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ABSTRACT 

The binary quadratic Diophantine equation represented 

by
t222 4y)1k(4x  , k, t 0  is analyzed for its non-zero distinct 

integer solutions.  Employing the lemma of Brahmagupta, infinitely many 

integral solutions of the above Pell equation are obtained.  The recurrence 

relations on the solutions are also presented.  A few interesting relations 

between the solutions and special number patterns namely, Polygonal 

numbers  are also given.  Further employing the integer solutions of the 

considered Pell equation, a special pattern of Pythagorean triangle is 

obtained.  
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Notations: 

 nmt ,    -  Polygonal number of rank n with size m  

nSo     -  Stella octangular number of rank n  

   nJ    - Jacobsthal number of rank n   

               nj    -Jacobsthal-Lucas number of rank n  

              nKY   -keynea number of rank n 
      

 

               

 

 

BULLETIN OF MATHEMATICS 
AND STATISTICS RESEARCH 

 

Vol.2.Issue.1.2014 

A Peer Reviewed International Research Journal 

http://www.bomsr.com 

RESEARCH ARTICLE 



A.KAVITHA et al.,                                                                                      Bull .Math.& Stat.Res  

43 
Vol.2.Issue.1.2014                                                                                                    .  

INTRODUCTION 

It is well known that the Pell equation 1Dyx 22  , (D>0 and square free)  has always positive integer 

solutions.  When 1N  , the Pell equation NDyx 22   may not have any positive integer solutions.  For 

example the equations 1y3x 22   and 4y7x 22  have no positive integer solutions.  When k is a 

positive integer and  1k,4kD 22  , positive integer solutions of the equations 4Dyx 22   

and 1Dyx 22   have been investigated by Jones in [4].  The same or similar equations are investigated 

in [3,6,9,10].  In [1,2,5,7,8,11,12,13] some specific Pell equation and their integer solutions are considered.  In 

[14], the integer solutions  of Pell equation 
t222 2y)kk(x   has been considered.  In [15], the Pell 

equation 
t222 2y)kk(x   is analyzed for the integer solutions.  

       This communication concerns with the Pell equation
t222 4y)1k(4x  and   infinitely many positive 

integer solutions are obtained.  The recurrence relations on the solutions are also given. A few interesting 

relations between the solutions and special numbers are presented. 

 

2. METHOD OF ANALYSIS 

     The binary quadratic Diophantine equation representing a hyperbola to be solved for its distinct non-zero 

integral solutions is 

                                                
t222 4y)1k(4x  , k, t 0                                         (1) 

Let )k2),1k2(2()Y,X( t2t
11   be the smallest positive integer solution to (1)  

Consider the Pell’s equation of (1) is given by  1y)1k(4x 222                               (2) 

Let )K,1k2()y~x~( 2
0,0   be the smallest positive integer solution to (2).  

Then the general solution )y~x~( n,n to (2) is given by  
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Employing the lemma of Brahmagupta between the solutions )Y,X( 11  

and )y~,x~( nn , the general solutions to (1) are given by  
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where .........3,2,1,0,1n    

The recurrence relations satisfied by )YX( 2n,2n   are correspondingly exhibited below: 
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3. Properties 
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(xv) For the values of k given by ])223()223[(
22

1 11   nnk   n=0,1,2……. 

each of the following expressions is a perfect square 
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4. APPLICATIONS 

 (I) Define 
2

2
2


  n

n

Y
Xr , 

2
2 nY

s  where ),( 22  nn YX is any solution of (1). Note that r and s are 

integers and .0 sr  Treat r and s as the generators of the Pythagorean triangle ),,( T , where 

,2rs  
22 sr  , 

22 sr  .  Let A and P represent its area and perimeter respectively.  Then this 

Pythagorean triangle T is such that  
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(II) Let x and y be taken as the sides of a rectangle R whose length of the diagonal, Perimeter and area are 

denoted by L, P and A respectively.  Note that,  

  2

2

2 5)1()( yjLi t   is a perfect square 

22 48)( LAPii   

5. CONCLUSION 

  To conclude, one may search for other patterns of solutions and their corresponding properties.  
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