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ABSTRACT 

The objective of this paper is to obtain some common unique fixed-point 

theorems for pair of non commuting expansive type mappings using rational 

inequality defined on a non-empty closed subset of a Hilbert space.         
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INTRODUCTION 
The Study of properties and applications of fixed points of various types of contractive mapping in Hilbert and 

Banach spaces were obtained among others by Browder[1]. Browder and Petryshyn [2,3], Hicks and Huffman 

[4], Huffman [5], Koparde and Waghmode [6].  In this paper we present some common fixed-point theorems 

for rational  inequalities   involving expansive type mappings. For the purpose of obtaining the fixed point of 

the two expansive type mappings. We have constructed a sequence and have shown its convergence to the 

fixed point. The main results of this paper extend and generalize the theorem 3  of [8 ], [9] and convert the 

theorem 1 of [7] for expansive maps.   

 

BULLETIN OF MATHEMATICS 
AND STATISTICS RESEARCH 

 

Vol.3.Issue.1.2015 

A Peer Reviewed International Research Journal 

http://www.bomsr.com 

RESEARCH ARTICLE 



Bull .Math.&Stat.Res  

Vol.3.Issue.1.2015                                2 

NEERAJ MALVIYA & GEETA AGRAWAL 
 

MAIN RESULTS.  

Theorem 2.1- Let S, T be non commuting, surjective self maps of a closed subset C of Hilbert Space H satisfying          
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for each , ,x y C x y  ,   , , 0  2 3,    1Where a b c a b c and c     .  Then ST and TS have 

a common unique fixed point in C. 

Proof-- We define a sequence  nx  as follows for n = 0,1,2,3---- 
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 Now we shall prove that, nx is a Cauchy sequence for the caseI. 

For this for every positive integer p we have,  
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as , 0n n pn x x    ,it follows that   nx is a Cauchy sequence in C 

As C is a closed subset of H. So there exist a point x in C such that  

  nx x  as n ,-----------(2.2) 

Existence of fixed point: Since S and T are surjective maps so ST and TS are also surjective  and hence there 

exist two points y  and 
,y  in C such that 
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As  2nx , 2 1nx  are subsequences of{ }nx ,  as n ,   2 2 1,n nx x x x   

Therefore 
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In an exactly similar way we can prove that,  ..................... 2.5x y  

The fact  (2.3) along  with  (2.4 & 2.5) shows that x  is a common fixed point of ST  & TS. 

 

 

Uniqueness:                           

Let z be another common fixed point of ST & TS, that is 

                      z = zSTz z and TS  
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This completes the proof of the theorem 2.1. 

 

Theorem 2.2-  Let S, T be  non commuting surjective self maps of a closed subset C of Hilbert Space H satisfying                
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Proof: Proof of this theorem is similar to the proof of theorem 2.1.                            

Theorem 2.3  Let S, T be non commuting, surjective self maps of a closed subset C of Hilbert Space H satisfying                
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 We can prove that, nx is a Cauchy sequence (using(2.6))  (as proved in theorem 2.1)As C is a closed 

subset of H. So there exist a point x in C such that  

       nx x  as n ,-----------(2.7) 

 

 Existence of fixed point: Since S and T are surjective maps so ST and TS are also        surjective  and hence 

there exist two points y  and 
,y  in C such that 
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 The fact (2.8) along with (2.9 & 2.10 ) shows that x is a common  fixed point of ST &TS. 

Uniqueness- 
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This completes the proof of the theorem 2.3 
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