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ABSTRACT 

The binary quadratic Diophantine equation represented 

by
t222 4y)1k(4x  , k, t 0  is analyzed for its non-zero distinct 

integer solutions.  Employing the lemma of Brahmagupta, infinitely many 

integral solutions of the above Pell equation are obtained.  The recurrence 

relations on the solutions are also presented.  A few interesting relations 

between the solutions and special number patterns namely, Polygonal 

numbers  are also given.  Further employing the integer solutions of the 

considered Pell equation, a special pattern of Pythagorean triangle is 

obtained.  
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Notations: 

 nmt ,    -  Polygonal number of rank n with size m  

nSo     -  Stella octangular number of rank n  

   nJ    - Jacobsthal number of rank n   

               nj    -Jacobsthal-Lucas number of rank n  

              nKY   -keynea number of rank n 
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INTRODUCTION 

It is well known that the Pell equation 1Dyx 22  , (D>0 and square free)  has always positive integer 

solutions.  When 1N  , the Pell equation NDyx 22   may not have any positive integer solutions.  For 

example the equations 1y3x 22   and 4y7x 22  have no positive integer solutions.  When k is a 

positive integer and  1k,4kD 22  , positive integer solutions of the equations 4Dyx 22   

and 1Dyx 22   have been investigated by Jones in [4].  The same or similar equations are investigated 

in [3,6,9,10].  In [1,2,5,7,8,11,12,13] some specific Pell equation and their integer solutions are considered.  In 

[14], the integer solutions  of Pell equation 
t222 2y)kk(x   has been considered.  In [15], the Pell 

equation 
t222 2y)kk(x   is analyzed for the integer solutions.  

       This communication concerns with the Pell equation
t222 4y)1k(4x  and   infinitely many positive 

integer solutions are obtained.  The recurrence relations on the solutions are also given. A few interesting 

relations between the solutions and special numbers are presented. 

 

2. METHOD OF ANALYSIS 

     The binary quadratic Diophantine equation representing a hyperbola to be solved for its distinct non-zero 

integral solutions is 

                                                
t222 4y)1k(4x  , k, t 0                                         (1) 

Let )k2),1k2(2()Y,X( t2t
11   be the smallest positive integer solution to (1)  

Consider the Pell’s equation of (1) is given by  1y)1k(4x 222                               (2) 

Let )K,1k2()y~x~( 2
0,0   be the smallest positive integer solution to (2).  

Then the general solution )y~x~( n,n to (2) is given by  
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Employing the lemma of Brahmagupta between the solutions )Y,X( 11  

and )y~,x~( nn , the general solutions to (1) are given by  
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where .........3,2,1,0,1n    

The recurrence relations satisfied by )YX( 2n,2n   are correspondingly exhibited below: 

0XX)2k4(X 2n3n
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3. Properties 
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(xv) For the values of k given by ])223()223[(
22

1 11   nnk   n=0,1,2……. 

each of the following expressions is a perfect square 
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4. APPLICATIONS 

 (I) Define 
2

2
2


  n

n

Y
Xr , 

2
2 nY

s  where ),( 22  nn YX is any solution of (1). Note that r and s are 

integers and .0 sr  Treat r and s as the generators of the Pythagorean triangle ),,( T , where 

,2rs  
22 sr  , 

22 sr  .  Let A and P represent its area and perimeter respectively.  Then this 

Pythagorean triangle T is such that  
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(II) Let x and y be taken as the sides of a rectangle R whose length of the diagonal, Perimeter and area are 

denoted by L, P and A respectively.  Note that,  

  2

2

2 5)1()( yjLi t   is a perfect square 

22 48)( LAPii   

5. CONCLUSION 

  To conclude, one may search for other patterns of solutions and their corresponding properties.  
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