)] = ( ) ( )


− =
0

st sfdttfe       .....(7) 

Now, taking the Laplace transforms of equations (1)–(6) and using the initial conditions, we get  

( ) ( ) ( ) ( ) ( )
=

++=−+++
M

0n

n01101 sPξsQαsPa1sPξβλs     `.... (8) 

( ) ( ) ( ) ( ) ( )tQαsPλsPasPξβaλs n1n11n1nnn1 ++=++++ −++
    .... (9) 

( ) ( ) ( ) ( )sQαsPλsPξβas M1M1MM +=+++ −
                 ... (10) 

( ) 
=

++=++
M

0n

n0110 (s)Qξ(s)Pβ(s)Qb(s)Qξαs     .... (11) 

( ) (s)Pβ(s)Qb(s)Qξαbs n1n1nnn +=+++ ++
     .... (12) 

( ) ( ) ( )sPβsQξαbs MMM =+++                   .... (13) 

Define, the probability generating functions  

( ) ( )
=

=
M

0n

n

n zsPsz,P         .... (14) 

( ) ( )
=

=
M

0n

n
n zsQs,zQ         .... (15) 

( ) ( )
=

=
M

0n

n
n zsRs,zR         .... (16) 

where  
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( ) ( ) ( )sQsPsR nnn +=      

Multiplying equations (8)–(10) by the suitable powers of z, summing over all n and using equations 

(14)–(16), we have.  

  ( ) ( )sz,Qzαsz,Pξzβzz)z(1λεN)1)(1(zμzss)(z,Pε1)μz(z 111 −++−+−−++−        

( ) ( ) ( ) ( ) ( )
=

+ +−+−−+=
M

0n

nM

1M

101 sPzξsPz1zλsP1zεN)(1μz        .... (17) 

Similarly, from equations (11)–(13) and using equations (14)–(16), we have  

s)βzP(z,s)Q(z,ξz]αzεN)(11)(zμ[zss)(z,Qεμ1)-z(z 22 −++−−++  

          ( ) ( ) ( )
=

+−−=
M

0n

n02 sQzξsQ1zεN)(1μ                                          ... (18) 

In order to obtain P(z,s) and Q(z,s) from equations (17) and (18), we use Iteration Method. 

If we assume that the parameter β is small, then we can use it in the series solution as follows: 

++= s)(z,Pβs)(z,Ps)P(z, 10
                                                                   ….. (19) 

++= s)(z,Qβs)(z,Qs)Q(z, 10
                                              ….. (20) 

Where the non-written terms are of higher order of β (i.e., we limit ourselves to the first 

approximation). Substituting values of P(z,s) and Q(z,s) from equations (19) and (20) in equations (17) 

and (18) and identifying terms with like powers of β . We obtain thus the zero order (i.e., terms not 

containing β ) and one order (i.e., terms containing first power of β ) approximations: 

10

1

010 zs)(z,Q
1)ε(zμ

α
s)(z,P(z)ηs)(z,P =

−
−+                                                .... (21) 

2020 zs)(z,Q(z)ηs)(z,Q =+                                                                  .... (22) 

0s)(z,Q
ε1)μ(z

α
s)(z,P(z)ηs)(z,P

ε1)μ(z

1
s)(z,P 1

1

110

1

1 =
−

−+
−

+                      .... (23) 

0s)(z,P
ε1)μ(z

1
s)(z,Q(z)ηs)(z,Q 0

2

121 =
−

−+                                    … (24) 

where, 

 
εμ1)(zz

zξz)z(1λN)ε(11)(zμsz
(z)η

1

11
1

−

+−+−−+
=  

εμ1)(zz

zξzαN)ε(11)(zμsz
(z)η

2

2
2

−

++−−+
=  

( ) ( ) ( ) ( ) ( )

εμ1)(zz

sPzξsPz1zλsP1zεN)(1μz

z
1

M

0n

nM

1M

101

1
−

+−+−−+

=

=

+
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( ) ( ) ( )

εμ1)(zz

sQzξsQ1zεN)(1μ

z
2

M

0n

n02

2
−

+−−

=

=  

On solving equation (22), we have 

 
A(z)

(s)QN(z)(s)QM(z)

s)(z,Q

M

0n

n0

0


=

+

=               … (25) 

where 

 
εμ

ξ)α(s

ε

εN1

21)(zzA(z)

++−

−=  

 dz1)(zz
ε

εN1
M(z)

εμ

ξ)α(sz

0

1
ε

εN1

2

++
−

−

−
−

=   

 dz1)(zz
εμ

ξ
N(z)

1
εμ

ξ)α(sz

0

ε

εN1

2

2

−
++−

−=   

Solving equations (25) and (21) for s)(z,P0
, we have 

( )
( ) ( ) ( )

( )zB

(z)K(z)K(s)P(z)K(s)Q(z)KsP(z)KsP(z)KsQ

sz,P

M

0n

65n

M

0n

4n3M2010

0


==

+++++

=      … (26) 

where 

 
z

εμ

λ

εμ

ξ)(s

ε

εN1

1

1

1 e1)(zzB(z)


−+−

−=    

         

 ( ) dzM(z)e1z
εμ

α
(z)K

z
εμ

λz

01

1
1

11
ε2μ

ξ)α(s

ε1μ

ξs

−=


−










+
++

−
+

 

 ( ) dze1zz
ε

Nε1
(z)K

z
εμ

λz

0

1
ε

εN1

2
1

1
ε1μ

ξ)(s


−

−
−

−
−

= 

+

 

 ( ) dze1zz
εμ

λ
(z)K

z
εμ

λz

0

M
ε

Nε1

1
3

1

1
ε1μ

ξ)(s

1


−

+
−

−−= 

+

 

 ( ) dzN(z)e1z
εμ

α
(z)K

z
εμ

λz

01

4
1

11
ε2μ

ξ)α(s

ε1μ

ξs

−=


−










+
++

−
+

 

 ( ) dze1zz
εμ

ξ
(z)K

z
εμ

λz

0

ε

εN1

1

5
1

11
ε1μ

ξs


−−

−= 
−

+
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 ( ) dze1zz
εμ

1
(z)K

z
εμ

λz

0

ε

εN1

1

6
1

11
ε1μ

ξ)(s


−−

−= 
−

+

 

Solving equations (26) and (24) for s)(z,Q1 , we have 

( )
( ) ( ) ( )

( )zA

(z)K(z)K(s)P(z)K(s)Q(z)KsP(z)KsP(z)KsQ

sz,Q

M

0n

1211n

M

0n

10n9M8070

1


==

+++++

= .. (27) 

where, 

 ( ) dz(z)K1zz
εμ

1
(z)K i

z

0

ε

εN1

2

6i

1
ε2μ

ξ)(s

−= 
−

++−

+



      ; i=1, 2, 3, 4, 5, 6. 

Again solving equations (27), (26) and (23) for s)(z,P1 , we have 

( )
( ) ( ) ( )

( )zB

(z)K(z)K(s)P(z)K(s)Q(z)KsP(z)KsP(z)KsQ

sz,P

M

0n

1817n

M

0n

16n15M140130

1


==

+++++

= .. (28) 

where 

 dz(z)K(z)K
A(z)

B(z)α

1z

1

εμ

1
(z)K 1ji

z

01

j)(6ji 







−

−
= +−++       ;    

                12)(5,11)(4,10),(3,9),(2,,8)(1,7),(0,:i)(j,  

Thus by putting the values of s)(z,Q,s)(z,Qs),(z,Ps),(z,P 1010
 in equations (19) and (20) we have 

the final approximate solutions for s)Q(z,ands)P(z,  

    ( )   ( )

  ( )   ( )  

B(z)

(z)βK(z)KsP(z)βK(z)KsQ(z)βK(z)K

sP(z)βK(z)KsP(z)βK(z)K(s)Q(z)βK(z)K

s)P(z,

M

0n

186

M

0n

n175n164

M15301420131

 
= =

++++++

+++++

=           .... (29) 

  ( ) ( )  

A(z)

(z)βK(s)P(z)βK

(s)Q(z)βKN(z)sP(z)βKsP(z)βK(s)Q(z)βKM(z)

s)Q(z,

M

0n

12n11

M

0n

n10M90807





=

=

++

+++++

=          .... (30) 

where 

( ) ( )
( )ξβαss

ξαs
sPs1,P

M

0n

n
+++

++
==

=  

( )ξβαss

β
(s)Qs)Q(1,

M

0n

n
+++

==
=

 

On adding relations (29) and (30), we have  
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       

       

     

B(z)A(z)

(z)βB(z)K(z)βK(z)KA(z)(s)P(z)βB(z)K(z)βK(z)KA(z)

(s)Q(z)βKN(z)B(z)(z)βK(z)KA(z)(s)P(z)βB(z)K(z)βK(z)KA(z)

(s)P(z)βB(z)K(z)βK(z)KA(z)(s)Q(z)βKM(z)B(z)(z)βK(z)KA(z)

s)R(z,

M

0n

12186n11175

M

0n

n10164M9153

0814207131





=

=

++++++

++++++

+++++++

=  ...(31) 

Since, 

 ( ) ( ) ( )
s

1
sQsPsR

M

0n

n

M

0n

n

M

0n

n =+= 
===

      … (32) 

Thus relation (31), for z=1 gives 

s)R(z,lim
s

1
s)R(1,

1z→
==        ... (33) 

 s)P(z,lim(s)Ps)P(0,
0z

0
→

==                          …… (34) 

and s)Q(z,lim(s)Qs)Q(0,
0z

0
→

==                 ….. (35) 

The relations (33), (34), and (35) on solution gives the values of .(s)P(s),Q(s),P M00 .  

4. Particular Case: 

Letting →, →0 and setting 1N1,ε ==  and 
1
= 

2
=  (i.e., when the departure rate is nμ ), in 

relation (31), we have  

( )
K(z)

)z(L
s

1
(z)L(s)P(z)L

sz,r
32M1 ++

=           .... (36) 

where 

 ( ) dze1zz
μ

λ
(z)L

z
μ

λz

0

M1
1

1
μ

ξs


−

−−= 

+

 

 ( ) dze1z
μ

ξ
(z)L

z
μ

λz

0

2

11
μ

ξs


−

−= 
−

+

 

 ( ) dze1z
μ

1
(z)L

z
μ

λz

0

3

11
μ

ξs


−

−= 
−

+

 

 
z

μ

λ

μ

ξ)(s 1

e1)(zK(z)


−+

−=  

The value of the unknown quantity (s)PM
 can be obtained by solving the equation

s

1
s)r(z,lim

1z
=

→
. 

5. Steady State Results: 

This can at once be obtained by the well -known property of the Laplace transform given below: 



Vol.11.Issue.4.2023 (Oct-Dec.) Bull .Math.&Stat.Res ( ISSN:2348 -0580)  
 

 

17 Darvinder Kumar 

( ) ( )sfslimtflim
0st →→

= ,     If the limit on the left hand side exists.  

Then   

( ) ( ) sz,RslimzR
0s→

=  

By employing this property, we have from relation (31). 

       

       

  

(z)B(z)A

C(z)K(z)Bβ(z)Kβ(z)K(z)AP

(z)Kβ(z)N(z)B(z)Kβ(z)K(z)AQ(z)K(z)Bβ(z)Kβ(z)K(z)AP

(z)K(z)Bβ(z)Kβ(z)K(z)AP(z)Kβ(z)M(z)B(z)Kβ(z)K(z)AQ

R(z)
11175

M

0n
n

10164

M

0n
n9153M

8142071310



++++

+++++++

++++++

=




=

=

 …(37) 

where, 

 
εμ

ξ)(α

ε

εN1

21)(zz(z)A

+−

−=  

 
z

εμ

λ

εμ

ξ

ε

εN1

1

1

2 e1)(zz(z)B


−−

−=  

 dz1)(zz
ε

εN1
(z)M

εμ

ξ)(αz

0

1
ε

εN1

2 −
−

=

+
−

−

  

 dz1)(zz
εμ

ξ
(z)N

1
εμ

ξ)(αz

0

ε

εN1

2

2

−
+−

−=   

 ( ) dz(z)Me1z
εμ

α
(z)K

z
εμ

λz

01

1
1

11
ε2μ

ξ)(α

ε1μ

ξ

−=


−










+
+

−

 

 ( ) dze1zz
ε

Nε1
(z)K

z
εμ

λz

0

1
ε

εN1

2
1

1
ε1μ

ξ


−

−
−

−
−

=   

 ( ) dze1zz
εμ

λ
(z)K

z
εμ

λz

0

M
ε

Nε1

1

1
3

1

1
ε1μ

ξ


−

+
−

−−=   

 ( ) dz(z)Ne1z
εμ

α
(z)K

z
εμ

λz

01

4
1

11
ε2μ

ξ)(α

ε1μ

ξ

−=


−










+
+

−

 

 ( ) dze1zz
εμ

ξ
(z)K

z
εμ

λz

0

ε

εN1

1

5
1

11
ε1μ


−−

−= 
−



 

 ( ) dz(z)K1zz
εμ

1
(z)K i

z

0

ε

εN1

2

6i

1
ε2μ

ξ)(

−= 
−

+−

+



       ;  i = 1, 2, 3, 4, 5. 
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 dz(z)K(z)K
(z)A

(z)Bα

1z

1

εμ

1
(z)K 1ji

z

01

j)(6ji 







−





−
=

+−++     ;    

        11)(4,10),(3,9),(2,,8)(1,7),(0,:i)(j,  

 C = the constant of integration. 

The unknown quantities 
==

M

0n

n

M

0n

nM00 PandQ,P,Q,P  can be evaluated as before. 

Particular Case: 

Relation (36), on applying the theory of Laplace transforms gives  

( )
(z)K

C(z)LP(z)L
zr 2M1



++
=        ..... (38) 

Where  

( ) ( )s,zrslimzr
0s

=
→

 

( ) dze1zz
μ

λ
(z)L

z
μ

λz

0

M1
1

1
μ

ξ


−

−−=   

( ) dze1z
μ

ξ
(z)L

z
μ

λz

0

2

11
μ

ξ


−

−= 
−

 

z
μ

λ

μ

ξ 1

e1)(z(z)K


−

−=  

=C the constant of integration. 

The unknown quantity of equation (38) can be evaluated as before. 

When no catastrophe is allowed i.e., ξ = 0 then relation (38), gives  

dzezP
μ

λ
Cr(z)e μ

zλ

M

M
1

1

z
μ

λ 11


−−

−=                .... (39) 

where 

1C = the constant of integration. 

The unknown quantity MP  can be evaluated as before.     

For unlimited waiting space, the relation (39) becomes, If Max (, |z|)  1. 

( ) 1

μ

zλ

Czre

1

=

−

  

Which for z = 1 gives, μ

λ

1

1

eC

−

=      
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Hence,    
z)(1

μ

λ1

er(z)
−

−

=                         ….. (40) 

which is a well- known result.  

Steady-state probabilities of the M/M/1 queueing model: 

In [9], Kumar, B. K., and Arivudainambi, D. have studied the transient solution of an M/M/1 queue 

with catastrophes. They have also obtained the steady- state probabilities and mean & variance of the 

M/M/1 queue with catastrophes. 

When a catastrophe occurs at the service facility i.e. ξ >0, the steady- state distribution 

{𝑝𝑛;  𝑛 ≥ 0} of the M/M/1 queue with catastrophes corresponds to 

𝑝0 = (1 − 𝜌)  ;   𝑛 = 0       ….(41) 

𝑝𝑛 = (1 − 𝜌)𝜌𝑛  ;   𝑛 =1, 2, 3, ……     ….(42) 

where 

ρ =
(λ+μ+ξ)−√λ2+μ2+ξ2+2λξ+2μξ−2λμ

2μ
    ….(43) 

Thus equations (41)-(43) provide the steady- state distribution for the queueing system. 

Obviously, the steady state distribution exists if and only if ρ < 1. 

Note: The steady- state probability of this Markov process exists if and only if ξ > 0 or ξ = 0 and λ >

μ. It is also observed that the results of equations  (41)-(43) agree with the model discussed above and 

with [5] by Chao, X. 

6. Conclusion: 

In the present paper, we have established a queueing system with catastrophes, state 

dependent service and environmental change. We have also obtained some particular cases with 

(without) catastrophes and steady state results in detail.   
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