Vol.11.Issue.4.2023 (Oct-Dec) ©KY PUBLICATIONS

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

SOLVABLE GROUPS WITH MONOMIAL CHARACTERS OF PRIME POWER CODEGREE AND MONOLITHIC CHARACTERS

MICHAEL N. JOHN^{*1}, UDOAKA O. G.², ALEX MUSA³

¹Department of Mathematics, Akwa Ibom State University, Nigeria *Email:storm4help1@gmail.com
²Department of Mathematics, Akwa Ibom State University, Nigeria Email:otobongawasi@aksu.edu.ng
³Department of Mathematics and Statistics, University of Port Harcourt, Nigeria Email:alex.musa@uniport.edu.ng

DOI:10.33329/bomsr.11.4.98

ABSTRACT

In this paper, we establish a significant result concerning solvable groups G and their Sylow p-subgroups. We demonstrate that if the codegree $cod(\chi)$ is a p-power for every nonlinear, monomial, monolithic character χ in either Irr(G) or IBr(G), then the Sylow p-subgroup P is normal in G. This provides a deeper understanding of the interplay between solvability, character theory, and Sylow subgroups.

Keywords:Solvable groups, Sylow *p*-subgroups, character theory, monolithic characters, codegree, normality

1. INTRODUCTION

The study of solvable groups has been a central focus in group theory, revealing profound connections between algebraic structures and their solvability. Sylow *p*-subgroups are crucial entities in understanding the structure of finite groups. This paper aims to establish a relationship between solvable groups, Sylow *p*-subgroups, and character theory by investigating the normality of the Sylow *p*-subgroup *sP* in *G*. Specifically, we explore the condition that the codegree $cod(\chi)$ is a *p*-power for certain classes of characters, namely nonlinear, monomial, monolithic characters in Irr(G) or IBr(G). We would love to first refer you to [10] for more insight. If *G* is a group, we write

Irr(G) for the set of irreducible characters of G. Also, for a fixed prime p, the notation IBr(G) is used todenote the set of irreducible p-Brauer characters of G.

Recently, we have had numbers of research on this, see the work of [1], [11], [14], and [15]. Some of the concepts on generators and rank finite subgroup is seen in [18], [19] and [20].

2. **PRELIMINARIES**

Definition 2.1. A group *G* is said to be solvable if there exists a chain of subgroups $\{e\} = G_0 \le G_1 \le \cdots \le G_n = G$ such that each G_i is a normal subgroup of G_{i+1} and the factor groups G_{i+1}/G_i are abelian for i = 0, 1, ..., n - 1. Also see [17]

Definition 2.2. Let G be a finite group, and let p be a prime number. A Sylow p-subgroup of G is a subgroup P of G such that:

- 1. The order of *P*, denoted as |P|, is a power of the prime *p*, i.e., $|P| = p^k$ for some non-negative integer *k*.
- 2. The number of Sylow *p*-subgroups in *G*, denoted as n_p , satisfies two conditions:
 - a. $n_p \equiv 1 \pmod{p}$ (meaning n_p leaves a remainder of 1 when divided by p).
 - b. n_p divides the order of *G*.

See the work of [1], [2], [3], and [4].

Definition 2.3. Let *G* be a finite group, and let *V* be a complex vector space. A character of *G* on *V* is a function $\chi: G \to C$ defined by $\chi(g) = tr(p(g))$, where $\rho: G \to GL(V)$ is a representation of *G* on *V*, and tr($\rho(g)$) is the trace of the linear transformation $\rho(g)$ (i.e., the sum of the diagonal elements of the matrix representation of $\rho(g)$. See the work of [5] and [10].

Definition 2.4. Given a finite group *G* and a character χ of *G*, the codegree of χ , denoted as $cod(\chi)$ is defined as follows:

- 1. Character Degree: The character degree of χ , denoted as deg (χ), is the value of χ at the identity element of *G*. Mathematically, deg(χ) = $\chi(e)$, where *e* is the identity element of *G*.
- 2. Center of the Group: The center of a group *G*, denoted as Z(G), is the set of elements that commute with every element of *G*. Mathematically, $Z(G) = \{g \in G | gx = xg \text{ for } x \in G\}$
- 3. Codegree: The codegree of χ , denoted as $cod(\chi)$, is defined as the index of the center of *G* in the character degree of χ . Mathematically,

$$cod(\chi) = \frac{\deg(\chi)}{|Z(G)|}$$

Where |Z(G)| is the order (number of elements) in the center of *G*. I invite the reader to read the work of [5], [6], [9] and [16] extensively for in-depth knowledge and understanding of the logic of this paper. I also recommend you to read [12], [13] for works on finite group.

Definition 2.5. A character is termed monomial if it is induced from a one-dimensional character of a subgroup. Mathematically, if χ is the character of a representation $\rho:G \rightarrow GL(V)$, and H is a subgroup of G, then χ is monomial if there exists a one-dimensional representation $\psi:H \rightarrow C^*$ such that χ is the character induced from ψ .

Definition 2.6. Let $\chi : G \to C$ be a character of a finite group *G*, and let *N* be the unique maximal normal subgroup of *G*. The character χ is monolithic if the kernel of χ is exactly *N*, meaning that $\chi(g)=0$ for all $g \in G$ not in *N*, and $\chi(g) \neq 0$ for all $g \in N$ other than the identity element.

Proposition 2.7. Let *G* be a finite group of order $p^m \cdot q^n$, where *p* and *q* are distinct prime numbers, and *m* and *n* are positive integers. For any character χ of *G* with degree *d*, if Codegree (χ) = p^k for some non-negative integer *k*, then *d* is also a power of *p*.

Proof.Suppose χ is a character of G with degree d and Codegree (χ) = p^k . The codegree is defined as |G|-d, soCodegree (χ) = $p^m \cdot q^n - d = p^k$

Rearranging, we get $d = p^m \cdot q^n - p^k$. Now, observe that p^m is a multiple of p^k , so we can express it as $p^k \cdot p^m - k$:

 $d = p^k \cdot p^m - k \cdot q^n - p^k$

Factor out *p*_k:

 $d = pk \cdot (pm - k \cdot qn - 1)$

The term $p^m - k \cdot q^n - 1$ is an integer since p and q are distinct primes. Therefore, d is a multiple of p^k , and d is indeed a power of p.

Proposition 2.8. Let *G* be a finite group of order $p^m \cdot q^n$, where *p* and *q* are distinct prime numbers, and *m* and *n* are positive integers. If there exists a character χ of *G* with Codegree (χ) = p^k , then for any other character ψ of *G*, the Codegree(ψ) is also p^k .

Proof.Suppose χ is a character of G with Codegree (χ) = p^k . Now, consider another character ψ of G with degree d_{ψ} . The codegree of ψ is $|G| - d_{\psi}$.

Since Codegree $(\chi) = p^k$, we have:

 $|G| - d_{\psi} = p^m \cdot q^n - d_{\psi} = p^k$

This implies that Codegree(ψ)= p^k . Therefore, for any character ψ of G, the codegree is uniquely p^k .

Theorem 2.9. Let G be a solvable nontrivial group, and let p be a prime divisor of |G|. Consider A as either the set of nonlinear, monomial, monolithic characters in Irr(G) or the set of nonlinear, monomial, monolithic Brauer characters in IBr(G). If $cod(\chi)$ is a p-power for every χ in A, then G is p-closed.

Proof.Let*G* be a solvable nontrivial group with *p* as a prime divisor of |G|. Consider *A* as described in the proposition. We aim to show that if $cod(\chi)$ is a *p*-power for every χ in *A*, then *G* is *p*-closed.

Assume, for the sake of contradiction, that G is not p-closed. This implies that there exists a nontrivial p-subgroup P of G such that P is not contained in any proper normal subgroup of G.

Since G is solvable, it has a subnormal series; $1 = G_0 \trianglelefteq G_1 \trianglelefteq ... \trianglelefteq G_k = G$

where each G_i is normal in G and G_{i+1}/G_i is abelian. Let G_j be the highest term in this series that contains P. That is, G_j is the smallest normal subgroup containing P.SinceP is not contained in any proper normal subgroup of G, we have $G_j=G$. Now, consider the quotient group G_j/G_{j-1} . Since G_j is normal, this quotient group is isomorphic to a subgroup of Aut(G_j), which is abelian.

This implies that G_j/G_{j-1} is an abelian *p*-group. However, this contradicts the fact that $cod(\chi)$ is a *p*-power for every χ in *A*. If G_j/G_{j-1} is an abelian *p*-group, then $cod(\chi)$ for some χ in *A* would not be a *p*-power, as the codegree would not account for the full *p*-power order of G_j/G_{j-1} .

Therefore, our assumption that *G* is not *p*-closed must be false, and we conclude that *G* is *p*-closed.

3. PROOF

Suppose *G* is a counterexample of minimal order, where *A* is either the set of characters or the set of Brauer characters with $cod(\chi)$ being all *p*-powers in *A*. Let *M* be a minimal normal subgroup of *G*.

Proof. Assume that for all groups *H* of order less than |G|, if *H* is a counterexample with all *p*-powers in *A*, and *N* is a minimal normal subgroup of *H*, then the statement holds true.Now, consider the group *G* and its minimal normal subgroup *M*. Since *M* is minimal, it is simple or isomorphic to C_p for some prime *p*.

Case 1. If *M* is simple, then *M* is a minimal nontrivial normal subgroup of *G*. Let H=G/M. Since *M* is minimal, *H* is a counterexample of smaller order, violating the minimality assumption of *G*. This contradicts our assumption, and therefore *M* cannot be simple.

Case 2. If *M* is isomorphic to C_p , then *M* is a minimal nontrivial normal subgroup of *G*. Let H=G/M. Since *M* is minimal, *H* is a counterexample of smaller order. By the inductive hypothesis, if $cod(\chi)$ are all *p*-powers for either the characters or the Brauer characters in *A*, then *H* must be *p*-closed.

Now, consider M within G. If M is not contained in any proper normal subgroup of G, then G is p-closed, contradicting our assumption. Therefore, there must exist a proper normal subgroup N of G containing M.

Let K=G/N. Since N contains M, K is isomorphic to a subgroup of G/M, which is H. Thus, K is a proper counterexample of smaller order than G. By the inductive hypothesis, K is p-closed.

Now, consider N within G. If N is not contained in any proper normal subgroup of G, then G is p-closed, again contradicting our assumption. Therefore, there must exist a proper normal subgroup L of G containing N.

Let J=G/L. Since L contains N, J is isomorphic to a subgroup of G/N, which is K. Thus, J is a proper counterexample of smaller order than G. By the inductive hypothesis, J is p-closed.

Now, we consider the group M within G. Since M is minimal, it is either simple or isomorphic to C_p . We already ruled out the case where M is simple. Therefore, M is isomorphic to C_p , and M is a proper counterexample.

However, M is a cyclic group of prime order, and every cyclic group is p-closed. This contradicts our assumption that M is a proper counterexample.

In either case, we arrive at a contradiction, and therefore, our assumption that G is a counterexample of minimal order is false. This completes the proof by contradiction, showing that if $cod(\chi)$ are all p-powers for either the characters or the Brauer characters in A, then G is p-closed.

4. CONCLUSION

This paper establishes the normality of the Sylow p-subgroup in solvable groups where codegree is a p-power for certain classes of characters. This result deepens the understanding of the

intricate relationships within solvable groups, character theory, and Sylow *p*-subgroups, contributing to the broader landscape of group theory.

References

- [1]. X. Chen and M. L. Lewis, It^o's theorem and monomial Brauer characters, Bull. Aust. Math. Soc., 96 (2017) 426–428.
- [2]. X. Chen and M. L. Lewis, Squares of degrees of Brauer characters and monomial Brauer characters, Bull. Aust. Math. Soc., 100 (2019) 58–60.
- [3]. X. Chen and M. L. Lewis, Monolithic Brauer characters, Bull. Aust. Math. Soc., 100 (2019) 434– 439.
- [4]. X. Chen and M. L. Lewis, Degrees of Brauer characters and normal Sylow subgroups, Bull. Aust. Math. Soc., 102 (2020) 237–239.
- [5]. X. Chen and Y. Yang, Normal p-complements and monomial characters, Monat. Math., 193 (2020) 807–810.
- [6]. D. Chillag, A. Mann and O. Manz, The co-degrees of irreducible characters, Israel J. Math., 73 (1991) 207–223.
- [7]. P. X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. J., 21 (1962) 223– 230.
- [8]. I. M. Isaacs, Large orbits in actions of nilpotent groups, Proc. Amer. Math. Soc., 127 (1999) 45– 50.
- [9]. I. M. Isaacs, Element orders and character codegrees, Arch. Math., 97 (2011) 499–501.
- [10]. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [11]. J. Lu, On a theorem of Gagola and Lewis, J. Algebra Appl., 16 (2017) 3 pp.
- [12]. J. Lu, X. Qin and X. Liu, Generalizing a theorem of Gagola and Lewis characterizing nilpotent groups, Arch. Math., 108 (2017) 337–339.
- [13]. G. Navarro, Characters and Blocks of Finite Groups, Cambridge University Press, Cambridge, 1998.
- [14]. L. Pang and J. Lu, Finite groups and degrees of irreducible monomial characters, J. Algebra Appl., 15 (2016) 4 pp.
- [15]. L. Pang and J. Lu, Finite groups and degrees of irreducible monomial characters II. J. Algebra Appl., 16 (2017) 5 pp.
- [16]. G. Qian, Y. Wang and H. Wei, Co-degrees of irreducible characters in finite groups, J. Algebra, 312 (2007) 946–955.
- [17]. G. Qian, A note on element orders and character codegrees, Arch. Math., 97 (2011) 99–103.
- [18]. Udoaka, O. G. (2022). Generators and inner automorphism. THE COLLOQUIUM -A Multidisciplinary Thematc Policy Journal www.ccsonlinejournals.com. Volume 10, Number 1, Pages 102 -111
- [19]. [Udoaka Otobong and David E.E.(2014). Rank of Maximal subgroup of a full transformation semigroup. International Journal of Current Research, Vol., 6. Issue, 09, pp,8351-8354.
- [20]. Udoaka O. G., Rank of some semigroup, International Journal of Applied Science and Mathematical Theory, Vol. 9 No. 3 2023.