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ABSTRACT
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introduced and many topological theorems related to projective
Hausdorffness have been generalized to U- spaces, as an extension of study
of supratopological spaces.
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INTRODUCTION
In a previous paper [1] we have introduced U- spaces. There and in [7] and [8] we studied some of their

properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in
([21,[3],[10],[14]) in less general form, and the spaces were called supratopological spaces.

In this paper we have generalized to U- spaces the concepts of projective topological spaces, Stone Cceh
compactification, perfect maps, and extremally disconnected spaces. We have also generalized to U- spaces
some results on topological spaces occurring in [4] ,[5],[6],[9], [12] and [13]. A few important properties of
such U-spaces have been studied. A number of interesting examples have been constructed to prove non-
trivialness of such results. For most of the cases of the above generalizations the proof for U- spaces runs
parallel to those for topological spaces.

We have constructed 2 examples of proper projective U-spaces which are locally compact but not compact
and two examples of proper projective compact U- spaces.

In this paper a U- space will mean a Hausdorff U-space, unless otherwise mentioned.
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2. Projectives in some Categories of Hausdorff U-spaces

We recall some definitions from [10], and generalize to U- space a few definitions in [5],[6] and [13].

Definition 2.1 A category consists of

(i) A class C of objects A, B, C,.....

(i) For each pair of objects A, B a set hom(A, B) whose elements are called morphism, with the property that
(@)@ €hom(A, B) and ff € hom(B, C) implies there exists ¥ € hom(A, C) whichiswritten ¥ = «;

(b) For each A€ C ,there exists 1€ hom(A, A) such that for each B&€ C and for each & €hom(A, B),
a=al,and a =,

(c) Let & €hom(A, B), S €hom(B, C), ¥ €hom(C,D)then ¥ (S a)=(y B .

If f a=y a = [=y then & isan epimorphism or, epic;

If @ f=a ¥y = [ =y,then & isa monomorphism or, monic.

Definition 2.2 Let A, B, C be three objects and & : A—C and ﬂ : B—>C be monics in a category. There are
different ways of completing them to a commutative square. A final object in this square is called Pullback of
aand .

p o
B/

v
o

=

A

v
O

(03

Definition 2.3 [6]( p- 3) A U- space P is projective, if for any pair of U-spaces, X, Y and any pair of
U- continuous maps h: Y —X and f: P — X, with h onto, there exists a U- continuous map r: P—> Y such that
hr(p) = f(p) for every p€P.

Y

_‘
=

Definition 2.4 [13]( p-7 ) A U-continuous function f: X —Y where X and Y are arbitrary Hausdorff

U-spaces is called U-perfect if f is U- closed and the set f'(y) is compact for each y in Y.

Definition 2.5 [6]( p- 482) A U- space X is extremally disconnected if the closure of every U- open set is U-
open.

Definition 2.6 A U-space Y is an extension U - space of another space X if X is U-dense in Y.

The generalization of the construction of the Stone- €ech compactification for a U- completely regular space
Let X be a completely regular T, -U-space. Let {f }aeA be the collection of all bounded U-continuous real-
valued function on X, indexed by some index set A.

For each @ €A, choose | =(-0, supf  (X)] regarded as U- subspaces of the usual U- space R. Then define

h:X— H l, by the rule h(x)= (f , (x)) A Since X is completely regular T, -U-space, for two distinct points x,

ae
aeh

X2, {X2} is U- closed and x; € {x,} so there exists f , such that f(x (x1) #f, (x2).Hence h(x;) # h(x;). Therefore h

is one-one. Since f | : X—> 1 is U- continuous, it follows from the definition of H I, that h is U-continuous.

aehA

Vol.3.Issue.1.2015 14



SWAPAN KUMAR DAS et al Bull.Math.&Stat.Res

We shall show that h is U-open. Let V; be a U-open set of X and y, € h(V,). Let xo € V; such that h(xg) = yo. Since
Xis completely regular, there exists f  such thatf  (x)) € (-00,supf (X))andf (X-V;)=supf (X). Let

V, = ﬁa_l (-0, sup f, (X)). Then V, is U- openin H | ,and W=V, h(X)is a U- open set of h(X).
aehA
We shall show that yo € W C h(V,). Since yo € h(V;) C h(X) and 7, h(x) =, (Xo), Yo = h(xo)= ﬂaflfa (x0) V..
Therefore y, e W.
Lety € W. Then for somex€ X, y=h(x)and 7 (y) €(-00,supf  (X)).Since 7, (y)= 7 h(x)=f (x)andf (X

-Vy)=supf  (X),soxeVyie,y=h(x) €h(V,).

Therefore h: X — H |, is an U-imbedding. Hence (h(X), h) is a compactification of X. h(X) will be

aeA
written ﬂ (X) and will be called the U-generalized form of Stone- Cech compactification of X.

Definition 2.7 [13]( p- 8) Let P be the category of all paracompact U-spaces and U- perfect maps and T be the
category of all Tychonoff U-spaces and perfect U-maps. It is to be noted that both of these categories contain
C, the category of compact U-spaces and U- continuous maps, as a full subcategory. P is also a full subcategory
of T.

Theorem 2.1 The category P has pullbacks.

As in ([13].p.8) we have (The proof is similar. The details are given to stress the velidity.)

Proof: Let f: X—>Z and g: Y —Z be two morphisms in the category P (i.e., X, Y, Z be paracompact

U-spaces and f, g are perfect U-maps). We have to show the existence of a pullback diagram for f and g.

Let P = {(x, y) €XXY: f(x) = g(y)} and p, and p, be the projection on X and Y respectively. Suppose there exist
p’'1i: P’—>Xand p',: P'—> Y such that fp’, = gp’,.

Define h: P’—> XX Y as follows:

h(t) = (p4(t), p'2(t)), t € P'. Since fp', = gp’,, h(t) €P thatis, h:P’—>P such that p;h = p’; and p,h = p’,. It is easy
to see that the map h is unique. Thus the diagram

P P > Y
P1 lg
X > 7
f
is a pullback for f and g. We show that this diagram belongs to P, that is, that the maps p; and p, are
U-perfect.
Consider the pullback diagram
P g p* 02 > BY
0z G
pX > 32

for the maps F: fX — [fZand G: fY — [ Z where F and G are the extensions of the map f and g onto
P X and B respectively (X, fY and fZ are the generalization of Stone- Cech compactifications and
Ny , My and 17, are reflector maps of X, Y and Z respectively).

We have F77y = 17, f,G1y =17, g and P*= {(x*, y*) € P Xx BY: F(x*) = G(y*)}. q; and q, are projections of P*
to [ Xand [ Y respectively.
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Again, let p.*: S P — X, p,*: BP —> [Y be the extensions of p; and p, onto 3 P. Hence 77y p1=p1* 7],
1y P2 = p2*1p . Since fpy = gp,, 77, fp1 = 77, gp.. Note that Fp* 77, =F1y p1= 1), fprand Gp,* 17, =G 1y p2 =
777 8Pa-

Therefore, Fp,* 77, = Gp,* 7], . Since 77, (P) is U- dense in ﬂ P

we have Fp;* =G p,* on [ P.

From the definition of pullback there exists a (unique) mapping h: ,B P —P* such that p,* = g;h and p,* = g;h.
Again, for the maps 77, p;: P — f# X and

7y p2:P > ,B Y, we have F 77y p; = G7)y p (this equality is already noted earlier).

From the definition of pullback once again we get a map k: P —>P*such that 77, pi= gk and 77, p, = g,k It is
easy to see that the map k is as follows:

k(x, y) = (17y p(x, ), 77y PaAx, ¥)) = (17 (x), 77y (¥)), (x, y) €P.kclearly turns out to be a U-homeomorphism
into P*. Moreover it is not difficult to notice that k = h 77, . Now k is a U-homeomorphism of P onto k(P) C P*.
From the property of generalized form of Stone- Cech compactification it follows that

() h(BP- 7, (P) < K(P)-k(P) =P*.

Now g,k =77y p,, that is,

P P2 > Y
k Ny
* > By
P % B

is a commutative diagram. So we consider the pullback diagram for g, : P* — ﬂ Yand 77, :Y — ,B Y say

W T > Y
1T, lﬂv
=M > 3Y
0z p

Where W is given by {(s, y) €P*XY: qy(s) = 77y (y)} and 7;, 7, are the respective projections to P* and Y.
Since ga(s) = q2(x*, y*) = y*, qa(s) = 77y (y) implies y* = 77 (y).
Consequently, W = {((x*, 77y (y)), y) €P*XY: 13y (y)=y*}
={((x*, 77y (), y) €(BXX BY) XY :F(x*)=G(7y ()}

If F(x*) = G(77y (y)) then F(x*)= G(77y (y)) = 17, 8(y). Since fis a U-perfect map, F( S X - 17y (x)) < B Z- 1, (2).
As a consequence, x* € 77y (x), thatis, x* = 77y (x) for some x € X. So we have
W=A(( 77y (), 77y () ), ¥) €(BXX BY) XY F(ny (X)) = G(77y (V))}. Again 77, 8(y) = G(77y (v)) = F(77y (X)) =
17, f(x) and this naturally implies f(x) = g(y).
We then get,
(i) W={(( 7y (9, 7y (v)),¥) €(BXx BY) XY :f(x) =g (y)}

= {k(x, y),y): (x, y) €Pand pa(x, y) =y}
Since 7]y p; = .k there exist a unique map j: P — W as follows:

j(XI y) = (k(xl y)l pZ(XI y)): (XI y) €P.
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Easy to see from (ii) that j(P) = W. In fact j is a U-homeomorphism of P and W. Now W is, by construction, a U-
closed subset of P* XY which is paracompact U-space (as P* is a compact U-space and Y is a paracompact U-
space). As a result W is paracompact U-space. This makes P paracompact U-space and J a U-isomorphism of P
and W in the category P. We then obtain that the diagram

P ic > Y
k lﬂy
p* > BY

02
as a pullback diagram. Note that 77, is a one-one map, that is, 77, is a U-monomorphism. From the definition
of inverse image we see that P = qz’l(Y) as a sub object of P*.In terms of sets this means that
k(P) = qz_l( 17y (Y)). As aresult g,(P*- k(P)) ,B Y -1, (Y). We know from (i) that
h(BP-ne (P) <= K(P)-k(P) =P*-k(P), so that p,*( B P - np(P)) = azh (B P -1p (P) = aylh( B P - (P))]
cqy(P*-k(P)) < BY-1y (V).

Hence, by a characterization of Henriksen and Isbell [13], p, is a U-perfect map. Similarly, p, is a U-perfect map.

We generalize the theorems, Lemmas and Corollary of [5] ( p- 482- 484)

Theorem 5.2 In any category of U-spaces and maps satisfying conditions

(a) all admissible maps are U-continuous,

(b) if A is an admissible space and {p, g} is a two element space, then A X {p, g} and the projection map of this
U-space onto A are admissible,

(c) if A is an admissible space and B is a U-closed subspace of A, then B and the inclusion map of B into A are
admissible, a projective U-space is extremally disconnected.

Proof: Let X be a projective U-space in such a category. Let G be any U-open subset of X; we must prove G is

U-open. In XX {p, q} consider the U-closed set Y = ((X - G) X {p}) U (G x{q}), and its inclusion map i. Let 7= be
the projection of XX {p, q} onto X. Our hypothesis on the category implies that 77 o i is an admissible map of Y

onto X and that the identity @ is an admissible map of X into X. Since X is projective U- space, there is an

admissible map ¥ of Xinto Y such that ¢ = 77 oio /. Because 7 0iis one -to-one on G x{q} it is clear that

W (x) = <X, q> for x € G; from the continuity of i follows
YV (x) = <x,q> forxe 6 .Similarly, for x & 6, Y (x) = <X, p>.

Thus we have proved 6 =I,V'1((_3 X {q}). Since ¥ is U-continuous and 6 X{q}is U-openinY, 6 is

U-open in X as required.

Theorem 2.3 In an extremally disconnected U-space no sequence is convergent unless it is ultimately
constant.

Proof: Suppose that the sequence {x,} converges to p in the extremally disconnected U-space X. Assume this
sequence is not ultimately constant, we shall deduce a contradiction.

First we construct inductively a disjoint sequence {U;} of U-open sets in X such that each U; contains a member
Xn(y Of the given sequence, where {n(i)} is an increasing sequence of integers. Let n(1) be an index for which

Xn1) #Z P, and choose a U-open set U; such that x,;) € U; but pé& U1 . Suppose we have chosen disjoint U-open
sets Uy, Uy Us,........,U and increasing integers ni,ny,ns,........ ;N such that x, €U; and pé& Ui for i =

1,2,3,........ k. Thenv=X-(U,uU, ulU,; U...... WU, ) is an U-open neighborhood of p, so x, € V for all

sufficiently large g. By a suitable choice of ny . 1) we shall have ny. 1)> Ny, Xa+ 1) €V but X, + 1) # p since the
original sequence is not ultimately constant. Choose an U-open set W such that

Vol.3.Issue.1.2015 17



SWAPAN KUMAR DAS et al Bull.Math.&Stat.Res

Xnk+1) EW butpg W, and let U, ; = W M V. This completes the inductive construction.

LetG = UUzq . Since X is extremally disconnected U-space, G is an U-open set, and p€ G being the limit of

{Xn(2q)}- Thus G is a neighborhood of p, so x,e G for all large r; in particular, Xn(s) € G for some odd integer s.
Since U is a neighborhood of x,), UsM G is not empty, contrary to the definition of G and disjoint ness of the
U’s.

Definition 2.8 A U-space is said to have a countable basis at x if there is a countable collection B of
neighborhoods of x such that each neighborhood of x contains at least one of the elements of B.

A U-space that has a countable basis at each of its points is said to satisfy the first countability axiom, or to be
first-countable.

Corollary 2.1 In a category of U-spaces in which all Hausdorff U-spaces satisfy the first axiom of countability
and properties

(a) all admissible maps are U-continuous,

(b) if A'is an admissible space and {p, q} is a two-element space, then AX{p, q} and the projection map of this
space onto A are admissible,

(c) if A'is an admissible space and B is a U-closed subspace of A, then B and the inclusion map of B into A are
admissible hold, then every projective Hausdorff U-space is discrete topological Hausdorff U-spaces.

Lemma 2.1 Let A and E be U-spaces. Suppose f is a U-continuous map of E onto A such that f(E,) # A for any
proper closed subset E, of E.

Then, for any U-open set GCE, f(G) — A— f(E-G).

Proof: There is nothing to prove if G is empty. Suppose otherwise, let a be any point of f(G), and let N be any
U-open neighborhood of a.

The lemma will follow if we prove that N M (A - f(E-G)) is not empty. Because G M f*(N) is a nonempty U-open
subset of E, f(E — (G f(N))) # A. Take x€ A - f(E = (G F(N))); clearly xe A - f(E — G). Since f is onto, x = f(y)
where evidently y € (G M f(N)). Therefore x = f(y) €f (f'(N)) =N,

soxeNM (A-f(E - G)), and the latter set is not empty.

Lemma 2.2 In an extremally disconnected U-space, if U; and U, are disjoint U-open sets, then Ul and

U, are also disjoint.

Proof: First, U, and U, are disjoint because U, is U-open; then U, and U, are disjoint because U, is
U-open.

Lemma 2.3 Let A be an extremally disconnected Hausdorff compact U-space, and let E be a compact

U-space. Suppose f is a U-continuous map of E onto A such that f (E,) # A for any proper U-closed subset E, of
E.

Then f is a U-homeomorphism.

Proof: We need only show that f is one-to one. Suppose, on the contrary, that x; and x, are distinct points of E
for which f(x;) = f (x,). Let G; and G, be disjoint U-open neighborhoods of x; and x, respectively. Both the sets E
-G, and E - G, are compact, so A -f (E—G;) and A - f(E - G,) are U-open.

The latter sets are disjoint because E = (E — G;) U (E — G,). By the Lemma- 2.2, A— f(E—G,) and

A—f(E—-G,) are disjoint. On the other hand, it follows from Lemma- 2.1 that f(x,) =f (x,) is a point

common to these sets. This contradiction establishes Lemma- 2.3.

Lemma 2.4 [5]( p- 484) Let A and D be compact Hausdorff U-spaces, and let f map D continuously onto A.
Then D contains a compact U-subspace E such that f(E) = A but f(E,) # A for any proper U-closed subset E, of E.
Proof: This is a well known consequence of Zorn’s Lemma.

Theorem- 2.4 In the category of compact U-spaces and U-continuous maps, the projective U-spaces are
precisely the extremally disconnected U-spaces.
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Proof: To prove that all projective U-spaces in the category are extremally disconnected U-space, we have only
to verify the conditions of Theorem-2.2. We turn to the opposite inclusion.
Let A be an extremally disconnected compact U-space, let B and C be compact U-spaces, let f be a

U-continuous map of B onto C, and let ¢ be a U-continuous map of A into C. We must prove that there exists

a U-continuous map i of Ainto B such that ¢ =fi/ .
In the space AXB consider D = {(a, b) |¢(a) =f(b)}. This set is clearly closed and therefore compact U-space.

Since f is onto, the projection 77; of AXB onto A carries D onto A. By Lemma- 2.4 there is a U-closed subset E
of D such that 7, (E) = A but 7, (E;) # A for any proper U- closed subset E, of E. Let p be the restriction of
7, to E. Lemma-2.3 asserts that p is a U-homomorphism. Let ¥ = 7, £, where 7, is the projection of
AXB into B; this is the required map. Suppose a € A; since p'l(a) €D, f( 72'2(p'1(a))) = ¢(7Z'1(p‘1(a))) =

P (a).

Thus ¢ =f7, p = fi ; this completes the proof.

Definition 2.9 A map is said to be U-proper if and only if it is U-continuous and the inverse image of every
compact U- space is compact.

Example- 2.1 (Proper extremally disconected compact U- space). Let X ={a, b, ¢, d}, U = {X, @ [{a, b},{a, c},{a,
b, c},{d},{a, b, d},{a, c, d}}.Since {a, b} " {a, c}={a} & U. U is a U-structure.

Then (X, U ) is a proper U-space.

Here {a,b}={a,c}={a,b,c}={a, b, c}, {d_}= {d},{a,b,d} =x,{a,c,d} =x.

Hence X is a proper extremally disconnected and compact U-space.

Example - 2.2 (a proper projective compact U-space)

LetX={a, b, c,dtand U ={X, D, {a, b},{a, c}, {a, d},{b, c}, {b, d},{c, d},{b, ¢, d}, {a, ¢, d}, {a, b, d}, {a, b, c}}. Then X
is a proper U-space which is clearly, Hausdorff, compact and extremally disconnected U-space. Thus X is a
proper projective compact U-space.

Example - 2.3 Let X =N be U-space, n, is a fixed element of N and

letU ={{N, D} U{{ne N |n < ng {neN |n>n0},{ne N |n<n0+3},{ne N |n 2 ny+ 3}, | no, € N
}}, and their unions.

Now{ne N |n<no+3}ﬁ{ne N |n>no}={no+1, no+2}¢ U.

Thus U is a U-structure but not a topology, and so, (X,U ) is a proper U-space.

(i) Xis clearly compact.
(ii) X is Hausdorff. For, if n;, n, € N and n;# n,, say n; < n,, then n,€U; ={1,2,3,......... ,ni, n, €U, ={ne N

|n>n1}andU1ﬂU2=(D.

(iii) X is extremally disconnected U- space, since, for each U-open set G of X, G = G is U-open.
Hence by Theorem 2.4, X is a proper projective compact U-space.

Definition 2.11 If ACX, a U-retraction of X onto A is a U-continuous map r: X —>A such that r| A is the

identity map of A. If such a map r exists, we say that Ais a U-retract of X.

We now generalize the theorems of ([14], p- 11-12)

Theorem 2.5 Let X be any extremally disconnected object from the category P. Any perfect U-mapping f:
A —> X of another object A onto X is a U-retraction.

Proof: We have f: A—> X onto. Then we can draw the following diagram
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A

v

Na

X

BA

v

F

Where F is the unique U-continuous extension of f onto ﬂ A taking values in ,B X. Since f is a surjection, F is
also onto. But ﬂ X is extremally disconnected U-space and F is an onto map. Since ﬁX is projective U-space in

the category C. F is a U-retraction, that is there exists a mapping g: ﬂ X—> ,H Asuchthat Fg=1 X the
identity map on /3 X. Since f is a perfect U-map, F( B A— 17, (A) = [ X —nx(X). Therefore, g( 77, (X)) < 17, (A).
Puth= 17,787, : X —>A. Now fh(x) = 77, g 77, (x). But F (877 (X)) = 77, (x) and g(77y (x) € 17, (A), that is,
g(ny (x)) = 17, (a) for some a € A. Therefore, 77, (x)=F(77,(a))= 774 f(a). So, a = 77A'1( nala@)= 77A'1g Ny (x)
and x = f(a) and hence, f(a) = f?]A’lg 17y (x) = x. Consequently fh(x) = x for each x € X, that is, fh = 1,.Naturally f
is a U-retraction.

Theorem 2.6 The category P has projectives that is any paracompact U-space is the perfect U-image of a
projective U-space object. In fact, for every object X there is a projective U-space objects P and an onto U-
perfect mapping p;: P—>X such that p; maps no proper U-closed subspace of P onto X. For any other such
object P" and p';:P’ —> X there is an U-isomorphism e: P —> P’ such that p, = p;'e.

Proof: Let X be any object of P. Look at /3 X, the Stone - Cech compactification of X. There exists an extremally
disconnected compact U-space Y and a U-continuous onto map f: Y —> ,HX such that f(S) # ﬂX for any
proper U-closed subspace S of Y. Consider the pull- back diagram

) P2

| -
»
P1

X

v

me— <

MNx
for the morphisms 77, : X = fXandf:Y = X,
where P = {(x, y) €XXY: 77, (x) = f(y)} and p, and p, are projections to X and Y respectively. We do not claim

that this is a pullback in P. Clearly, 77, p; = fp,. Since 77y is a U-monomorphism, p, is

U-monomorphism. Since f is onto, p; is onto. Again, P is a U-closed subset of XXY and the latter is
paracompact U-space P is, hence, paracompact U-space. p; is also U-closed so that p; becomes a perfect U-

map. fp, = 77y p1 = fp, (P) = 77y (X). Let W = p,(P). Since f is a U-closed map, f(p,(P)) =f (V_V):,b’x

Observe that W isa U-closed subset of Y and f(W) = ﬂ X. From the choice of Y it follows that W =Y, thatis,

W = p,(P) is dense in Y. Y is extremally disconnected U-space rendering W extremally disconnected U-space.
Now it is not very difficult to see that p, is a U-perfect map onto W. Since P is paracompact U-space and p, is a
U-perfect map onto W, W is a paracompact U- space.

By Theorem-2.5, p, is a U-retraction. Since p, is a U-monomorphism and a U-retraction also, it is an
U-isomorphism, that is p, is a U-homeomorphism of P and W. Thus P is an extremally disconnected
paracompact U-space. So P is projective U-space due to “In the category P, the projective objects are precisely
the extremally disconnected paracompact U-spaces”. Since p, is a U-perfect map of P onto X, X is a U-perfect
image of a projection object. Let Q be a proper U-closed subset of P. Then p,(Q) is a proper U-closed subset of
p,(P)= W. Write p,(Q) = W(F) where F is a U-closed subset of Y. Since p,(Q) is a proper U-closed subset of W, F
is a proper U-closed subset of Y.
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If p1(Q)= X, then 77y (X) = 17 P1(Q)= fp,(Q)=F(W(F)) f(F). Since f is a U-closed map of X onto 3 X, f(F) is a U-
closed and hence equals ﬂX. This is a contradiction. Consequently P enjoys the property that no proper U-
closed subspace of P is mapped onto X by p;.

If possible let P "be a projective paracompact U-space with a U-perfect map p,": P'—>X such that p,' (P’) = X
and if Q is any proper U-closed subspace of P’ then p;’ (Q) # X. Then there exist a morphisme : P—>P’ and a
morphism e’: P —>P such that p; =p;’e and p;'= p;e’. Then py(P) = X =p," (P') = p,'e(P) = X = pse’ (P').

Naturally, e and e/ are onto; we shall show that ee’ = 1, that is, e is a U-co-retraction. If ee’ # 1,, there exists
a proper U-closed subset S of P such that d'l(S) U S =P where d =€e'e.

Obviously, d(d™(S)) —S whence p:d(d™(S)) < pa(S). But pid = pse’e = py'e = py, hence pi(S) D p:d(d™(S)) =
pl(d'l(S)); so that p4(S) = p1(P) = X, a contradiction as S is a proper U-closed subset of P. We thus conclude that
e is a U-co-retraction. Already e is a U-retraction; hence e is a U-isomorphism, that is, e is a U-homeomorphism
of P onto P'.

Theorem 2.7 [6]( p-7) Let P be a compact Hausdorff U-space. Then P is projective if and only if for every
compact Hausdorff U-space W and U- continuous g: W —P, onto, there exists a U-continuous

s: P —>W such that gos(p) = p.

Proof: Assume that P is projective U-space and let s be a lifting of the identity map on P.

Conversely, assume that P is projective U- space and let X and Y be U-spaces and h: Y — X and f: P—>X , U-
continuous map with h onto. Then there exists a U-continuous map r: P— Y such that hor(p) = f(p) for every
peP.

Let W ={(p, y) €Px Y: f(p) = h(y)} and defineg : W —->P by g(p,y)=pand qg: W Y byq(p,y)=y.Ifs: P 5>Wis
as above then r = gos is a lefting of f.

Theorem 2.8 [11]( p- 70) If Pis a U-retract of P’ and P’ is projective, then P is projective.

Proof: Let P—>P' —P = 1,. If A—>A"” is an U-epimorphism and P—A"" is any morphism, then using
projectivity of P* we have P—>A" = P—>P' —>P—>A" = P—>P' —>A—>A" for some morphism P'—> A. This
establishes U-projectivity of P.

Theorem 2.9 [11] ( p-70) If P is projective U-space in A, then every U-epimorphism A—>P is a U-retraction.
Conversely if P has the property that every U-epimorphism A—>P is a U-retraction, and if A either has
projective or is abelian, then P is projective U- space.

Proof: If P is projective U-space, then given a U-epimorphism A —P there is a morphism P—A such that

P — A —>Pis 1;,. In other words P —A is a U-retraction.

Conversely, suppose that every U-epimorphism A —P is a U-retraction.

If A has projective then we may take A projective and then it follows from Theorem 5.8. On the other hand, if A
is abelian, then, given an U-epimorphosm f: A —A" and a morphism u:P—>A", we can form the pullback
diagram

X g

v
o

A

v
>

f

we know that g is an U-epimorphism. Then by assumption we can find h: P —X such that gh = 1. Then we have
fvh = ugh = u. This proves that P is projective U-space.

Theorem 5.10 [13]( p- 12) In the category P, the projective U-space objects are precisely the extremally
disconnected paracompact U-spaces.

Proof: If P is projective U-space, then given a U-epimorphism A —P there is a morphism P—A such that

P — A —Pis 1,. In other words P —A is a U-retraction.
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Conversely, suppose that every U-epimorphism A —P is a U-retraction. If A has projective then we may take A
projective U-space and then it follows from Theorem 5.8. On the other hand, if A is abelian, then, given an U-
epimorphosm f: A —-A" and a morphism u:P—A", we can form the pullback diagram

X g > P

\Y u

A > A"
r A

we know that g is an U-epimorphism. Then by assumption we can find h: P —X such that gh = 1;. Then we have
fvh = ugh = u. This proves that P is projective U-space. Therefore the projective U-space objects of P are the
objects for which perfect U-maps onto them are U-retraction.

Hence the theorem follows from theorems 2.5, 2.8 and 2.9.

Let X be any extremally disconnected U-space object from the category P. By theorem- 2.5 we can prove that
any U-perfect mapping f: A—> X of another object A onto X isa U-retraction.

By theorem- 2.8 ‘If P is a U-retract of P’ and P’ is projective U-space, then P is projective U-space’ And
theorem- 2.9 “If P is projective U-space in A, then every U-epimorphism A —> P is a U-retraction. Conversely if P
has the property that every U-epimorphism A—>P is a U-retraction, and if A has projective U- space, then P is
projective U- space.” P is projective U-space.

Hence the theorem is proved.
Examples of proper projective U-spaces which are locally compact but not compact.

1
Example-5.4 LetX=R,U ={X, D, (-0, E ),[0,1), [E ,1), [1,2),..,[n, n + 1), ...., and their unions}.
(i) Then (X, U ) is a U-space but not a topological space.

Si (ool)m[01) [0 1)eu
ince (-00, — ,1)=[0, — .
2 2

(i) X is not compact, since C = {(-oo,E ),[0, 1), [1, 2),.....,[n, n + 1),....,} is U-open cover of X but it has no finite
sub cover.

(iii) X is locally compact. For let x, € X. If x0<E , then (-OO'E ) is a neighborhood of x, whose closure is (-
- . 1 o
00,1), which is compact U-space, since every U-open cover of (-0, E ) must contain either X or both

(-oo,E ) and [E ,1) and each such cover is clearly finite.

If x> E ,X€[n, n+1)for somene {0} UN. Then [n, N+1) = [n, n + 1) which is obviously compact, since [n, n
+ 1) is U-closed.

(iv) All the U-open sets except (-OO'E) and [0, 1) are both U-open and U-closed & so the U-closure of any

union of these is U-open. Also, (— oo,%j =(-00, 1), m: (-00, 1).

Hence the closure of every U-open set is U-open.
Thus X is extremally disconnected U-space, and so, X is projective U-space.

Vol.3.Issue.1.2015 22



SWAPAN KUMAR DAS et al Bull.Math.&Stat.Res

Example 2.5 LetX=2Z,U ={X, @ ,{ne Z| - o< n<1},{0,1,2}, {3,4,5},{6,7,8} and their unions}. X is a proper
U-space.

For{ne Z| - o0<n<1}M{0,1,2}={0, 1} U.

(i) X is not compact. For the U-open cover

{{lne z | - 0<n<1}{0,1,2}, {3,4,5},{6,7,8},.ccceccreuruun. } has no finite sub cover .

(ii) However, X is locally compact. To sec this, let x, € X. If x, <1,

the{ne Z| - o< n<1}is a U-open neighborhood of xq and its closure is
{fne z | - 00 < n< 2} which is clearly compact. If xo >1, then for xo = 2, {0, 1, 2} is a U-open neighborhood of x

and its closureis{ne Z | - 00< n < 2} which again is U-compact, and for xo = n >2, x€{3r, 3r + 1, 3r + 2} for

some positive r, and this set is a U-open neighborhood of x,. Also, it is its own closure. Clearly it is compact.
Thus X is locally compact U-space.

(iii) The sets{3r, 3r+ 1, 3r + 2} are both U-open and U-closed for each r >1, {n e’ |—OO <n Sl} ={he Z
| -o<n<2}={nez| -w<n< 13U, 1,2

(iv) which is U-open. Also, {0,1,2}={ne Z | - 00 <n < 2}is U-open, as before.

Hence X is extremally disconnected U-space.

Therefore X is projective U-space.

3. Cover of compact Hausdorff U-space

We now generalize definitions and results of [6] ( p- 7 - 8 ). The proofs in [6] carry over to U-spaces as we shall
see below.

Definition 3.1 Let X be a compact Hausdorff U-space. A pair (C, f) is called a U-cover of X, provided that Cis a
compact Housdorff U-space and f: C — X is a U-continuous map that is onto X.

Definition 3.2 Let X and C be compact Housdorff U-spaces and f: C —X a U-continuous map that is onto X. A
pair (C, f) is called a U-essential cover of X if it is a U-cover and whenever Y is a compact, Hausdorff U-space, h:
Y —C is U-continuous and f(h(y)) = X, then necessarily h(Y) = C.

Definition 3.3 Let X and C be compact Housdorff U-space and f: C —-X a U-continuous map that is onto X. A
pair (C, f) is called a U-rigid cover of X if it is a U-cover and the only U-continuous map h: C —C satisfying f(h(c))
= f(c) for every ceC is the identity map.

Theorem 3.1 Let X be a compact Hausdorff U-space and let (C, f) be a U- essential cover of X. Then (C, f) is a U-
rigid cover of X.

Proof: Let h: C —C satisfy f(h(c)) = f(c) for every ceC. Let C; = h(C) which is a compact U-subset of C that still
maps onto X. The inclusion map of i: C;—C satisfies, f(i(C;)) = X and hence must be onto C. Thus h(C) = C.

Next, we claim that if Gc C is any non- empty U-open set, then G M h™(G) is non- empty. For assume to the
contrary, and let F = C \ G. Then F is compact U-space and given any ceG there exist yeh(G) with h(y) = c.
Hence, yeF and f(c) = f(h(y)) = f(y). Thus f(F) = X, again contradicting the essentiality of C. Thus, for every U-
open set G, we have that G M h™(G) is non-empty.

Now fix any ceC and for every neighborhood G of ¢ pick xge G M h™(G). We have that the net {xs} converges
to c. Hence, by continuity, {h(xg)} converges to h(c). But since h(xg)e G for every G, we also have that {h(xg)}
converges to c. Thus, h(c) = c and since ¢ was arbitrary, C is U-rigid cover of X.

Theorem 3.2 Let (C, f) be a U-cover of X with C a projective U-space. Then (C, f) is a U-essential cover if and
only if (C, f) is a U-rigid cover.

Proof: We already have that a U-essential cover is always a U-rigid cover. So assume that (C, f) is a

U-rigid cover. Let h: Y — C with f(h(Y))= X. Since C is projective, then there exists a map s: C — Y with (foh)os =
f. We have hos : C —C and f(hos(c))= f(c) and so by rigidity, hos(c)= c for every ceC. In particular, h must be
onto and so Cis U-essential cover.
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Theorem 3.3 Let (Y, f) be a U-cover of X and let C C Y be a minimal, compact U-subset of Y that maps onto X.
Then (C, f) is a U-rigid, essential cover of X.

Proof: First, we prove U-essential. Given any compact Hausdorff U-space Z and h: Z —C such that f(h(Z)) = X,
we have that h(Z)  Cis compact U-space and hence h(Z) = C by minimality.

Since (C, f) is a U-essential cover of X, by the above results it is also a U-rigid cover.
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