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Abstract 

R² (Adj. R²) is the most widely pursued statistical measure in judging 

the goodness of the fit of the model as well as in explaining the total 

variation of the explained variable via explanatory variables, 

especially in applied scientific fields. As regards the application of R² 

(Adj. R²) there is a variation of its interpretation across linear models 

with and without Intercept along with equally spaced and unequally 

spaced sample observations.  In this paper, an attempt has been made 

to see the behaviour of R² (Adj. R²) on varying sample sizes from small 

to moderate. What has been observed in this paper is that R² is 

relatively large for a small sample compared to a moderate (and large) 

sample. The results obtained are found to corroborate those of the 

prominent work by Gerald J. Hahn and Others. In addition, this paper 

aims to study the behaviour of R² (Adj. R²) on varying numbers of 

regressors. The inferences are that R² (Adj.R²) is an increasing function 

of regressors. 

Keywords: Coefficient of determination, adjusted regression 

coefficient of determination, Regression analysis.                              . 

 

1.Introduction 

 In regression analysis, goodness-of-fit measures assess the extent to which the 

explanatory variable explains the variation in the explained variable. These measures are 
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critical for model selection, comparison, and validation. However, if both the sample size and 

the number of regressors change, these measures can behave differently, which leads to 

varying interpretations of model quality. Data analysts often rely on the coefficient of 

determination (R²) to evaluate how well a model fits a given dataset. Working with non-linear 

models with an intercept using the wrong R² statistic can lead to misleading conclusions 

The root of the problem lies in two key challenges. First, there are various expressions 

of R² in statistical literature. While they produce similar results for linear regression with an 

intercept and they can vary significantly for nonlinear models or models without an intercept. 

Second, many statisticians are unaware of how widespread this issue is. 

The selection of R² requires to be based on the types of models being formulated, the 

model fitting technique used, the purpose for which R² is used and the desirable properties of 

R². It is significantly dependent on the number of observations in a sample as well as the 

number of Regressors. R² with a large sample size is different from a small sample size dataset. 

Understanding these dynamics is crucial for accurate model evaluation. There appear a lot of 

discrepancies and debate in statistical literature as regards the use of R². Samples are as under. 

The literature on R² and its limitations sheds light on several important perceptions of 

how this statistic can mislead researchers, especially in complex models with varying sample 

sizes and predictors. Gao (2023) highlights that R² tends to overestimate the proportion of 

variance explained (PVE) as sample size increases, which could lead to incorrect conclusions 

about a model's effectiveness. Li et al. (2020) discuss how Adjusted R² (adj. R²) attempts to 

address this by accounting for sample size and the number of regressors. Onyutha (2020) 

points out that the inclusion of multiple predictors can artificially inflate R² by giving the false 

impression that a model fits the data well, even if it does not. This can result in models that 

seem effective but are actually inadequate. 

Rights and Sterba (2022) further complicate the picture, suggesting that in multilevel 

models, the choice of centering strategy can impact R² calculations, making it difficult to 

accurately interpret the explained variance at different levels. This highlights the challenges 

in interpreting R², particularly in more complex models. Despite R²'s widespread use, its 

limitations are clearly visible. Onyutha (2020) suggests that alternative metrics like the 

coefficient of model accuracy (CMA) could offer more reliable evaluations of model 

performance. 

Sangeeta Dev (2016) adds another layer of complexity by pointing out that R² behaves 

unpredictably when data is contaminated, further complicating its utility as a universal 

measure for assessing the performance of linear regression models. Jeremy, N., V., and Miles 

(2014) confirm that while R² measures the proportion of variance explained by predictors, it 

is highly sensitive to both sample size (n) and the number of regressors (k).  

In conclusion, though R² is a commonly used statistic, it is clear that it has several 

limitations that can lead to misinterpretation.  

2. Methodology: 

The methodology and methods used here are simple linear regression and multiple 

linear regression with or without an intercept. They go as: 
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E((𝑌/𝑋))  =  α +  βX

E((𝑌/𝑋)) =  βX
}  (2.1) 

And  

𝐸(𝑌/𝑋)  =  𝛽0  +  ∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

𝐸(𝑌/𝑋)  =  ∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1 }
 
 

 
 

  (2.2) 

 

Where Y stands for the Explained variable and X’s stand for explanatory variables 

The least squares estimators are 

                      �̂� = (𝑋′𝑋)−1𝑋′𝑌         →(2.3) 

                 D(�̂�) = (𝑋′𝑋)−1𝜎2      

Where          X = (𝑥𝑖𝑗) ;                         i=1, 2, …….., n 

                          = regression matrix      j= 0, 1, 2, ……., k; 

                      �̂� = (�̂�0, �̂�1, …… , �̂�𝑘)T  

                         ℇ˷= (ℇ1, ℇ2, … . . , ℇ𝑛)T 

And X is a n x k+1 matrix of rank k+1 

2.1. R-squared (R²):  

R-squared is a statistical measure that is used to explain the variability of the 

dependent variables or regressand in a regression model with respect to the variation in the 

independent variable or regressor. It is the proportion of variance in the dependent variable 

that is predictable from the independent variables. 

 The value of R² ranges from 0 to 1. R² tends to 1 implies that the model explains a 

large portion of the variability, while a value close to 0 means the model explains very little 

variation. 

Expressions of R2: 

 𝑹𝟐 = 𝟏 −
𝑺𝑺𝑹

𝑺𝑺𝑻
    or 

𝑹𝟐 =
∑ (�̂�𝒊−�̅�)

𝟐
𝒏

𝒊=𝟏

∑ (𝒚𝒊−�̅�)
𝟐�̅�

𝒊=𝟏

         

Where SSR is the sum of squared residuals (errors) and SST is the total sum of squares, 

which measures the total variance of the dependent variable. 

Adjusted R-squared (Adj. R²): Adjusted R-squared adjusts the R² value depending on the 

number of regressors in the model. It is useful because R² will always increase when more 

variables are added, even if they don’t significantly improve the model. Adjusted R-squared 

penalizes the model for including unnecessary predictors and prevents overfitting. 
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 𝑨𝒅𝒋𝑹𝟐 = 𝟏 − (
𝟏−𝑹𝟐

𝒏−𝒑−𝟏
) ⋅ (𝒏 − 𝟏) 

Where, n is the number of observations, 

and p is the number of regressors. 

 A higher adjusted R-squared value implies a better model fit without considering the 

unnecessary regressors. 

Mean Squared Error (MSE): MSE measures the average squared difference between the 

observed actual outcomes and the outcomes predicted by the model. It gives us an idea of 

how well the model predicts the dependent variable. 

𝑴𝑺𝑬 =
𝟏

𝒏
∑(𝒚𝒊 − �̂�𝒊)

𝟐

𝒏

𝒊=𝟏

 

Where 𝑦𝑖    is the observed value and �̂�𝑖is the predicted value. 

 Lower MSE indicates that the model’s predictions are closer to the actual values. A higher 

MSE indicates poor model performance. 

Akaike Information Criterion (AIC): AIC is a measure of the quality of a statistical model, 

balancing between goodness-of-fit and model complexity. It helps in model selection, 

comparing multiple models, and choosing the one that best explains the data without 

overfitting 

 𝑨𝑰𝑪 = 𝟐𝒌 − 𝟐 𝒍𝒏(𝑳) 

Where: 

k is the number of model parameters (predictors/regressors), 

L is the likelihood of the model (how likely the observed data is given the 

model). 

 A lower AIC value indicates a better model, as it suggests that the model fits the data well 

without including unnecessary parameters. 

Bayesian Information Criterion (BIC): BIC is similar to AIC but adds a stronger penalty for 

having more parameters. It is also used for model selection, comparing models to find the one 

that best balances fit and complexity. 

𝑩𝑰𝑪 = 𝒍𝒏(𝒏) ⋅ 𝒌 − 𝟐 𝒍𝒏(𝑳) 

Where, 

n is the number of data points, 

k is the number of parameters, 

L is the likelihood. 

A lower BIC value indicates a better model. However, BIC tends to favour simpler models 

compared to AIC, especially when the sample size is large. 
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3. Results and Analysis: 

Models (2.1) and (2.2) have been run for small to moderate sample sizes. The various 

statistical measures such as MSE, AIC, BIC, R2, Adj. R2 has been computed. The results are 

presented below.  

3.1. Model: Simple linear regression (with intercept) 

3.1.1: The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

Python Language as per increasing number of observations for simple linear regression with 

intercept. 

No. of 

Obsns. 

3 4 10 14 20 26 

R-squared 0.9994 

 

0.9994 

 

0.9942 

 

0.9934 

 

0.9936 0.9929 

Adjusted R-

squared 

0.9991 

 

0.9992 0.9936 

 

0.9928 

 

0.9932 

 

0.9926 

 

MSE 3541.8013 

 

3261.8399 

 

5470.1543 

 

4451.9707 4435.6024 

 

4815.2091 

AIC 17.9294 

 

22.7479 

 

77.6942 

 

110.1411 156.3745 

 

206.5087 

BIC 17.0280 

 

22.1343 

 

77.9968 

 

110.7802 

 

157.3703 

 

207.7668 

 

Significance 

at 1% level 

Significant Significant Significant Significant Significant Significant 

Significance 

at 5% level 

Significant Significant Significant Significant Significant Significant 

Data courtesy:  Example taken from of the book’ Introduction to Linear Regression Analysis’ 

by  Montgomery et.al, Pp. 61 

 

 

 

 

 

 

 

 

Graph 3.1.1: R-squared vs no. of observations 
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3.1.2: The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

Python Language as per increasing number of observations. 

No. of 

Obsns. 

02 03 04 05 06 07 08 

R-squared 1.0000 

 

0.9964 

 

0.9892 

 

0.9833 

 

0.9779 0.9724 

 

0.9602 

 

Adjusted R-

squared 

0.9891 

 

0.9929 0.9838 0.9777 0.9724 

 

0.9669  0.9535 

 

MSE 0.0000 0.0000 0.0002 0.0004 0.0007 

 

0.0011 

 

0.0017 

 

AIC -134.498 

 

-17.3999 -18.4007 -20.4008 -22.367 -24.0875 

 

-24.3732 

 

BIC -137.112 

 

-19.2027 

 

-19.6281 -21.1819 -22.7835 

 

-24.1957 -24.2143 

 

Significance 

at 1% level 

Not 

Significant 

Not 

Significant 

Significant Significant Significant Significant 

 

Significant 

 

Significance 

at 5% level 

Not 

Significant 

Significant Significant Significant Significant Significant 

 

Significant 

 

Data Courtesy: Example 2.15 of the book’ Introduction to Linear Regression Analysis’ by  

Montgomery et.al, Pp 63 

 

Graph 3.1.2: R-squared vs no. of observations 

What has been revealed from the table and the graph is that R-Squared values decrease 

as sample size increases, including high R2 for smaller sample size(n). In other words, R2 

decreases as ‘n’ increases. It is also revealed that the statistical measures MSE, AIC, and BIC 

are much smaller for a small sample size as compared to a moderately large sample. 

3.2: Simple linear regression (equally spaced observations) 
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3.2.1: The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

Python Language as per increasing number of observations for equally spaced observations. 

No. of 

Obsn 

02 03 04 08 09 10 

R-squared 0.9866 

 

0.9911 

 

0.9729 

 

0.9883 

 

0.9881 

 

0.9906 

 

Adjusted 

R-squared 

0.9867 

 

0.9867 

 

0.9639 0.9866 

 

0.9866 

 

0.9895 

 

MSE 1063.8432 

 

1618.1256 

 

3389.3666 7071.4964 

 

8860.3264 

 

9996.9310 

AIC 16.2375 

 

22.5843 

 

33.9233 63.9818 

 

72.7073 

 

79.5355 

 

BIC 14.9307 33.3096 

 

33.3096 64.0612 

 

72.9045 

 

79.8381 

Significanc

e at 1% 

level 

Not 

Significant 

Significant Significant Significant Significant 

 

Significant 

 

Significanc

e at 5% 

level 

Not 

Significant 

Significant Significant Significant Significant 

 

Significant 

 

Data Courtesy: Table 2.5 of ‘Basic Econometrics’ by Damodor and Sangeeta, Pp49 

 

Graph 3.2.1: R-squared Vs no. of observations 
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3.2.2: The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

Python Language as per increasing number of observations for equally spaced observations. 

No. of 

Obsns. 

03 04 05 8 11 13 15 

R-squared 0.7500 

 

0.8000 

 

0.8167 

 

0.3282 

 

0.5047 

 

0.5139 

 

0.5274 

 

Adjusted R-

squared 

0.5000 

 

0.7000 

 

0.7556 

 

0.2162 0.4496 

 

0.4697 0.4910 

MSE 0.0006 

 

0.0005 

 

0.0022 

 

0.0084 

 

0.0081 

 

0.0074 0.0066 

 

AIC -9.9730 

 

-15.0521 

 

-12.4071 -11.5356 -17.7506 

 

-22.9527 -28.7515 

BIC  -11.7758 

 

-16.2795 

 

-13.1882 -11.3767 

 

-16.9548 

 

-21.8228 

 

-27.3354 

 

Significance 

at 1% level 

Not 

Significant 

Not 

Significant 

Not 

Significant 

Not 

Significant 

Not 

Significant 

Significant 

 

Significant 

Significance 

at 5% level 

Not 

Significant 

Not 

Significant 

Significant Not 

Significant 

Significant Significant 

 

Significant 

Data Courtesy: Example J of the book‘Applied Regression Analysis’ by Draper & Smith, Pp 

101 

 

Graph 3.2.2: R-squared Vs no. of observations 
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3.3: Simple linear regression (without intercept) 

3.3.1. The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

Python Language as per the increasing number of observations for a simple linear regression 

model without an intercept. 

No. of 

Obsns. 

03 05 07 09 11 13 15 

R-squared 0.9917 0.9903 

 

0.9918 

 

0.9940 

 

0.9927 0.9933 0.9947 

 

Adjusted 

R-squared 

0.9834 

 

0.9871 0.9901 0.9931 

 

0.9919 

 

0.9927 

 

0.9943 

 

MSE 0.0945 

 

0.1158 

 

0.0902 

 

0.0939 

 

0.0940 

 

0.0892 

 

0.0807 

AIC 5.4377 7.4097 

 

7.0260 

 

8.2502 9.2060 

 

9.4759 

 

8.8120 

 

BIC 3.6349 

 

6.6286 6.9178 

 

8.6446 10.0018 

 

10.6058 10.2281 

 

Significance 

at 1% level 

Not 

Significant 

Significant 

 

Significant Significant Significant 

 

Significant Significant 

 

Significance 

at 5% level 

Not 

Significant 

Significant 

 

Significant Significant Significant 

 

Significant Significant 

 

Data Courtesy: Example 2.8 of the book’ Introduction to Linear Regression Analysis’ by  

Montgomery et.al, Pp 48 

 

Graph 3.3.1: R-squared vs no. of observations 

What has been laid bare is that R2 increases as sample size increases which is completely 

in opposition to what has been for R2 for the intercept model. While the MSE, AIC and BIC 

values are observed to be lower for small sample size as compared to moderate sample size. 

The MSE, AIC, and BIC are found to be marginally large for a moderate sample.  
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3.4: Linear Regressions (upon increasing the number of regressors)  

Linear regressions have been run for various sizes of regressors. The results are 

underlined as follows: 

3.4.1: The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

the Python Language as per the increasing number of regressors for linear regression model. 

No. of 

Regressor 

1 2 3 4 5 

R-squared 0.0442 0.4153 

 

0.6013 0.6722 

 

0.8228 

 

Adjusted R-

squared 

-0.0240 0.3254 0.5016 

 

0.5530 

 

0.7341 

MSE 1327450.7482 

 

812045.1944 553804.8250 455255.4269 246176.4737 

 

AIC 274.9864 

 

269.1230 264.9991 263.8639 256.0269 

BIC 276.5315 271.4408 

 

268.0895 

 

267.7268 

 

260.6624 

 

Significance at 

1% level 

Not 

Significant 

Not 

Significant 

Significant Not 

Significant 

Significant 

 

Significance at 

5% level 

Not 

Significant 

Significant Significant Significant Significant 

 

Data Courtesy: Table 8.10 of ‘Basic Econometrics’ by Damodar and Sangeeta, Pp 297 

 

Graph 3.4.1: R-squared vs no. of Regressors 
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3.4.2: The following Table shows the values of MSE, AIC, BIC, R2, Adj. R2 calculated by using 

Python Language as per the increasing number of regressors for linear regression model. 

No. of Regressor 1 2 3 4 

R-squared 0.5336 

 

0.7005 0.7048 

 

0.7923 

 

Adjusted R-

squared 

0.4978  0.6506 

 

0.6243 

 

0.7092 

MSE 1457421.1575 

 

935834.5016 922443.8041 

 

649081.9642 

 

AIC 259.4508 

 

254.8061 

 

256.5899 

 

253.3179 

 

BIC 260.8669 256.9302 259.4221 256.8581 

Significance at 1% 

level 

Significant Significant Significant Significant 

Significance at 5% 

level 

Significant Significant Significant Significant 

Data Courtesy: Table 7.6 of ‘Basic Econometrics’ by Damodor and Sangeeta, Pp241 

 

Graph 3.4.2: R-squared vs no. of Regressors 

The table and the graph have brought about higher R2 for the higher number of 

regressors, which, in turn, establishes the theoretical justification of non-decreasing R2 as a 

result of non-increasing Residual Sum of Squares. The model fitting using a higher number of 

regressors is warranted by lesser MSE, AIC, and BIC as compared to regressions with a lesser 

number of regressors. The same picture is revealed in both examples. 

4. Conclusion 

The present study undertook an inclusive investigation into the behaviour of the 

coefficient of determination (R²) and its adjusted form (Adjusted R²) under varying sample 

size and number of regressors in linear regression models, both with and without intercepts.  
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The empirical results reveal that R² tends to show relatively higher values when applied 

to small sample sizes, which may create an overestimation of model performance. As the 

sample size increases, R² generally shows a declining trend, thereby presenting a more 

conservative and possibly more realistic measure of model fit. These findings are consistent 

with those of Hahn et al. and other prior studies. 

Furthermore, it is observed that both R² and Adjusted R² increase with the number of 

regressors, which is theoretically consistent with the non-increasing nature of the Residual 

Sum of Squares (RSS). In this context, Adjusted R² serves as a more reliable problem-solving 

tool as it accounts for model complexity by penalizing the inclusion of additional predictors. 

The study also observed corresponding statistical measures such as Mean Squared Error 

(MSE), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). 

Notably, models with smaller sample sizes yielded lower values of MSE, AIC, and BIC.  

In light of these findings, it is evident that while R² and Adjusted R² are indispensable 

tools in regression analysis, they are not free from limitations. Their application must be 

sensitive in models involving small sample sizes or a large number of regressors.  

In conclusion, researchers are advised to critically assess the suitability of R² in their 

specific modelling contexts and to adopt additional statistics and model validation 

techniques. Only through such a comprehensive approach can one ensure robust inference 

and prevent the misinterpretation of statistical results. 
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