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The ternary quadratic diophantine equation X +9y =1 is analyzed
for its non-zero distinct integral points on it. A few interesting properties

among the solutions are presented.
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Notation: tm,n = Polygonal number of rank n with sides m

p,rT‘] = Pyramidal number of rank n with sides m

Ct,, , = Centered Polygonal number of rank n with sides m
Cp:1 = Centered Pyramidal number of rank n with sides m
Pn = Pronic number

OUn =Gnomonic number

Tha, = Thabit-ibn-Kurrah number

car |n = Carol number

Mer, = Mersenne number
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Ky. = Kynea number
H,, = Hilbert number
PEN,, = Pentatope number
INTRODUCTION

The ternary quadratic diophantine equation offers an unlimited field for research because of their
variety [1-2]. For an extensive review of various problems one may refer [3-11]. In this context one may also
see [12-19]. This communication concerns with yet another interesting ternary quadratic diophantine equation
7X? +9y2 =7° for determining its infinitely many non-zero integral solutions. Also a few interesting
properties among the solutions are presented.
2. Method of analysis:

The ternary quadratic diophantine equation is

X2 +9y° = 7° (1)

We present below different patterns of non-zero distinct integral solutions to (1).
Pattern 1:

Assume Z=9a’+7b? (2)

where a, b>0

using (2) in (1), we get

9y* +7x* =9a’° +7b’

On employing the method of factorization and on equating real and imaginary

parts, we get

x=X(a,b) =6ab (3)

y=y(a,b) = %(Qa2 —7b2)

Thus (2), and (3) represents non-zero distinct integral solutions of (1).
As our interest centers on finding integer solutions, it is seen that y is an integer
for suitable choices of aandb . A few illustrations are given below:
Case 1:
Assume a=3A, b=3B
The corresponding solutions of (1) are

X=X(A, B)=54AB
y=Yy(A B)=27A*-21B?
z=1(A B)=81A% +63B?
Properties:

1) X(A2)+2y(A1)+42=108p]

2) Z(AD—-x(AL) =3t ,+129, +75

3) x(n,5n2 +1) = 324cp’

a) x(2",1)=18(Tha, +1)

5) y(2”,2”)—3(kyn +car |n) is Nasty number

Case 2:
Assume b=3na
The corresponding solutions of (1) are
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X = x(a,n) =18na’

y =Yy(a,n)=3a*(1-7n?)

z=12(a,n)=9a*(1+7n?)
Properties:

1) x(n1)-y(n1)-s,—16t,,,,—n’+20

(
2) z(al)-x(al)=x(al)+y(al)
(

3) x(La+1)-2ct,, =16(mod18)
4) X(l, 2" ) —Tha,, is Nasty number
5) 3y(a,n)+z(an)-17a=t,,

Pattern 2:
(1) is written as

X2 +9y? =72 %1
Assume Z =7a%+9b?
where a, b>0

write 1 as

i (ﬁ +i3)(ﬁ —i3)

16
Substituting (5) and (6) in (4) and on employing the method of factorization,

we get

i3)

(ﬁx+ i3y)(ﬁx - i3y) = (ﬁa+ i3b)2 (ﬁa— i3b)

On equating positive and negative factors and on comparing real and imaginary
parts we get,

X =Xx(a,b) = %(7a2 —~9b” ~18ab)

1
_ y(a,b) = (7a% —9b? +14ab
y=y(a,h) 4(a +14ab)

Case 1:
Let a=2A, b=2B
The corresponding solutions are

x=X(A B)=7A° —9B? —~18AB
y=Y(A B)=7A? —9B +14AB
z=2(A B)=28A2 +36B>

Properties:

1) x(Al)-y(Al)+z(Al)=2t,,—39,+33
2) x(A%,A)-y (A%, A)=32cp;
3) x(A A +1)-y(A A +1)=64cp}

2 (\/7+i3)(\/7—
16
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4) yY(LB)+t,; -39, =10

Case 2:
let &= (2n —1)b
The corresponding solutions are
x=x(a,b)=b’ (7n2 + 4—16n)
y=y(ab)=b (7n2 —4)
z = z(a,b) = 28n°b* +-16b* — 28nb*
Properties:

1) y(Ln+1)-2ct,, =1(mod7)
2) z(n,n)=56t, , —24p; —16cp;
3) 2x(L,n)-s,—2t,, —t,, =7(mod21)

Pattern 3:
write (1) as 22 —(3y)’ = 7x? (7)
write (7) as
z+3 X
Y =B (8)
7X z-3y (¢
This is equivalent to the following equations
7zp—-3yq—qz=0 } )
gx+3yp—pz=0

Applying the method of cross multiplication we get the values of x, y, z represents
non-zero distinct values of (1) we get
x=X(p,q)=6pq
y=y(p.g)=7p"-¢’
z=12(p,q)=21p*+3q°

Properties:

1) x(2".1)-4=Tha, +mer,
2) 3y(p.9)-z(p.a)+x(p,q)=0
3) X(pz, p)—y(p,l)—2p§°+tl&pEl(modz)

Pattern 4:

Write (1) as 2* —7X* =9y? (10)
Let y=a°’ —7b° (11)
where a,b >0
write 9 as

9=(4+7)(4-7) (12)
Substitute (11) and (12) in (10) we get,

(z+ﬁx)(z—ﬁx) :(4+ﬁ)(4—ﬁ)(a+ﬁb)2(a—ﬁb)z

10

Vol.2.Issue.1.2014



K.GEETHA et al., Bull.Math.&Stat.Res

On equating the positive and negative factors, we get

(z+ﬁx)=(4+ﬁ)(a+ﬁb)2 (13)
(z—ﬁx):(4—ﬁ)(a—ﬁb)z (14)

in (13), on equating the rational and irrational parts, we have
x=x(a,b)=a*+7b*+8ab } (15)
z=12(a,b)=4a’+28b* +14ab

Thus (11) and (15) represents non-zero distinct integral solutions of (1).
Properties

1) x(a’,a)-y(a1)—24PEN, —4p; +t,,, =7(mod 24)
2) y(az,a)+14a2 — P, is Nasty number

3) z(al)-cty, —5g, =32
Pattern 5:
Consider X=X +9T (16)
and y=X-7T }
Substituting (16) in (1), we get

z° =16X* +16(63T?) (17)
Taking Z =4wW (18)
in (20), we get

W = X?*+63T? (19)
Thus, we have the following integer solutions to (19) as represented below:

W=63r"+s°

T=2rs (20)

X =63r* —s?

Substituting (20) in (16) and (18) we get the values of x, y, z represents non-zero distinct integral
solutions to (1).

X =63r> —s*+18rs (26)
y =63r° —s* —14rs (27)
7= 4(63r2 +s2) (28)

Properties:
1) z(Ls)-4x(Ls)—ctg, =—1(mod26)
2) x(r,1)+y(r,1)—21ct, =-3(mod122)
3) z(Ls)-8,,+H,=253

3.Generation in solutions:
Let (XO, Yo ZO) be the initial solution of (1). Then, each of the following triples of non-zero

distinct integers based on X, Y and Zpalso satisfies (1)

Triple 1: (162”‘2 (—2x, +18Y,),16™% (14%, +2y, ), 16*™* Zo)
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Triple 2: (Xn, y0 , Zn)

vere X = [VT( )5+ ()2

z = 2\/_[ (a ﬂ)x0+\/_(a+,8) ]
where @ =8+37 and f=8-37
Triple 3: (Xn, Yn, Zn)

Here X, =4°""X,
y :%Wn ) Yo+ (a" - B")2, ]
z :%[S(a” —ﬁ”)y0 +(a” +ﬁ“)zo]

where @ =8 and =2

Triple 4: (Xn, Yn, Zn)

Here X, :%[ﬁ(a”+ﬂ”)xo+(a”—ﬁ”)zo]

Yn :42n_1y0
z = 2\/_[ (a ﬂ)xo+\/_(a+ﬂ) ]
where & =4++/7 and ,324—\/?

4. CONCLUSION: One may search for other patterns of solution and their corresponding properties.
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