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ABSTRACT 

 This is the fourth in a series of papers on U-spaces. Here 

projectiveness in some categories of Hausdorff U-spaces has been 

introduced and many topological theorems related to projective 

Hausdorffness have been generalized to U- spaces, as an extension of study 

of supratopological spaces.  
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INTRODUCTION 
             In a previous paper [1] we have introduced U- spaces. There and in [7] and [8] we studied some of their 

properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in 

([2],[3],[10],[14]) in less general form, and the spaces were called supratopological spaces. 

In this paper we have generalized to U- spaces the concepts of projective topological spaces, Stone Čceh 

compactification, perfect maps, and extremally disconnected spaces. We have also generalized to U- spaces 

some results on topological spaces occurring in [4] ,[5],[6],[9], [12] and [13]. A few important properties of 

such U-spaces have been studied. A number of interesting examples have been constructed to prove non- 

trivialness of such results. For most of the cases of the above generalizations the proof for U- spaces runs 

parallel to those for topological spaces.  

We have constructed 2 examples of proper projective U-spaces which are locally compact but not compact 

and two examples of proper projective compact U- spaces.  

In this paper a U- space will mean a Hausdorff U-space, unless otherwise mentioned. 
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2. Projectives in some Categories of Hausdorff U-spaces 

We recall some definitions from [10], and generalize to U- space a few definitions in [5],[6] and [13]. 

Definition  2.1  A category consists of 

(i) A class C of objects A, B, C,…..  

(ii) For each pair of objects A, B a set hom(A, B) whose elements are called morphism, with the property that  

(a) hom(A, B) and  hom(B, C) implies there exists  hom(A, C) which is written      =  ; 

 (b) For each A  C ,there exists 1Ahom(A, A) such that for each B  C and for each  hom(A, B), 

 = 1A, and  =1B , 

(c) Let  hom(A, B),  hom(B, C),  hom(C, D) then  (   ) = (  ) . 

If   =    =   then   is an epimorphism or, epic ; 

If   =    = , then  is a monomorphism or, monic. 

Definition  2.2  Let A, B, C be three objects and  : AC and  : BC be monics in a category. There are 

different ways of completing them to a commutative square. A final object in this square is called Pullback of 

 and  . 

                                              

Definition  2.3 [6]( p- 3)  A U- space P is projective, if for any pair of U– spaces, X, Y and any pair of  

U- continuous maps h: Y X and f: PX, with h onto, there exists a U- continuous map r: P  Y such that 

hr(p) = f(p) for every pP. 

                                                                                Y 

                                                                                                

                                                                    r             h       

                                                             P                    X 

Definition  2.4 [13]( p-7 ) A U-continuous function f: X Y where X and Y are arbitrary Hausdorff  

U-spaces is called U-perfect if f is U- closed and the set f
–1

(y) is compact for each y in Y. 

Definition  2.5  [6]( p- 482)  A U- space X is extremally disconnected if the closure of every U- open set is U-

open. 

Definition  2.6  A U-space Y is an extension U - space of another space X if X is U-dense in Y. 

 

The generalization of the construction of the Stone- Čech compactification for a U- completely regular space 

Let X be a completely regular T1 -U-space. Let {f  }
A  be the collection of all bounded U-continuous real- 

valued function on X, indexed by some index set A.  

For each  A, choose   I  = (- , sup f  (X)] regarded as  U- subspaces of the usual U- space R. Then define 

h:X
A

I



by the rule h(x)= (f  (x))

A
 . Since X is completely regular T1 -U-space, for two distinct points x1, 

x2, {x2} is U- closed and x1  {x2} so there exists f  such that  f


(x1)  f  (x2).Hence h(x1)  h(x2). Therefore h 

is one-one. Since f  : X I  is U- continuous, it follows from the definition of 
A

I


 that h is U-continuous.  

 
P B 

C A 

  

 
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q2 
P* Y 

Z X  

q1 G 

F 

We shall show that h is U-open. Let V1 be a U-open set of X and y0h(V1). Let x0V1 such that h(x0) = y0. Since 

X is completely regular, there exists f  such that f   (x0)       (- , sup f  (X)) and f   (X - V1) = sup f  (X). Let  

V2 =
1

 (- , sup f  (X)). Then V2 is U- open in 
A

I



, and W = V2 h(X) is a U- open set of h(X). 

We shall show that y0W h(V1). Since y0h(V1) h(X) and  h(x0) = f  (x0), y0 = h(x0)= 
1

 f (x0)  V2. 

Therefore  y0W.  

Let yW. Then for some xX, y = h(x) and  (y) (- , sup f  (X)). Since  (y) =  h(x) = f  (x) and f  (X 

– V1) = sup f  (X), so xV1, i.e., y = h(x) h(V1). 

Therefore h: X
A

I


 is an U-imbedding. Hence ( )(Xh , h) is a compactification of X. )(Xh  will be 

written  (X) and will be called the U-generalized form of Stone- Čech compactification of X.  

Definition 2.7 [13]( p- 8) Let P be the category of all paracompact U-spaces and U- perfect maps and T be the 

category of all Tychonoff U-spaces and  perfect U-maps. It is to be noted that both of these categories contain 

C, the category of compact U-spaces and U- continuous maps, as a full subcategory. P is also a full subcategory 

of T.  

Theorem  2.1  The category P has pullbacks.  

As in ([13].p.8) we have (The proof is similar. The details are given to stress the velidity.)  

Proof:  Let f: XZ and g: YZ be two morphisms in the category P (i.e., X, Y, Z be paracompact  

U-spaces and f, g are perfect U-maps). We have to show the existence of a pullback diagram for f and g. 

Let P = {(x, y) XY: f(x) = g(y)} and p1 and p2 be the projection on X and Y respectively. Suppose there exist 

p1: PX and p2: P  Y such that fp1 = gp2.   

Define h: P  XY as follows:  

h(t) = (p1(t), p2(t)), tP. Since fp1 = gp2, h(t) P that is, h:PP such that p1h = p1 and p2h = p2. It is easy 

to see that the map h is unique. Thus the diagram 

                                         

is a pullback for f and g. We show that this diagram belongs to P, that is, that the maps p1 and p2 are  

U-perfect. 

Consider the pullback diagram 

                                                       

 

 

for the maps F:  X     Z and G:  Y   Z where F and G are the extensions of the map f and g onto 

 X  and  Y respectively (  X ,  Y and  Z are the  generalization of Stone- Čech compactifications and 

X , Y  and Z  are reflector maps of X, Y and Z respectively).   

We have F X = Z f, G Y = Z g and P*= {(x*, y*)  X  Y: F(x*) = G(y*)}. q1 and q2 are projections of P* 

to  X and  Y respectively. 

p2 P Y 

Z X 

p1 g 

f 
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Again, let p1*:  P   X, p2*:  P   Y be the extensions of p1 and p2 onto  P. Hence X p1 = p1* P , 

Y p2 = p2* P . Since fp1 = gp2, Z fp1 = Z  gp2. Note that Fp1* P = F X p1 = Z fp1 and Gp2* P = G Y p2 = 

Z gp2.  

Therefore, Fp1* P  = Gp2* P . Since P (P) is U- dense in  P  

we have Fp1* = G p2* on  P. 

From the definition of pullback there exists a (unique) mapping h:  PP* such that p1* = q1h and p2* = q2h. 

Again, for the maps X p1: P    X and    

Y p2:P   Y , we have F X p1 = G Y p2 (this equality is already noted earlier). 

From the definition of pullback once again we get a map k: PP*such that  X p1= q1k and Y p2 = q2k. It is 

easy to see that the map k is as follows:  

k(x, y) = ( X p1(x, y), Y p2(x, y)) = ( X (x), Y ( y)), (x, y) P. k clearly turns out to be a U-homeomorphism 

into P*. Moreover it is not difficult to notice that k = h P . Now k is a U-homeomorphism of P onto k(P)  P*. 

From the property of generalized form of Stone- Čech compactification it follows that  

(i)   h(  P - P (P))  )(Pk - k(P)  P*. 

Now q2k = Y p2, that is, 

                                                          

is a commutative diagram. So we consider the pullback diagram for q2 : P*  Y and Y : Y   Y say 

                                                                                           

Where W is given by {(s, y) P*Y: q2(s) = Y (y)} and 1 , 2  are the respective projections to P* and Y. 

Since q2(s) = q2(x*, y*) = y*, q2(s) = Y (y) implies y* = Y (y).  

Consequently, W = {((x*, Y (y)), y) P*Y: Y (y)= y*} 

                             = {((x*, Y (y)), y) (  X  Y ) Y : F(x*) = G( Y (y))}. 

If F(x*) = G( Y (y)) then F(x*)= G( Y (y)) = Z g(y). Since f is a U-perfect map, F(  X - X (x))   Z - Z (Z). 

As a consequence, x*  X (x), that is, x* = X (x) for some xX. So we have  

W = {(( X (x), Y (y) ), y) (  X  Y ) Y : F( X (x)) = G( Y (y))}. Again Z g(y) = G( Y (y)) = F( X (x)) = 

Z f(x) and this naturally implies f(x) =  g(y).    

We then get,  

(ii)  W = {(( X (x), Y (y) ), y)  (  X  Y ) Y : f(x) = g (y)} 

           = {k(x, y),y): (x, y) P and p2(x, y) = y}.  

Since Y p2 = q2k there exist a unique map j: PW as follows: 

j(x, y) = (k(x, y), p2(x, y)), (x, y)P. 

T 

T2 
W Y 

Y P
*
 

TT1 Y 

q2 

p2 P Y 

Y P
*
 

k Y 

q2 
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Easy to see from (ii) that j(P) = W. In fact j is a U-homeomorphism of P and W. Now W is, by construction, a U-

closed subset of P*Y which is paracompact U-space (as P* is a compact U-space and Y is a paracompact U-

space). As a result W is paracompact U-space. This makes P paracompact U-space and J a U-isomorphism of P 

and W in the category P. We then obtain that the diagram  

                                                      

as a pullback diagram. Note that Y  is a one-one map, that is, Y  is a U-monomorphism. From the definition 

of inverse image we see that P = q2
-1

(Y) as a sub object of P*.In terms of sets this means that  

k(P) = q2
 – 1

( Y  (Y)). As a result q2(P*- k(P))   Y - Y  (Y). We know from (i) that  

h(  P - P (P))  )(Pk - k(P)  P*- k(P), so that p2*(  P - P(P)) = q2h (  P - P (P)) =  q2[h(  P - P (P))] 

 q2(P*- k(P))   Y - Y  (Y). 

Hence, by a characterization of Henriksen and Isbell [13], p2 is a U-perfect map. Similarly, p1 is a U-perfect map. 

We generalize the theorems, Lemmas and Corollary of [5] ( p- 482- 484)  

Theorem 5.2   In any category of U-spaces and maps satisfying conditions   

(a) all admissible maps are U-continuous, 

(b) if A is an admissible space and {p, q} is a two element space, then A {p, q} and the projection map of this 

U-space onto A are admissible, 

(c) if A is an admissible space and B is a U-closed subspace of A, then B and the inclusion map of B into A are 

admissible, a projective U-space is extremally disconnected. 

Proof: Let X be a projective U-space in such a category. Let G be any U-open subset of X; we must prove G is 

U-open. In X {p, q} consider the U-closed set Y = ((X - G)   {p}) ( G  {q}), and its inclusion map i. Let   be 

the projection of X {p, q} onto X. Our hypothesis on the category implies that   o i is an admissible map of Y 

onto X and that the identity   is an admissible map of X into X. Since X is projective U- space, there is an 

admissible map   of X into Y such that   =   o i o  . Because  o i is one -to-one on G {q} it is clear that 

 (x) = qx, for xG; from the continuity of   follows  

 (x) = qx, for xG .Similarly, for x G ,  (x) = px, .  

Thus we have proved G = -1
( G  {q}). Since   is U-continuous and G  {q} is  U-open in Y,  G  is  

U-open in X as required. 

Theorem  2.3  In an extremally disconnected U-space no sequence is convergent unless it is ultimately 

constant. 

Proof: Suppose that the sequence {xn} converges to p in the extremally disconnected U-space X. Assume this 

sequence is not ultimately constant, we shall deduce a contradiction.  

First we construct inductively a disjoint sequence {Ui} of U-open sets in X such that each Ui contains a member 

xn(i) of the given sequence, where {n(i)} is an increasing sequence of integers. Let n(1) be an index for which 

xn(1) p, and choose a U-open set U1 such that xn(1) U1 but p 1U . Suppose we have chosen disjoint U-open 

sets U1,U2,U3,……..,Uk and increasing integers n1,n2,n3,……..,nk such that xn(i) Ui and p iU  for i = 

1,2,3,……..,k. Then V = X - ( kUUUU  ...........321 ) is an U-open neighborhood of p, so xqV for all 

sufficiently large q. By a suitable choice of n(k + 1) we shall have n(k + 1)> nk, xn(k + 1) V but xn(k + 1)  p since the 

original sequence is not ultimately constant. Choose an U-open set W such that 

p2 P Y 

Y P* 

k Y 

q2 
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 xn(k + 1) W but pW , and let Uk+ 1 = W V. This completes the inductive construction. 

Let G = qU 2 . Since X is extremally disconnected U-space, G  is an U-open set, and pG  being the limit of 

{xn(2q)}. Thus G  is a neighborhood of p, so xrG  for all large r; in particular, xn(s)G  for some odd integer s. 

Since Us is a neighborhood of xn(s), Us G is not empty, contrary to the definition of G and disjoint ness of the 

U’s.  

Definition 2.8   A U-space is said to have a countable basis at x if there is a countable collection B of 

neighborhoods of x such that each neighborhood of x contains at least one of the elements of B. 

A U-space that has a countable basis at each of its points is said to satisfy the  first countability axiom, or to be 

first-countable.  

Corollary 2.1 In a category of U-spaces in which all Hausdorff U-spaces satisfy the first axiom of countability 

and properties 

(a) all admissible maps are U-continuous, 

(b) if A is an admissible space and {p, q} is a two-element space, then  A {p, q} and the projection map of this 

space onto A are admissible, 

(c) if A is an admissible space and B is a U-closed subspace of A, then B and the inclusion map of B into A are 

admissible hold, then every projective Hausdorff U-space is discrete topological Hausdorff U-spaces. 

Lemma  2.1   Let A and E be U-spaces. Suppose f is a U-continuous map of E onto A such that f(Eo)  A for any 

proper closed subset Eo of E.  

Then, for any U-open set G E, f(G)  ( )A f E G  . 

Proof: There is nothing to prove if G is empty. Suppose otherwise, let a be any point of f(G), and let N be any 

U-open neighborhood of a.  

The lemma will follow if we prove that N (A - f(E-G)) is not empty. Because  G f
-1

(N) is a nonempty U-open 

subset of E, f(E – (G f
-1

(N)))  A. Take xA - f(E – (G f
-1

(N))); clearly xA - f(E – G). Since f is onto, x = f(y) 

where evidently y(G f
-1

(N)). Therefore x = f(y) f (f
-1

(N)) = N, 

 so xN  (A - f(E - G)), and the latter set is not empty.  

Lemma  2.2    In an extremally disconnected U-space, if U1 and U2 are disjoint U-open sets, then 1U  and 

2U are also disjoint. 

Proof: First, 1U  and U2 are disjoint because U2 is U-open; then 1U  and 2U  are disjoint because 1U  is  

U-open. 

Lemma  2.3  Let A be an extremally disconnected Hausdorff compact U-space, and let E be a compact  

U-space. Suppose f is a U-continuous map of E onto A such that f (Eo)  A for any proper U-closed subset Eo of 

E.  

Then f is a U-homeomorphism. 

Proof: We need only show that f is one-to one. Suppose, on the contrary, that x1 and x2 are distinct points of E 

for which f(x1) = f (x2). Let G1 and G2 be disjoint U-open neighborhoods of x1 and x2 respectively. Both the sets E 

- G1 and E - G2  are compact, so A -f (E – G1) and A - f(E - G2) are U-open.  

The latter sets are disjoint because E = (E – G1)   (E – G2). By the Lemma- 2.2, 1( )A f E G   and 

2( )A f E G   are disjoint. On the other hand, it follows from Lemma- 2.1 that f(x1) =f (x2) is a point 

common to these sets. This contradiction establishes Lemma- 2.3. 

Lemma  2. 4 [5]( p- 484)   Let A and D be  compact Hausdorff U-spaces, and let f  map D continuously onto A. 

Then D contains a compact U-subspace E such that f(E) = A but f(Eo)  A for any proper U-closed subset Eo of E. 

Proof: This is a well known consequence of Zorn’s Lemma. 

Theorem- 2.4   In the category of compact U-spaces and U-continuous maps, the projective U-spaces are 

precisely the extremally disconnected U-spaces. 
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Proof: To prove that all projective U-spaces in the category are extremally disconnected U-space, we have only 

to verify the conditions of Theorem-2.2. We turn to the opposite inclusion. 

Let A be an extremally disconnected compact U-space, let B and C be  compact U-spaces, let f be a  

U-continuous map of B onto C, and let   be a U-continuous map of A into C. We must prove that there exists 

a U-continuous map   of A into B such that   = f . 

In the space AB consider D = {(a, b) )(a =f(b)}. This set is clearly closed and therefore compact U-space. 

Since f is onto, the projection 1  of AB onto A carries D onto A. By Lemma- 2.4 there is a U-closed subset E 

of D such that 1 (E) = A but 1 (Eo)  A for any proper U- closed subset Eo of E. Let   be the restriction of 

1  to E. Lemma-2.3 asserts that   is a U-homomorphism. Let   = 2  -1
, where 2 is the projection of 

AB into B; this is the required map. Suppose aA; since  -1
(a) D, f( 2 (  -1

(a))) =  ( 1 (  -1
(a))) = 

 (a).  

Thus   = f 2  -1 
= f ; this completes the proof.  

Definition 2.9   A map is said to be U-proper if and only if it is U-continuous and the inverse image of every 

compact U- space is compact. 

Example- 2.1 (Proper extremally disconected compact U- space). Let X = {a, b, c, d}, U  = {X, ,{a, b},{a, c},{a, 

b, c},{d},{a, b, d},{a, c, d}}.Since {a, b} {a, c}={a}  U. U  is a U-structure. 

Then (X, U ) is a proper U-space. 

Here },{ ba = },{ ca = },,{ cba = {a, b, c}, }{d = {d}, },,{ dba  = X, },,{ dca  = X .  

Hence X is a proper extremally disconnected and compact U-space. 

Example - 2.2  (a proper projective compact U-space) 

Let X = {a, b, c, d} and U = {X, , {a, b},{a, c}, {a, d},{b, c}, {b, d},{c, d},{b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}}. Then X 

is a proper U-space which is clearly, Hausdorff, compact and extremally disconnected U-space. Thus X is a 

proper projective compact        U-space. 

Example - 2.3   Let X =N be U-space, no is a fixed element of N and 

 let U  ={{ N, } {{n  N n   no}, {nN n > no}, {n  N n < no + 3}, {n  N n   no + 3},  no   N 

}}, and their unions. 

Now { n  N n < no + 3} {n  N n > no } = { no + 1, no + 2}  U.  

Thus U is a U-structure but not a topology, and so, (X,U ) is a proper U-space. 

(i )  X is clearly compact.  

(ii) X is Hausdorff. For, if n1, n2   N and n1 n2, say n1 < n2, then n1U1 = {1,2,3,.........,n1}, n2U2 = {n  N 

n > n1 } and U1U2=  .  

(iii) X is extremally disconnected U- space, since, for each U-open set G of X, G = G is U-open. 

Hence by Theorem 2.4, X is a proper projective compact U-space. 

Definition 2.11   If A X, a U-retraction of X onto A is a U-continuous map r: X A such that r A is the 

identity map of A. If such a map r exists, we say that A is a                  U-retract of X.   

 We now generalize the theorems of ([14], p- 11-12)    

Theorem   2.5   Let X be any extremally disconnected object from the category P. Any perfect U-mapping f: 

AX of another object A onto X is a U-retraction. 

Proof:  We have f: AX onto. Then we can draw the following diagram 
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 Where F is the unique U-continuous extension of f onto  A taking values in  X. Since f is a surjection, F is 

also onto. But  X is extremally disconnected U-space and F is an onto map. Since  X is projective U-space in 

the category C. F is a U-retraction, that is there exists a mapping g:  X   A such that   Fg = 1
X

= the 

identity map on  X. Since f is a perfect U-map, F(  A – A (A)) =  X – X(X). Therefore, g( X (X))  A (A). 

Put h = A -1
g X : X A. Now fh(x) = f A -1

g X (x). But F (g X (x)) = X (x) and   g( X (x))  A (A), that is, 

g( X (x)) = A (a) for some aA. Therefore, X (x)= F( A (a))= X f(a). So, a = A - 1
( A (a)) =  A - 1

g X (x) 

and x = f(a) and hence, f(a) = f A -1
g X (x) = x. Consequently fh(x) = x for each xX, that is, fh = 1x.Naturally f 

is a U-retraction. 

Theorem 2.6   The category P has projectives that is any paracompact U-space is the perfect U-image of a 

projective U-space object. In fact, for every object X there is a projective U-space objects P and an onto U-

perfect mapping p1: PX such that p1 maps no proper U-closed subspace of P onto X. For any other such 

object P and p1:PX there is an U-isomorphism e: PP such that p1 = p1e. 

Proof: Let X be any object of P. Look at  X, the Stone - Čech compactification of X. There exists an extremally 

disconnected compact U-space Y and a U-continuous onto map f: Y    X such that f(S)   X for any 

proper  U-closed subspace S of Y. Consider the pull- back diagram 

                                                        

for the morphisms X : X   X and f: Y   X, 

where P = {(x, y) XY : X (x) = f(y)} and p1 and p2 are projections to X and Y respectively. We do not claim 

that this is a pullback in P. Clearly, X p1 = fp2. Since X  is a U-monomorphism, p2 is  

U-monomorphism. Since f is onto, p1 is onto. Again, P is a U-closed subset of XY and the latter is 

paracompact U-space P is, hence, paracompact U-space. p1 is also U-closed so that p1 becomes a perfect U-

map.  fp2 = X p1   fp2 (P) = X (X). Let W = p2(P). Since f is a U-closed map, .)())(( 2 XWfPpf   

Observe that W  is a  U-closed subset of Y and f(W ) =  X. From the choice of Y it follows that W = Y, that is, 

W = p2(P) is dense in Y. Y is extremally disconnected U-space rendering W extremally disconnected U-space. 

Now it is not very difficult to see that p2 is a U-perfect map onto W. Since P is paracompact U-space and p2 is a 

U-perfect map onto W, W is a paracompact U- space. 

By Theorem-2.5, p2 is a U-retraction. Since p2 is a U-monomorphism and a U-retraction also, it is an  

U-isomorphism, that is p2 is a U-homeomorphism of P and W. Thus P is an extremally disconnected 

paracompact U-space. So P is projective U-space due to “In the category P, the projective objects are precisely 

the extremally disconnected paracompact U-spaces”. Since p1 is a U-perfect map of P onto X, X is a U-perfect 

image of a projection object. Let Q be a proper U-closed subset of P. Then p2(Q) is a proper  U-closed subset of 

p2(P)= W. Write p2(Q) = W(F) where F is a U-closed subset of Y. Since p2(Q) is a proper U-closed subset of W, F 

is a proper U-closed subset of Y.  

f 
A X 

X A 

A X 

F 

p2 
P Y 

X X 

p1 f 

X 
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If p1(Q)= X, then X (X) = X p1(Q)= fp2(Q)=f(W(F))  f(F). Since f is a U-closed map of X onto  X, f(F) is a U-

closed and hence equals  X. This is a contradiction. Consequently P enjoys the property that no proper U-

closed subspace of P is mapped onto X by p1.  

If possible let P
/
be a projective paracompact U-space with a U-perfect map p1: PX such that p1 (P) = X 

and if Q is any proper U-closed subspace of P then p1 (Q)  X. Then there exist a morphism e : PP and a 

morphism e: PP such that p1 =p1e and p1= p1e. Then p1(P) = X =p1 (P)   p1e(P) = X = p1e (P). 

Naturally, e and e
/
 are onto; we shall show that ee = 1p, that is, e is a U-co-retraction. If ee   1p, there exists 

a proper U-closed subset S of P such that d
-1

(S)  S = P where d =ee.  

Obviously, d(d
-1

(S))  S whence p1d(d
-1

(S))   p1(S). But p1d = p1ee = p1e = p1, hence p1(S)  p1d(d
-1

(S)) = 

p1(d
-1

(S)); so that p1(S) = p1(P) = X, a contradiction as S is a proper U-closed subset of P. We thus conclude that 

e is a U-co-retraction. Already e is a U-retraction; hence e is a U-isomorphism, that is, e is a U-homeomorphism 

of P onto P.  

Theorem   2.7 [6]( p- 7)   Let P be a compact Hausdorff U-space. Then P is  projective if and only if for every 

compact Hausdorff U-space W and U- continuous g: W P, onto, there exists a U-continuous  

s: P W such that gos(p) = p.  

Proof: Assume that P is projective U-space and let s be a lifting of the identity map on P. 

Conversely, assume that P is projective U- space and let X and Y be U-spaces and h: Y  X and f: PX , U-

continuous map with h onto. Then there exists a U-continuous map r: P Y such that hor(p) = f(p) for every 

pP.  

Let W = {(p, y) P Y: f(p) = h(y)} and define g : W P by  g(p, y) = p and q: W Y by q(p, y) = y. If s: P W is 

as above then r = qos is a lefting of f. 

Theorem   2.8 [11]( p- 70)    If P is a U-retract of P and P is projective, then P is projective. 

Proof: Let PPP = 1P. If AA is an U-epimorphism and PA is any morphism, then using 

projectivity of P we have PA = PPPA = PPAA for some morphism PA. This 

establishes U-projectivity of P. 

Theorem  2.9 [11] ( p-70)  If P is projective U-space in A, then every U-epimorphism AP is a U-retraction. 

Conversely if P has the property that every U-epimorphism AP is a U-retraction, and if A either has 

projective or is abelian, then P is projective U- space. 

Proof: If P is projective U-space, then given a U-epimorphism A P there is a morphism PA such that  

P  A P is 1P. In other words P A is a U-retraction. 

Conversely, suppose that every U-epimorphism A P is a U-retraction.  

If A has projective then we may take A projective and then it follows from Theorem 5.8. On the other hand, if A 

is abelian, then, given an U-epimorphosm f: A A" and a morphism u:PA", we can form the pullback 

diagram 

                                                   
we know that g is an U-epimorphism. Then by assumption we can find h: P X such that gh = 1P. Then we have 

fvh = ugh = u. This proves that P is projective U-space. 

Theorem  5.10 [13]( p- 12) In the category P, the projective U-space objects are precisely the extremally 

disconnected paracompact U-spaces.  

Proof: If P is projective U-space, then given a U-epimorphism A P there is a morphism PA such that  

P  A P is 1P. In other words P A is a U-retraction. 

g 
X P 

A" A 

  v u 

f 
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Conversely, suppose that every U-epimorphism A P is a U-retraction. If A has projective then we may take A 

projective U-space and then it follows from Theorem 5.8. On the other hand, if A is abelian, then, given an U-

epimorphosm f: A A" and a morphism u:PA", we can form the pullback diagram 

                                                  
we know that g is an U-epimorphism. Then by assumption we can find h: P X such that gh = 1P. Then we have 

fvh = ugh = u. This proves that P is projective U-space. Therefore the projective U-space objects of P are the 

objects for which perfect U-maps onto them are U-retraction. 

Hence the theorem follows from theorems 2.5, 2.8 and 2.9. 

Let X be any extremally disconnected U-space object from the category P. By theorem- 2.5 we can prove that 

any U-perfect mapping f: AX of another object A onto X is a  U-retraction. 

          By theorem- 2.8 ‘If P is a U-retract of P and P is projective U-space, then P is projective U-space’ And 

theorem- 2.9 “If P is projective U-space in A, then every U-epimorphism AP is a U-retraction. Conversely if P 

has the property that every U-epimorphism AP is a U-retraction, and if A has projective U- space, then P is 

projective U- space.” P is projective U-space. 

Hence the theorem is proved.  

Examples of proper projective U-spaces which are locally compact but not compact. 

Example- 5.4  Let X = R ,U  ={X, , (- ,
2

1
 ),[0,1), [

2

1
,1), *1,2),..,*n, n + 1), …., and their unions}. 

(i)  Then (X, U ) is a U-space  but not a topological space.  

 Since (- ,
2

1
 )   [0, 1) = [0,  

2

1
 )  U.  

(ii) X is not compact, since C = {(- ,
2

1
 ),*0, 1), *1, 2),…..,*n, n + 1),….,} is  U-open cover of X but it has no finite 

sub cover. 

(iii)  X is locally compact. For let xoX. If xo<
2

1
, then (- ,

2

1
 ) is a neighborhood of xo whose closure is (-

 ,1), which is compact U-space, since every U-open cover of  (- ,
2

1
 ) must contain either X or both   

(- ,
2

1
 ) and [

2

1
,1) and each such cover is clearly finite.  

            

If x
2

1
, x[n, n + 1) for some n{0}N. Then 1,[ nn ) = [n, n + 1) which is obviously compact, since [n, n 

+ 1) is U-closed. 

(iv) All the U-open sets except (- ,
2

1
) and [0, 1) are both U-open and U-closed & so the U-closure of any 

union of these is U-open. Also, 









2

1
, = (- , 1),  1,0 = (- , 1). 

Hence the closure of every U-open set is U-open. 

Thus X is extremally disconnected U-space, and so, X is projective U-space. 

 

g 
X P 

A" A 

  v u 

f 
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Example  2.5   Let X = Z ,U  ={X,  ,{n  Z -  < n 1}, {0,1,2}, {3,4,5},{6,7,8} and their unions}. X is a proper 

U-space. 

For {n  Z -  < n 1} {0,1,2} = {0, 1}  U. 

 (i) X is not compact. For the U-open cover 

{{n  Z -  < n 1},{0,1,2}, {3,4,5},{6,7,8},…………….} has no finite sub cover . 

(ii) However, X is locally compact. To sec this, let xoX. If xo 1, 

the {n  Z -  < n 1} is a U-open neighborhood of x0 and its closure is  

{n  Z -   < n 2} which is clearly compact. If x0 >1, then for x0 = 2, {0, 1, 2} is a U-open neighborhood of x0 

and its closure is {n  Z -  < n   2} which again is U-compact, and for x0 = n >2, x{3r, 3r + 1, 3r + 2} for 

some positive r, and this set is a U-open neighborhood of x0. Also, it is its own closure. Clearly it is compact.  

Thus X is locally compact U-space. 

(iii)  The sets {3r, 3r + 1, 3r + 2} are both U-open and U-closed for each  r  1, }1{  nZn = {n  Z 

-  < n   2} =  {n  Z -   < n   1} {0, 1, 2}                                                         

(iv) which is U-open. Also, }2,1,0{ = {n  Z -   < n   2} is U-open, as before.  

Hence X is extremally disconnected U-space.  

Therefore X is projective U-space.  

3. Cover of compact Hausdorff U-space 

We now generalize definitions and results of  [6] ( p- 7 - 8 ). The proofs in [6] carry over to U-spaces as we shall 

see below. 

Definition 3.1   Let X be a compact Hausdorff U-space. A pair (C, f) is called a U-cover of X, provided that C is a 

compact Housdorff U-space and f: C  X is a U-continuous map that is onto X. 

Definition 3.2  Let X and C be compact Housdorff U-spaces and f: C X a U-continuous map that is onto X. A 

pair (C, f) is called a U-essential cover of X if it is a U-cover and whenever Y is a compact, Hausdorff U-space, h: 

Y C is U-continuous and f(h(y)) = X, then necessarily h(Y) = C. 

Definition 3.3  Let X and C be compact Housdorff U-space and f: C X a  U-continuous map that is onto X. A 

pair (C, f) is called a U-rigid cover of X if it is a U-cover and the only U-continuous map h: C C satisfying f(h(c)) 

= f(c) for every cC is the identity map. 

Theorem  3.1 Let X be a compact Hausdorff U-space and let (C, f) be a U- essential cover of X. Then (C, f) is a U- 

rigid cover of X. 

Proof: Let h: C C satisfy f(h(c)) = f(c) for every cC. Let C1 = h(C) which is a compact U-subset of C that still 

maps onto X. The inclusion map of i: C1C satisfies, f(i(C1)) = X and hence must be onto C. Thus h(C) = C. 

Next, we claim that if G C is any non- empty U-open set, then G h
-1

(G) is non- empty. For assume to the 

contrary, and let F = C \ G. Then F is compact U-space and given any cG there exist yh
-1

(G) with h(y) = c. 

Hence, yF and f(c) = f(h(y)) = f(y). Thus f(F) = X, again contradicting the essentiality of C. Thus, for every U-

open set G, we have that G h
-1

(G) is non-empty. 

Now fix any cC and for every neighborhood G of c pick  xG G h
-1

(G). We have that the net {xG} converges 

to c. Hence, by continuity, {h(xG)} converges to h(c). But since h(xG) G for every G, we also have that {h(xG)} 

converges to c. Thus, h(c) = c and since c was arbitrary, C is U-rigid cover of X. 

Theorem  3.2  Let (C, f) be a U-cover of X with C a projective U-space. Then (C, f) is a U-essential cover if and 

only if (C, f) is a U-rigid cover. 

Proof:  We already have that a U-essential cover is always a U-rigid cover. So assume that (C, f) is a  

U-rigid cover. Let h: Y  C with f(h(Y))= X. Since C is projective, then there exists a map s: C  Y with (foh)os = 

f. We have hos : C C and f(hos(c))= f(c) and so by rigidity, hos(c)= c for every cC. In particular, h must be 

onto and so C is U-essential cover. 
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Theorem  3.3  Let (Y, f) be a U-cover of X and let C   Y be a minimal, compact U-subset of Y that maps onto X. 

Then (C, f) is a U-rigid, essential cover of X.  

Proof: First, we prove U-essential. Given any compact Hausdorff U-space Z and h: Z C such that f(h(Z)) = X, 

we have that h(Z)   C is compact U-space and hence h(Z) = C by minimality. 

Since (C, f) is a U-essential cover of X, by the above results it is also a U-rigid cover. 
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