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Abstract 

This paper explores the Gaussian Information Gain Function 𝐼(𝑃) =

𝑒−𝑃2
 as an alternative to traditional logarithmic information measures. 

We define a corresponding entropy function and examine its 

mathematical properties, including concavity and bounds. 

Furthermore, we derive a formulation for channel capacity based on 

Gaussian information, providing a non-logarithmic perspective on 

information transmission. This approach is particularly relevant in 

fuzzy systems, uncertain environments, and non-additive information 

frameworks. 

Key words: Gaussian information gain function , Conditional entropy, 

Weighted entropy, Channel capacity.                              . 

 

1. Introduction  

 Information theory traditionally measures the amount of information associated with 

a probabilistic event using the logarithmic function, most notably in Shannon's entropy. For a 

discrete random variable with probability distribution 𝑝𝑖, the Shannon entropy is defined as: 
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𝐻(𝑝) = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1   

 This measure has proven fundamental in the analysis of communication systems, 

especially in defining the channel capacity the theoretical maximum rate at which information 

can be reliably transmitted. However, in various complex systems such as those involving 

fuzzy logic, imprecise probabilities, or non-extensive statistics , alternative measures of 

information have shown more desirable characteristics. One such alternative is the Gaussian 

Information Gain Function [4], defined by:  

                                                                  𝐼(𝑃) = 𝑒−𝑃2
  

 This function measures the information gain from observing an event with probability 

𝑝 ∈ [0,1]. Unlike the logarithmic function, the Gaussian form is bounded, non-logarithmic, 

and symmetric in nature.It assigns high information content to rare events (low p) and low 

information content to highly probable events (high p), mimicking the decay of a Gaussian 

curve.  

Now, we define the Gaussian entropy of a discrete distribution  𝑝𝑖 as: 

𝐻𝐺(𝑝) = ∑ 𝑝𝑖𝑒−𝑝𝑖
2

𝑖

 

 This formulation leads to an entropy measure that captures uncertainty differently 

from Shannon's model. It is especially useful in contexts where the additivity of entropy is not 

desired, or where small probability differences should result in significant changes in 

information. 

2. New work 

2.1 Channel capacity of Gaussian information gain function 

 In the context of communication systems, the channel capacity is the maximum 

possible average information gain across a communication channel, constrained by the 

channel's noise model and input probability distribution. The channel capacity can be 

formulated as: 

𝐶𝐺 = max
𝑝(𝑥)

[∑ 𝑝(𝑥, 𝑦)𝑒−𝑝2(𝑦 𝑥⁄ )

𝑥,𝑦

− ∑ 𝑝(𝑦)

𝑦

𝑒−𝑝2(𝑦)] 

 This expression reflects the maximum expected difference in Gaussian information 

gain between the joint distribution p(x,y) and the marginal distribution p(y), corresponding to 

mutual information in Shannon's theory. 

Let as assume that there is a discrete memory less channel with input and output 

alphabets of 𝑋 and 𝑌 respectively, input probabilities 𝑃(𝑥), output probabilities 𝑃(𝑦), and 

transition probabilities 𝑃(𝑦 𝑥⁄ ), and both 𝑋 and 𝑌 are finite. Reiffen states that the channel is 

extremely loud if, for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, then we have 

𝑃(𝑦)−𝑃(𝑦 𝑥⁄ )

𝑃(𝑦)
= 𝜀𝑥(𝑦) ≪ 1                                                (2.1)  

Equation (2.1) also written as 

                                                  𝑃(𝑦 𝑥⁄ ) = 𝑃(𝑦). (1 − 𝜀𝑥(𝑦))                                             (2.2) 
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We observe that 

                                    ∑ 𝑃(𝑥)𝑥∈𝑋 𝜀𝑥(𝑦) = 0 𝑎𝑛𝑑 ∑ 𝑃(𝑦)𝜀𝑥(𝑦) = 0𝑦∈𝑌                             (2.3) 

with 𝜀𝑥(𝑦) ≪ 1. Later, Susan [3] proposed that 𝑃(𝑦) need only be an approximation of the 

output probabilities rather than the output probabilities itself. 

The Gaussian Information Gain Function is  

 𝐼(𝑃) = 𝑒−𝑃2
                                                                  (2.4) 

The entropy of X is given by 

𝐻(𝑋) = − ∑ 𝑃(𝑥)𝑒−𝑃2(𝑥)
𝑥∈𝑋 = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑒−𝑃2(𝑥)

𝑥∈𝑋𝑦∈𝑌                        (2.5) 

and entropy of Y is given by 

𝐻(𝑌) = − ∑ 𝑃(𝑦)𝑒−𝑃2(𝑦)
𝑦∈𝑌 = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑒−𝑃2(𝑦)

𝑦∈𝑌𝑥∈𝑋                           (2.6) 

The Conditional Entropy of X given Y is  

𝐻(𝑋 𝑌⁄ ) = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑒−𝑃2(𝑥 𝑦⁄ )
𝑦∈𝑌𝑥∈𝑋                                           (2.7) 

 and Y given X is  

𝐻(𝑌 𝑋⁄ ) = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑒−𝑃2(𝑦 𝑥⁄ )
𝑦∈𝑌𝑥∈𝑋                                            (2.8) 

The joint entropy of X &Y is  

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑒−𝑃2(𝑥,𝑦)
𝑦∈𝑌𝑥∈𝑋                                              (2.9) 

From equation (2.8), 

                                       𝐻(𝑌 𝑋⁄ ) = − ∑ ∑ 𝑃(𝑥, 𝑦)𝑒−𝑃2(𝑦 𝑥⁄ )
𝑦∈𝑌𝑥∈𝑋                                   (2.10) 

                                   𝐻(𝑌 𝑋⁄ ) = − ∑ ∑ 𝑃(𝑥)𝑃(𝑦 𝑥⁄ )𝑒−𝑃2(𝑦 𝑥⁄ )
𝑦∈𝑌𝑥∈𝑋                             (2.11) 

From equation (2.2) we have, 

𝑃(𝑦 𝑥⁄ ) = 𝑃(𝑦)(1 − 𝜀𝑥(𝑦))    𝑤ℎ𝑒𝑟𝑒   𝜀𝑥(𝑦) ≪ 1. 

Then 

𝑃2(𝑦 𝑥) =⁄ 𝑃2(𝑦)[1 − 2𝜀𝑥(𝑦) + 𝜀𝑥
2(𝑦)] 

Now, 

Apply Taylor expansion to  𝑒−𝑃2(𝑦 𝑥⁄ ) 

𝑒−𝑃2(𝑦 𝑥⁄ ) = 𝑒−𝑃2(𝑦)[1 + 2𝑃2(𝑦)𝜀𝑥(𝑦) − 𝑃2(𝑦)𝜀𝑥
2(𝑦) + ⋯ ] 

Substitute in to Conditional Entropy (2.11) 

                                   𝐻(𝑌 𝑋⁄ ) = − ∑ 𝑃(𝑥) ∑ 𝑃(𝑦 𝑥⁄ ). 𝑒−𝑃2(𝑦 𝑥⁄ )
𝑦∈𝑌𝑥∈𝑋   

= − ∑ 𝑃(𝑥) ∑ 𝑃(𝑦)(1 − 𝜀𝑥(𝑦)) . 𝑒−𝑃2(𝑦)
𝑦∈𝑌𝑥∈𝑋 [1 + 2𝑃2(𝑦)𝜀𝑥(𝑦) − 𝑃2(𝑦)𝜀𝑥

2(𝑦) + ⋯ ]  

= − ∑ 𝑃(𝑥) ∑ 𝑃(𝑦) . 𝑒−𝑃2(𝑦)
𝑦∈𝑌𝑥∈𝑋 [(1 − 𝜀𝑥(𝑦))(1 + 2𝑃2(𝑦)𝜀𝑥(𝑦) − 𝑃2(𝑦)𝜀𝑥

2(𝑦) + ⋯ )]  

= − ∑ 𝑃(𝑥) ∑ 𝑃(𝑦) . 𝑒−𝑃2(𝑦)
𝑦∈𝑌𝑥∈𝑋 [1 + (2𝑃2(𝑦)−1)𝜀𝑥(𝑦) − 3𝑃2(𝑦)𝜀𝑥

2(𝑦) + ⋯ )]  
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Total Entropy is 

                  𝐻(𝑌 𝑋⁄ ) ≈ 𝐻(𝑌) + [− ∑ 𝑃(𝑦) . 𝑒−𝑃2(𝑦)
𝑦∈𝑌 (2𝑃2(𝑦)−1) ∑ 𝑃(𝑥)𝑥∈𝑋 𝜀𝑥(𝑦) +  

                                                            ∑ 𝑃(𝑦) . 𝑒−𝑃2(𝑦)
𝑦∈𝑌 3𝑃2(𝑦) ∑ 𝑃(𝑥)𝑥∈𝑋 𝜀𝑥

2(𝑦) − ⋯ )] 

So, Channel Capacity C would be 

𝐶 = 𝐻(𝑌) − 𝐻(𝑌 𝑋⁄ ) 

𝐶 ≈ [∑ 𝑃(𝑦) . 𝑒−𝑃2(𝑦)

𝑦∈𝑌

(2𝑃2(𝑦)−1) ∑ 𝑃(𝑥)

𝑥∈𝑋

𝜀𝑥(𝑦) − ∑ 𝑃(𝑦) . 𝑒−𝑃2(𝑦)

𝑦∈𝑌

3𝑃2(𝑦) ∑ 𝑃(𝑥)

𝑥∈𝑋

𝜀𝑥
2(𝑦)

+ ⋯ ] 

This is required channel capacity of Gaussian Information Gain function where are true up 

to the second order of  𝜀𝑥(𝑦) ≪ 1. 

2.2 Properties of The Gaussian Information Gain Function. 

[P1] The Gaussian information measure 𝐼(𝑃) = 𝑒−𝑃2
 is continuous ∀ 𝑃 ∈ [0,1]. 

[P2] The higher limit of 1 and the lower limit of  𝑒−1 define the boundaries of I (P). 

[P3] The value of I(P) decreases as P increases.  

[P4] 𝐻(𝑃) = ∑ 𝑃𝑒−𝑃2(𝑥)
𝑥∈𝑋 , the entropy, is a continuous function and a concave function. 

Theorem 2.2.1 Let 𝐼(𝑃) = 𝑒−𝑃2
 then for any valid conditional probability distribution [1, 5] 

𝑃(𝑦 𝑥⁄ ), the conditional entropy  𝐻(𝑌 𝑋) = −⁄ ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ 𝐼(𝑃(𝑦 𝑥))⁄𝑦∈𝑌   is bounded 

i,e; 

         𝐻(𝑌 𝑋⁄ ) ∈ [− ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ . 𝑒−1
𝑦∈𝑌 , − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ . 1𝑦∈𝑌 ]  

Proof: Since 𝑃(𝑦 𝑥) ∈ [0,1], 𝑡ℎ𝑒𝑛 ⁄ . 𝑃2 ∈ [0,1]. 

Thus,   𝐼(𝑃) = 𝑒−𝑃2
∈ [𝑒−1, 1] 

Therefore, for any value of  𝑃(𝑦 𝑥)⁄  

𝑒−1 ≤ 𝐼(𝑃(𝑦 𝑥)⁄ ) ≤ 1 

           − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ 𝑒−1 ≤ − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ 𝐼(𝑃(𝑦 𝑥))⁄𝑦∈𝑌 ≤𝑦∈𝑌   

                                                                        − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ . 1𝑦∈𝑌    

i.e;     − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ 𝑒−1 ≤ 𝐻(𝑌 𝑋⁄ ) ≤𝑦∈𝑌 − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ . 1𝑦∈𝑌   

Thus  𝐻(𝑌 𝑋⁄ ) ∈ [− ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ . 𝑒−1
𝑦∈𝑌 , − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦 𝑥)⁄ . 1𝑦∈𝑌 ] 

Hence  𝐻(𝑌 𝑋⁄ ) is bounded. 

Theorem 2.2.2 Let 𝐼(𝑃) = 𝑒−𝑃2
 then the entropy [2] defined by  𝐻(𝑋) = − ∑ 𝑃(𝑥)𝑥∈𝑋 𝐼(𝑃(𝑥)) 

is non – additive, i.e; 𝐻(𝑋, 𝑌) ≠ 𝐻(𝑋) + 𝐻(𝑌) 

Proof: In Classical (Shannon) entropy, additivity holds when X & Y are independent. 
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                                                   𝐻(𝑋, 𝑌) ≠ 𝐻(𝑋) + 𝐻(𝑌)  

                                      𝐻(𝑋, 𝑌) = − ∑ 𝑃(𝑥)𝑃(𝑦)𝐼(𝑃(𝑥)𝑃(𝑦))𝑥,𝑦   

                                                    = − ∑ 𝑃(𝑥)𝑃(𝑦)𝑒−𝑃2(𝑥)𝑃2(𝑦)
𝑥,𝑦   

While                  𝐻(𝑋) + 𝐻(𝑌) = − ∑ 𝑃(𝑥)𝑒−𝑃2(𝑥)
𝑥∈𝑋 − ∑ 𝑃(𝑦)𝑒−𝑃2(𝑦)

𝑥∈𝑋   

Since                                       𝑒−𝑃2(𝑥)𝑃2(𝑦) ≠ 𝑒−𝑃2(𝑥). 𝑒−𝑃2(𝑦) 

It follows that                             𝐻(𝑋, 𝑌) ≠ 𝐻(𝑋) + 𝐻(𝑌) 

Thus, Entropy is non-additive. 

Theorem 2.2.3 Let 𝑃(𝑦 𝑥⁄ ) = 𝑃(𝑦)(1 − 𝜀𝑥(𝑦))   where 𝜀𝑥(𝑦) ≪ 1.Then the entropy 

                                 𝐻(𝑌 𝑋⁄ ) = − ∑ ∑ 𝑃(𝑥)𝑃(𝑦 𝑥⁄ )𝑒−𝑃2(𝑦 𝑥⁄ )
𝑦∈𝑌𝑥∈𝑋    

is sensitive to such correlations and can be approximated via. Taylor expansion. 

Proof: Assume  𝑃(𝑦 𝑥⁄ ) = 𝑃(𝑦)(1 − 𝜀𝑥(𝑦))  where 𝜀𝑥(𝑦) ≪ 1. 

Then  

                                               𝑃2(𝑦 𝑥) =⁄ 𝑃2(𝑦)[1 − 2𝜀𝑥(𝑦) + 𝜀𝑥
2(𝑦)]  

Using Taylor expansion 

                     𝑒−𝑃2(𝑦 𝑥⁄ ) = 𝑒−𝑃2(𝑦)[1 + 2𝑃2(𝑦)𝜀𝑥(𝑦) − 𝑃2(𝑦)𝜀𝑥
2(𝑦) + ⋯ … … . ]  

Then 

𝐻(𝑌 𝑋)⁄ ≈ − ∑ 𝑃(𝑥) ∑ 𝑃(𝑦 𝑥⁄ ) . 𝑒−𝑃2(𝑦)
𝑦∈𝑌𝑥∈𝑋 [1 + 2𝑃2(𝑦)𝜀𝑥(𝑦) − 𝑃2(𝑦)𝜀𝑥

2(𝑦) + ⋯ … … ]  

Thus small 𝜀𝑥(𝑦) effects entropy up to second order showing correlation sensitivity. 

3. Conclusion 

 In this paper, we have explored the entropy properties of the Gaussian Information 

Gain (GIG) function defined as 𝐼(𝑃) = 𝑒−𝑃2
  .Unlike conventional information measures such 

as Shannon or Renyi entropy, the GIG function introduces a smooth, rapidly decaying 

behavior for probability weights, leading to novel and bounded entropy characteristics. We 

established three key theorems highlighting distinct aspects of this measure: 

1. Bounded Conditional Entropy: We proved that the entropy derived from the GIG 

function is strictly bounded, which ensures numerical stability and predictability in 

uncertainty estimation. 

2. Non-Additivity: Unlike additive measures such as Shannon entropy, the GIG entropy 

exhibits non-additivity, making it sensitive to the joint distribution structure and ideal 

for modeling correlated systems. 

3. Correlation Sensitivity: We demonstrated through second-order approximation that 

the GIG-based entropy is highly responsive to small perturbations in conditional 

distributions, suagestina its utility in contexts where fine-grained differences in 

correlation need to be captured.  

 Additionally, we derived the channel capacity based on this function using a novel 

entropy maximization approach under Gaussian constraints.This derivation not only extends 
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traditional information theory but also opens up new avenues in communication system 

design, particularly in uncertain or non-traditional environments. Overall, the Gaussian 

Information Gain function presents a rich and flexible framework for information 

representation, offering theoretical and practical advantages for modern inference, 

communication, and decision-making systems. 
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