Vol.3.Issue.1.2015

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ISSN:2348-0580

PROJECTIVES IN CATEGORIES OF HAUSDORFF U-SPACES

NASIMA AKHTER¹, SUBRATA MAJUMDAR² AND SWAPAN KUMAR DAS^{3*}

¹Professor of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
²Retd. Professor of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
117/2, BIHAS, P.O.- Binodepur Bazar, Rajshahi, Bangladesh
³Associate Professor of Mathematics, University of Development Alternative (UODA), House No.- 80,
Satmajid Road, Dhanmondi, Dhaka-1209, Bangladesh
*corresponding author

SWAPAN KUMAR DAS Article Info: Article received :03/01/2015 Revised on:19/01/2015 Accepted on:24/01/2015

ABSTRACT

This is the fourth in a series of papers on U-spaces. Here projectiveness in some categories of Hausdorff U-spaces has been introduced and many topological theorems related to projective Hausdorffness have been generalized to U- spaces, as an extension of study of supratopological spaces.

Key Words: Category, projective, Hausdorff, extremally disconnected, , countable basis, compactification, locally compact,.

AMS Mathematics Subject Classification (2010): 54A40, 54D10, 54G12, 54D15

©KY PUBLICATIONS

INTRODUCTION

In a previous paper [1] we have introduced U- spaces. There and in [7] and [8] we studied some of their properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in ([2],[3],[10],[14]) in less general form, and the spaces were called supratopological spaces.

In this paper we have generalized to U- spaces the concepts of projective topological spaces, Stone Čceh compactification, perfect maps, and extremally disconnected spaces. We have also generalized to U- spaces some results on topological spaces occurring in [4] ,[5],[6],[9], [12] and [13]. A few important properties of such U-spaces have been studied. A number of interesting examples have been constructed to prove non-trivialness of such results. For most of the cases of the above generalizations the proof for U- spaces runs parallel to those for topological spaces.

We have constructed 2 examples of proper projective U-spaces which are locally compact but not compact and two examples of proper projective compact U- spaces.

In this paper a U- space will mean a Hausdorff U-space, unless otherwise mentioned.

2. Projectives in some Categories of Hausdorff U-spaces

We recall some definitions from [10], and generalize to U- space a few definitions in [5],[6] and [13].

Definition 2.1 A category consists of

(i) A class C of objects A, B, C,....

(ii) For each pair of objects A, B a set hom(A, B) whose elements are called morphism, with the property that

(a) $\alpha \in \text{hom}(A, B)$ and $\beta \in \text{hom}(B, C)$ implies there exists $\gamma \in \text{hom}(A, C)$ which is written $\gamma = \beta \alpha$;

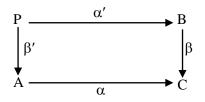
(b) For each $A \in C$, there exists $1_A \in hom(A, A)$ such that for each $B \in C$ and for each $\alpha \in hom(A, B)$, $\alpha = \alpha 1_A$, and $\alpha = 1_B \alpha$,

(c) Let $\alpha \in \text{hom}(A, B)$, $\beta \in \text{hom}(B, C)$, $\gamma \in \text{hom}(C, D)$ then $\gamma (\beta \alpha) = (\gamma \beta) \alpha$.

If $\beta \alpha = \gamma \alpha \Longrightarrow \beta = \gamma$ then α is an epimorphism or, epic ;

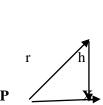
If $\alpha \ \beta = \alpha \ \gamma \Longrightarrow \beta = \gamma$, then α is a monomorphism or, monic.

Definition 2.2 Let A, B, C be three objects and $\alpha : A \rightarrow C$ and $\beta : B \rightarrow C$ be monics in a category. There are different ways of completing them to a commutative square. A final object in this square is called **Pullback** of α and β .



Definition 2.3 [6](p-3) A U- space P is **projective**, if for any pair of U– spaces, X, Y and any pair of U- continuous maps h: $Y \rightarrow X$ and f: $P \rightarrow X$, with h onto, there exists a U- continuous map r: $P \rightarrow Y$ such that hr(p) = f(p) for every $p \in P$.

Y



Definition 2.4 [13](p-7) A U-continuous function f: $X \rightarrow Y$ where X and Y are arbitrary Hausdorff U-spaces is called U-**perfect** if f is U- closed and the set $f^{-1}(y)$ is compact for each y in Y. **Definition 2.5** [6](p-482) A U- space X is **extremally disconnected** if the closure of every U- open set is Uopen.

Definition 2.6 A U-space Y is an extension U - space of another space X if X is U-dense in Y.

The generalization of the construction of the Stone- Čech compactification for a U- completely regular space Let X be a completely regular T_1 -U-space. Let $\{f_{\alpha}\}_{\alpha \in A}$ be the collection of all bounded U-continuous realvalued function on X, indexed by some index set A.

For each $\alpha \in A$, choose $I_{\alpha} = (-\infty, \sup f_{\alpha}(X)]$ regarded as U- subspaces of the usual U- space R. Then define h:X $\rightarrow \prod_{\alpha \in A} I_{\alpha}$ by the rule h(x)= (f_{\alpha}(x))_{\alpha \in A}. Since X is completely regular T₁ -U-space, for two distinct points x₁, x₂, {x₂} is U- closed and x₁ \notin {x₂} so there exists f_{\alpha} such that f_{\alpha}(x₁) \neq f_{\alpha}(x₂). Hence h(x₁) \neq h(x₂). Therefore h

is one-one. Since $f_{\alpha} : X \to I_{\alpha}$ is U- continuous, it follows from the definition of $\prod_{\alpha \in A} I_{\alpha}$ that h is U-continuous.

We shall show that h is U-open. Let V_1 be a U-open set of X and $y_0 \in h(V_1)$. Let $x_0 \in V_1$ such that $h(x_0) = y_0$. Since X is completely regular, there exists f_{α} such that $f_{\alpha}(x_0) \in (-\infty, \sup f_{\alpha}(X))$ and $f_{\alpha}(X - V_1) = \sup f_{\alpha}(X)$. Let

$$V_2 = \pi_{\alpha}^{-1} (-\infty, \sup f_{\alpha}(X))$$
. Then V_2 is U- open in $\prod_{\alpha \in A} I_{\alpha}$, and $W = V_2 \cap h(X)$ is a U- open set of $h(X)$.

We shall show that $y_0 \in W \subset h(V_1)$. Since $y_0 \in h(V_1) \subseteq h(X)$ and $\pi_{\alpha} h(x_0) = f_{\alpha}(x_0)$, $y_0 = h(x_0) = \pi_{\alpha}^{-1} f_{\alpha}(x_0) \subseteq V_2$. Therefore $y_0 \in W$.

Let $y \in W$. Then for some $x \in X$, y = h(x) and $\pi_{\alpha}(y) \in (-\infty, \sup f_{\alpha}(X))$. Since $\pi_{\alpha}(y) = \pi_{\alpha}h(x) = f_{\alpha}(x)$ and $f_{\alpha}(X) = -V_1$ = $\sup f_{\alpha}(X)$, so $x \in V_1$, i.e., $y = h(x) \in h(V_1)$.

Therefore h: $X \to \prod_{\alpha \in A} I_{\alpha}$ is an U-imbedding. Hence $(\overline{h(X)}, h)$ is a compactification of X. $\overline{h(X)}$ will be

written β (X) and will be called the U-generalized form of Stone- Čech compactification of X.

Definition 2.7 [13](p-8) Let P be the category of all paracompact U-spaces and U- perfect maps and T be the category of all Tychonoff U-spaces and perfect U-maps. It is to be noted that both of these categories contain C, the category of compact U-spaces and U- continuous maps, as a full subcategory. P is also a full subcategory of T.

Theorem 2.1 The category **P** has pullbacks.

As in ([13].p.8) we have (The proof is similar. The details are given to stress the velidity.)

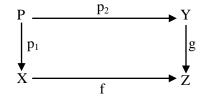
Proof: Let f: $X \rightarrow Z$ and g: $Y \rightarrow Z$ be two morphisms in the category **P** (i.e., X, Y, Z be paracompact

U-spaces and f, g are perfect U-maps). We have to show the existence of a pullback diagram for f and g.

Let $P = \{(x, y) \in X \times Y: f(x) = g(y)\}$ and p_1 and p_2 be the projection on X and Y respectively. Suppose there exist $p'_1: P' \rightarrow X$ and $p'_2: P' \rightarrow Y$ such that $fp'_1 = gp'_2$.

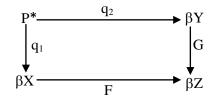
Define h: P' \rightarrow X \times Y as follows:

 $h(t) = (p'_1(t), p'_2(t)), t \in P'$. Since $fp'_1 = gp'_2$, $h(t) \in P$ that is, $h:P' \rightarrow P$ such that $p_1h = p'_1$ and $p_2h = p'_2$. It is easy to see that the map h is unique. Thus the diagram



is a pullback for f and g. We show that this diagram belongs to **P**, that is, that the maps p_1 and p_2 are U-perfect.

Consider the pullback diagram



for the maps F: $\beta X \rightarrow \beta Z$ and G: $\beta Y \rightarrow \beta Z$ where F and G are the extensions of the map f and g onto βX and βY respectively (βX , βY and βZ are the generalization of Stone- Čech compactifications and η_X , η_Y and η_Z are reflector maps of X, Y and Z respectively).

We have $F \eta_X = \eta_Z f$, $G \eta_Y = \eta_Z g$ and $P^* = \{(x^*, y^*) \in \beta X \times \beta Y : F(x^*) = G(y^*)\}$. q_1 and q_2 are projections of P^* to βX and βY respectively.

Again, let p_1^* : $\beta P \rightarrow \beta X$, p_2^* : $\beta P \rightarrow \beta Y$ be the extensions of p_1 and p_2 onto βP . Hence $\eta_X p_1 = p_1^* \eta_P$, $\eta_Y p_2 = p_2^* \eta_P$. Since $fp_1 = gp_2$, $\eta_Z fp_1 = \eta_Z gp_2$. Note that $Fp_1^* \eta_P = F \eta_X p_1 = \eta_Z fp_1$ and $Gp_2^* \eta_P = G \eta_Y p_2 = \eta_Z gp_2$.

Therefore, $\operatorname{Fp}_1^* \eta_P = \operatorname{Gp}_2^* \eta_P$. Since η_P (P) is U- dense in β P

we have $\operatorname{Fp}_1^* = \operatorname{Gp}_2^*$ on β P.

From the definition of pullback there exists a (unique) mapping h: $\beta P \rightarrow P^*$ such that $p_1^* = q_1h$ and $p_2^* = q_2h$. Again, for the maps $\eta_X p_1: P \rightarrow \beta X$ and

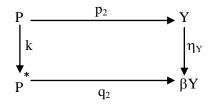
 $\eta_{\scriptscriptstyle Y}$ p_2:P ightarrow β Y , we have F $\eta_{\scriptscriptstyle X}$ p_1 = G $\eta_{\scriptscriptstyle Y}$ p_2 (this equality is already noted earlier).

From the definition of pullback once again we get a map k: $P \rightarrow P^*$ such that $\eta_X p_1 = q_1 k$ and $\eta_Y p_2 = q_2 k$. It is easy to see that the map k is as follows:

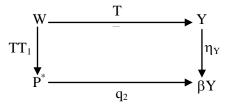
 $k(x, y) = (\eta_X p_1(x, y), \eta_Y p_2(x, y)) = (\eta_X (x), \eta_Y (y)), (x, y) \in P. k$ clearly turns out to be a U-homeomorphism into P*. Moreover it is not difficult to notice that $k = h \eta_P$. Now k is a U-homeomorphism of P onto $k(P) \subset P^*$. From the property of generalized form of Stone- Čech compactification it follows that

(i) h(β P - η_P (P)) $\subset k(P)$ - k(P) \subset P*.

Now $q_2 k = \eta_y p_2$, that is,



is a commutative diagram. So we consider the pullback diagram for $q_2: P^* \to \beta Y$ and $\eta_Y: Y \to \beta Y$ say



Where W is given by {(s, y) $\in P^* \times Y$: $q_2(s) = \eta_Y(y)$ } and π_1 , π_2 are the respective projections to P* and Y. Since $q_2(s) = q_2(x^*, y^*) = y^*$, $q_2(s) = \eta_Y(y)$ implies $y^* = \eta_Y(y)$.

Consequently, W = {((x*, $\eta_Y(y)$), y) $\in P^* \times Y$: $\eta_Y(y)=y^*$ }

 $= \{((\mathbf{x}^*, \eta_Y(\mathbf{y})), \mathbf{y}) \in (\beta \mathsf{X} \times \beta \mathsf{Y}) \times \mathsf{Y} : \mathsf{F}(\mathbf{x}^*) = \mathsf{G}(\eta_Y(\mathbf{y}))\}.$

If $F(x^*) = G(\eta_Y(y))$ then $F(x^*) = G(\eta_Y(y)) = \eta_Z g(y)$. Since f is a U-perfect map, $F(\beta X - \eta_X(x)) \subset \beta Z - \eta_Z(Z)$. As a consequence, $x^* \in \eta_X(x)$, that is, $x^* = \eta_X(x)$ for some $x \in X$. So we have

 $W = \{ ((\eta_X (x), \eta_Y (y)), y) \in (\beta X \times \beta Y) \times Y : F(\eta_X (x)) = G(\eta_Y (y)) \}. \text{ Again } \eta_Z g(y) = G(\eta_Y (y)) = F(\eta_X (x)) = \eta_Z f(x) \text{ and this naturally implies } f(x) = g(y).$

We then get,

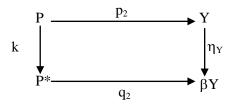
(ii) W = {((η_X (x), η_Y (y)), y) \in (β X× β Y) ×Y : f(x) = g (y)}

 $= \{k(x, y), y): (x, y) \in P \text{ and } p_2(x, y) = y\}.$

Since $\eta_{\gamma} p_2 = q_2 k$ there exist a unique map j: P \rightarrow W as follows:

 $j(x, y) = (k(x, y), p_2(x, y)), (x, y) \in P.$

Easy to see from (ii) that j(P) = W. In fact j is a U-homeomorphism of P and W. Now W is, by construction, a Uclosed subset of $P^* \times Y$ which is paracompact U-space (as P^* is a compact U-space and Y is a paracompact Uspace). As a result W is paracompact U-space. This makes P paracompact U-space and J a U-isomorphism of P and W in the category **P**. We then obtain that the diagram



as a pullback diagram. Note that η_Y is a one-one map, that is, η_Y is a U-monomorphism. From the definition of inverse image we see that P = $q_2^{-1}(Y)$ as a sub object of P*.In terms of sets this means that

 $k(P) = q_2^{-1}(\eta_Y(Y))$. As a result $q_2(P^*-k(P)) \subset \beta Y - \eta_Y(Y)$. We know from (i) that

 $h(\beta P - \eta_{P}(P)) \subset \overline{k(P)} - k(P) \subset P^{*} - k(P), \text{ so that } p_{2}^{*}(\beta P - \eta_{P}(P)) = q_{2}h(\beta P - \eta_{P}(P)) = q_{2}[h(\beta P - \eta_{P}(P))]$ $\subset q_{2}(P^{*} - k(P)) \subset \beta Y - \eta_{Y}(Y).$

Hence, by a characterization of Henriksen and Isbell [13], p_2 is a U-perfect map. Similarly, p_1 is a U-perfect map. We generalize the theorems, Lemmas and Corollary of [5] (p- 482- 484)

Theorem 5.2 In any category of U-spaces and maps satisfying conditions

(a) all admissible maps are U-continuous,

(b) if A is an admissible space and $\{p, q\}$ is a two element space, then $A \times \{p, q\}$ and the projection map of this U-space onto A are admissible,

(c) if A is an admissible space and B is a U-closed subspace of A, then B and the inclusion map of B into A are admissible, a projective U-space is extremally disconnected.

Proof: Let X be a projective U-space in such a category. Let G be any U-open subset of X; we must prove G is U-open. In X×{p, q} consider the U-closed set Y = ((X - G) × {p}) \cup (\overline{G} ×{q}), and its inclusion map i. Let π be the projection of X×{p, q} onto X. Our hypothesis on the category implies that π o i is an admissible map of Y onto X and that the identity ϕ is an admissible map of X into X. Since X is projective U- space, there is an admissible map ψ of X into Y such that $\phi = \pi$ o i o ψ . Because π o i is one -to-one on G×{q} it is clear that

 ψ (x) = $\langle x, q \rangle$ for x \in G; from the continuity of ψ follows

 $\psi \text{ (x) = } \left\langle x,q \right\rangle \text{for } \mathbf{x} \in \overline{G} \text{ .Similarly, for } \mathbf{x} \not\in \overline{G} \text{ , } \psi \text{ (x) = } \left\langle x,p \right\rangle.$

Thus we have proved $\overline{G} = \psi^{-1}(\overline{G} \times \{q\})$. Since ψ is U-continuous and $\overline{G} \times \{q\}$ is U-open in Y, \overline{G} is U-open in X as required.

Theorem 2.3 In an extremally disconnected U-space no sequence is convergent unless it is ultimately constant.

Proof: Suppose that the sequence $\{x_n\}$ converges to p in the extremally disconnected U-space X. Assume this sequence is not ultimately constant, we shall deduce a contradiction.

First we construct inductively a disjoint sequence {U_i} of U-open sets in X such that each U_i contains a member $x_{n(i)}$ of the given sequence, where {n(i)} is an increasing sequence of integers. Let n(1) be an index for which $x_{n(1)} \neq p$, and choose a U-open set U₁ such that $x_{n(1)} \in U_1$ but $p \notin \overline{U_1}$. Suppose we have chosen disjoint U-open sets U₁, U₂, U₃,...,U_k and increasing integers $n_1, n_2, n_3, \ldots, n_k$ such that $x_{n(i)} \in U_i$ and $p \notin \overline{U_i}$ for $i = 1, 2, 3, \ldots, k$. Then $V = X - (\overline{U_1} \cup \overline{U_2} \cup \overline{U_3} \cup \ldots, \bigcup \overline{U_k})$ is an U-open neighborhood of p, so $x_q \in V$ for all sufficiently large q. By a suitable choice of $n_{(k+1)}$ we shall have $n_{(k+1)} > n_k$, $x_{n(k+1)} \in V$ but $x_{n(k+1)} \neq p$ since the original sequence is not ultimately constant. Choose an U-open set W such that

 $x_{n(k+1)} \in W$ but $p \notin \overline{W}$, and let $U_{k+1} = W \cap V$. This completes the inductive construction.

Let G = $\cup U_{2q}$. Since X is extremally disconnected U-space, \overline{G} is an U-open set, and p $\in \overline{G}$ being the limit of

 $\{x_{n(2q)}\}$. Thus G is a neighborhood of p, so $x_r \in G$ for all large r; in particular, $x_{n(s)} \in G$ for some odd integer s. Since U_s is a neighborhood of $x_{n(s)}$, $U_s \cap G$ is not empty, contrary to the definition of G and disjoint ness of the U's.

Definition 2.8 A U-space is said to have a **countable basis at x** if there is a countable collection B of neighborhoods of x such that each neighborhood of x contains at least one of the elements of B.

A U-space that has a countable basis at each of its points is said to **satisfy the first countability axiom**, or to be **first-countable**.

Corollary 2.1 In a category of U-spaces in which all Hausdorff U-spaces satisfy the first axiom of countability and properties

(a) all admissible maps are U-continuous,

(b) if A is an admissible space and $\{p, q\}$ is a two-element space, then $A \times \{p, q\}$ and the projection map of this space onto A are admissible,

(c) if A is an admissible space and B is a U-closed subspace of A, then B and the inclusion map of B into A are admissible hold, then every projective Hausdorff U-space is discrete topological Hausdorff U-spaces.

Lemma 2.1 Let A and E be U-spaces. Suppose f is a U-continuous map of E onto A such that $f(E_o) \neq A$ for any proper closed subset E_o of E.

Then, for any U-open set $G \subset E$, $f(G) \subset \overline{A - f(E - G)}$.

Proof: There is nothing to prove if G is empty. Suppose otherwise, let a be any point of f(G), and let N be any U-open neighborhood of a.

The lemma will follow if we prove that $N \cap (A - f(E-G))$ is not empty. Because $G \cap f^{1}(N)$ is a nonempty U-open subset of E, $f(E - (G \cap f^{1}(N))) \neq A$. Take $x \in A - f(E - (G \cap f^{1}(N)))$; clearly $x \in A - f(E - G)$. Since f is onto, x = f(y) where evidently $y \in (G \cap f^{1}(N))$. Therefore $x = f(y) \in f(f^{1}(N)) = N$,

so $x \in N \cap (A - f(E - G))$, and the latter set is not empty.

Lemma 2.2 In an extremally disconnected U-space, if U₁ and U₂ are disjoint U-open sets, then $\overline{U_1}$ and $\overline{U_1}$

 \overline{U}_2^- are also disjoint.

Proof: First, $\overline{U_1}$ and U_2 are disjoint because U_2 is U-open; then $\overline{U_1}$ and $\overline{U_2}$ are disjoint because $\overline{U_1}$ is U-open.

Lemma 2.3 Let A be an extremally disconnected Hausdorff compact U-space, and let E be a compact U-space. Suppose f is a U-continuous map of E onto A such that $f(E_o) \neq A$ for any proper U-closed subset E_o of E.

Then f is a U-homeomorphism.

Proof: We need only show that f is one-to one. Suppose, on the contrary, that x_1 and x_2 are distinct points of E for which $f(x_1) = f(x_2)$. Let G_1 and G_2 be disjoint U-open neighborhoods of x_1 and x_2 respectively. Both the sets E - G_1 and E - G_2 are compact, so A - f(E - G_1) and A - f(E - G_2) are U-open.

The latter sets are disjoint because $E = (E - G_1) \cup (E - G_2)$. By the Lemma- 2.2, $\overline{A - f(E - G_1)}$ and $\overline{A - f(E - G_2)}$ are disjoint. On the other hand, it follows from Lemma- 2.1 that $f(x_1) = f(x_2)$ is a point common to these sets. This contradiction establishes Lemma- 2.3.

Lemma 2. 4 [5](p- 484) Let A and D be compact Hausdorff U-spaces, and let f map D continuously onto A. Then D contains a compact U-subspace E such that f(E) = A but $f(E_o) \neq A$ for any proper U-closed subset E_o of E. **Proof:** This is a well known consequence of Zorn's Lemma.

Theorem- 2.4 In the category of compact U-spaces and U-continuous maps, the projective U-spaces are precisely the extremally disconnected U-spaces.

Proof: To prove that all projective U-spaces in the category are extremally disconnected U-space, we have only to verify the conditions of Theorem-2.2. We turn to the opposite inclusion.

Let A be an extremally disconnected compact U-space, let B and C be compact U-spaces, let f be a

U-continuous map of B onto C, and let ϕ be a U-continuous map of A into C. We must prove that there exists a U-continuous map ψ of A into B such that $\phi = f\psi$.

In the space A×B consider D = {(a, b) $|\phi(a)|$ = f(b)}. This set is clearly closed and therefore compact U-space. Since f is onto, the projection π_1 of A×B onto A carries D onto A. By Lemma- 2.4 there is a U-closed subset E of D such that $\pi_1(E) = A$ but $\pi_1(E_0) \neq A$ for any proper U- closed subset E_0 of E. Let ρ be the restriction of π_1 to E. Lemma-2.3 asserts that ρ is a U-homomorphism. Let $\psi = \pi_2 \rho^{-1}$, where π_2 is the projection of A×B into B; this is the required map. Suppose $a \in A$; since $\rho^{-1}(a) \in D$, $f(\pi_2(\rho^{-1}(a))) = \phi(\pi_1(\rho^{-1}(a))) = \phi(\pi_1(\rho^{-1}(a)))$ φ(a).

Thus $\phi = f \pi_2 \rho^{-1} = f \psi$; this completes the proof.

Definition 2.9 A map is said to be U-proper if and only if it is U-continuous and the inverse image of every compact U- space is compact.

Example- 2.1 (Proper extremally disconected compact U- space). Let $X = \{a, b, c, d\}, U = \{X, \Phi, \{a, b\}, \{a, c\}, \{a, c\}, \{a, b\}, \{a, c\}, \{a,$ b, c},{d},{a, b, d},{a, c, d}}.Since {a, b} ∩ {a, c}={a} ∉ U. U is a U-structure.

Then (X, \cup) is a proper U-space.

Here $\overline{\{a,b\}} = \overline{\{a,c\}} = \overline{\{a,b,c\}} = \{a, b, c\}, \overline{\{d\}} = \{d\}, \{a,b,d\} = X, \{a,c,d\} = X$.

Hence X is a proper extremally disconnected and compact U-space.

Example - 2.2 (a proper projective compact U-space)

Let X = {a, b, c, d} and U = {X, Φ , {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}. Then X is a proper U-space which is clearly, Hausdorff, compact and extremally disconnected U-space. Thus X is a proper projective compact U-space.

Example - 2.3 Let X = N be U-space, n_0 is a fixed element of N and

 $let U = \{\{N, \Phi\} \cup \{\{n \in N \mid n \le n_o\}, \{n \in N \mid n > n_o\}, \{n \in N \mid n < n_o + 3\}, \{n \in N \mid n \ge n_o + 3\}, |n_o \in N \mid n_o \in N\}$ }}, and their unions.

Now $\{n \in N \mid n < n_0 + 3\} \cap \{n \in N \mid n > n_0\} = \{n_0 + 1, n_0 + 2\} \notin U.$

Thus U is a U-structure but not a topology, and so, (X,U) is a proper U-space.

(i) X is clearly compact.

(ii) X is Hausdorff. For, if $n_1, n_2 \in N$ and $n_1 \neq n_2$, say $n_1 < n_2$, then $n_1 \in U_1 = \{1, 2, 3, \dots, n_1\}, n_2 \in U_2 = \{n \in N \}$ $|n > n_1$ and $U_1 \cap U_2 = \Phi$.

(iii) X is extremally disconnected U- space, since, for each U-open set G of X, \overline{G} = G is U-open.

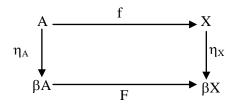
Hence by Theorem 2.4, X is a proper projective compact U-space.

Definition 2.11 If $A \subset X$, a **U-retraction** of X onto A is a U-continuous map r: $X \rightarrow A$ such that r A is the

identity map of A. If such a map r exists, we say that A is a U-retract of X. We now generalize the theorems of ([14], p-11-12)

Theorem 2.5 Let X be any extremally disconnected object from the category **P**. Any perfect U-mapping f: $A \rightarrow X$ of another object A onto X is a U-retraction.

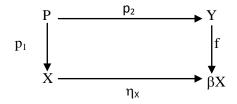
Proof: We have f: $A \rightarrow X$ onto. Then we can draw the following diagram



Where F is the unique U-continuous extension of f onto β A taking values in β X. Since f is a surjection, F is also onto. But β X is extremally disconnected U-space and F is an onto map. Since β X is projective U-space in the category **C**. F is a U-retraction, that is there exists a mapping g: $\beta X \rightarrow \beta A$ such that $Fg = 1_{\beta X} = the$ identity map on β X. Since f is a perfect U-map, F($\beta A - \eta_A(A)$) = $\beta X - \eta_X(X)$. Therefore, g($\eta_X(X)$) $\subset \eta_A(A)$. Put $h = \eta_A^{-1}g\eta_X : X \rightarrow A$. Now fh(x) = f $\eta_A^{-1}g\eta_X(x)$. But F (g $\eta_X(x)$) = η_X (x) and g($\eta_X(x)$) $\in \eta_A^{-1}g\eta_X(x)$ and x = f(a) and hence, f(a) = f $\eta_A^{-1}g\eta_X(x) = x$. Consequently fh(x) = x for each x \in X, that is, fh = 1_x. Naturally f is a U-retraction.

Theorem 2.6 The category **P** has projectives that is any paracompact U-space is the perfect U-image of a projective U-space object. In fact, for every object X there is a projective U-space objects P and an onto U-perfect mapping $p_1: P \rightarrow X$ such that p_1 maps no proper U-closed subspace of P onto X. For any other such object P' and $p'_1:P' \rightarrow X$ there is an U-isomorphism $e: P \rightarrow P'$ such that $p_1 = p_1'e$.

Proof: Let X be any object of **P**. Look at β X, the Stone - Čech compactification of X. There exists an extremally disconnected compact U-space Y and a U-continuous onto map f: Y $\rightarrow \beta$ X such that f(S) $\neq \beta$ X for any proper U-closed subspace S of Y. Consider the pull- back diagram



for the morphisms $\eta_{\scriptscriptstyle X}$: X $ightarrow \beta$ X and f: Y $ightarrow \beta$ X,

where P = {(x, y) $\in X \times Y$: η_X (x) = f(y)} and p₁ and p₂ are projections to X and Y respectively. We do not claim that this is a pullback in **P**. Clearly, η_X p₁ = fp₂. Since η_X is a U-monomorphism, p₂ is

U-monomorphism. Since f is onto, p_1 is onto. Again, P is a U-closed subset of X×Y and the latter is paracompact U-space P is, hence, paracompact U-space. p_1 is also U-closed so that p_1 becomes a perfect Umap. $fp_2 = \eta_X p_1 \Longrightarrow fp_2 (P) = \eta_X (X)$. Let $W = p_2(P)$. Since f is a U-closed map, $f(\overline{p_2(P)}) = f(\overline{W}) = \beta X$. Observe that \overline{W} is a U-closed subset of Y and $f(\overline{W}) = \beta X$. From the choice of Y it follows that $\overline{W} = Y$, that is, $W = p_2(P)$ is dense in Y. Y is extremally disconnected U-space rendering W extremally disconnected U-space. Now it is not very difficult to see that p_2 is a U-perfect map onto W. Since P is paracompact U-space and p_2 is a U-perfect map onto W, W is a paracompact U-space.

By Theorem-2.5, p₂ is a U-retraction. Since p₂ is a U-monomorphism and a U-retraction also, it is an

U-isomorphism, that is p_2 is a U-homeomorphism of P and W. Thus P is an extremally disconnected paracompact U-space. So P is projective U-space due to "In the category **P**, the projective objects are precisely the extremally disconnected paracompact U-spaces". Since p_1 is a U-perfect map of P onto X, X is a U-perfect image of a projection object. Let Q be a proper U-closed subset of P. Then $p_2(Q)$ is a proper U-closed subset of $p_2(P)$ = W. Write $p_2(Q)$ = W(F) where F is a U-closed subset of Y. Since $p_2(Q)$ is a proper U-closed subset of W, F is a proper U-closed subset of Y.

If $p_1(Q) = X$, then $\eta_X(X) = \eta_X p_1(Q) = fp_2(Q) = f(W(F)) \subset f(F)$. Since f is a U-closed map of X onto βX , f(F) is a U-closed and hence equals βX . This is a contradiction. Consequently P enjoys the property that no proper U-closed subspace of P is mapped onto X by p_1 .

If possible let P['] be a projective paracompact U-space with a U-perfect map $p_1': P' \rightarrow X$ such that $p_1'(P') = X$ and if Q is any proper U-closed subspace of P' then $p_1'(Q) \neq X$. Then there exist a morphism $e: P \rightarrow P'$ and a morphism $e': P' \rightarrow P$ such that $p_1 = p_1'e$ and $p_1'= p_1e'$. Then $p_1(P) = X = p_1'(P') \implies p_1'e(P) = X = p_1e'(P')$. Naturally, e and e['] are onto; we shall show that $ee' = 1_p$, that is, e is a U-co-retraction. If $ee' \neq 1_p$, there exists a proper U-closed subset S of P such that $d^{-1}(S) \cup S = P$ where d = e'e.

Obviously, $d(d^{-1}(S)) \subset S$ whence $p_1d(d^{-1}(S)) \subset p_1(S)$. But $p_1d = p_1e'e = p_1'e = p_1$, hence $p_1(S) \supset p_1d(d^{-1}(S)) = p_1(d^{-1}(S))$; so that $p_1(S) = p_1(P) = X$, a contradiction as S is a proper U-closed subset of P. We thus conclude that e is a U-co-retraction. Already e is a U-retraction; hence e is a U-isomorphism, that is, e is a U-homeomorphism of P onto P'.

Theorem 2.7 [6](p- 7) Let P be a compact Hausdorff U-space. Then P is projective if and only if for every compact Hausdorff U-space W and U- continuous g: $W \rightarrow P$, onto, there exists a U-continuous

s: $P \rightarrow W$ such that gos(p) = p.

Proof: Assume that P is projective U-space and let s be a lifting of the identity map on P.

Conversely, assume that P is projective U- space and let X and Y be U-spaces and h: $Y \rightarrow X$ and f: $P \rightarrow X$, U-continuous map with h onto. Then there exists a U-continuous map r: $P \rightarrow Y$ such that hor(p) = f(p) for every $p \in P$.

Let $W = \{(p, y) \in P \times Y: f(p) = h(y)\}$ and define $g : W \rightarrow P$ by g(p, y) = p and $q: W \rightarrow Y$ by q(p, y) = y. If $s: P \rightarrow W$ is as above then r = qos is a lefting of f.

Theorem 2.8 [11](p-70) If P is a U-retract of P' and P' is projective, then P is projective.

Proof: Let $P \rightarrow P' \rightarrow P = 1_P$. If $A \rightarrow A''$ is an U-epimorphism and $P \rightarrow A''$ is any morphism, then using projectivity of P' we have $P \rightarrow A'' = P \rightarrow P' \rightarrow P \rightarrow A'' = P \rightarrow P' \rightarrow A \rightarrow A''$ for some morphism $P' \rightarrow A$. This establishes U-projectivity of P.

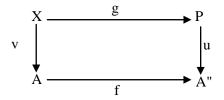
Theorem 2.9 [11] (p-70) If P is projective U-space in A, then every U-epimorphism $A \rightarrow P$ is a U-retraction. Conversely if P has the property that every U-epimorphism $A \rightarrow P$ is a U-retraction, and if A either has projective or is abelian, then P is projective U- space.

Proof: If P is projective U-space, then given a U-epimorphism $A \rightarrow P$ there is a morphism $P \rightarrow A$ such that

 $P \rightarrow A \rightarrow P$ is 1_P . In other words $P \rightarrow A$ is a U-retraction.

Conversely, suppose that every U-epimorphism $A \to \! P$ is a U-retraction.

If A has projective then we may take A projective and then it follows from Theorem 5.8. On the other hand, if A is abelian, then, given an U-epimorphosm f: $A \rightarrow A$ " and a morphism u:P $\rightarrow A$ ", we can form the pullback diagram

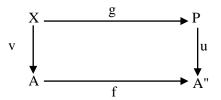


we know that g is an U-epimorphism. Then by assumption we can find h: $P \rightarrow X$ such that $gh = 1_P$. Then we have fvh = ugh = u. This proves that P is projective U-space.

Theorem 5.10 [13](p- 12) In the category **P**, the projective U-space objects are precisely the extremally disconnected paracompact U-spaces.

Proof: If P is projective U-space, then given a U-epimorphism $A \rightarrow P$ there is a morphism $P \rightarrow A$ such that $P \rightarrow A \rightarrow P$ is 1_P . In other words $P \rightarrow A$ is a U-retraction.

Conversely, suppose that every U-epimorphism A \rightarrow P is a U-retraction. If A has projective then we may take A projective U-space and then it follows from Theorem 5.8. On the other hand, if A is abelian, then, given an U-epimorphosm f: A \rightarrow A" and a morphism u:P \rightarrow A", we can form the pullback diagram



we know that g is an U-epimorphism. Then by assumption we can find h: $P \rightarrow X$ such that $gh = 1_P$. Then we have fvh = ugh = u. This proves that P is projective U-space. Therefore the projective U-space objects of P are the objects for which perfect U-maps onto them are U-retraction.

Hence the theorem follows from theorems 2.5, 2.8 and 2.9.

Let X be any extremally disconnected U-space object from the category P. By theorem- 2.5 we can prove that any U-perfect mapping f: A \rightarrow X of another object A onto X is a U-retraction.

By theorem- 2.8 'If P is a U-retract of P' and P' is projective U-space, then P is projective U-space' And theorem- 2.9 "If P is projective U-space in A, then every U-epimorphism $A \rightarrow P$ is a U-retraction. Conversely if P has the property that every U-epimorphism $A \rightarrow P$ is a U-retraction, and if A has projective U-space, then P is projective U-space." P is projective U-space.

Hence the theorem is proved.

Examples of proper projective U-spaces which are locally compact but not compact.

Example- 5.4 Let X = R, U ={X, Φ , (- ∞ , $\frac{1}{2}$),[0,1), [$\frac{1}{2}$,1), [1,2),...,[n, n + 1),, and their unions}.

(i) Then (X, U) is a U-space but not a topological space.

Since $(-\infty, \frac{1}{2}) \cap [0, 1] = [0, \frac{1}{2}) \notin U$.

(ii) **X** is not compact, since $C = \{(-\infty, \frac{1}{2}), [0, 1), [1, 2), \dots, [n, n + 1), \dots, \}$ is U-open cover of X but it has no finite sub cover.

(iii) X is locally compact. For let $x_0 \in X$. If $x_0 < \frac{1}{2}$, then $(-\infty, \frac{1}{2})$ is a neighborhood of x_0 whose closure is (-

 ∞ ,1), which is compact U-space, since every U-open cover of $(-\infty, \frac{1}{2})$ must contain either X or both

 $(-\infty, \frac{1}{2})$ and $[\frac{1}{2}, 1)$ and each such cover is clearly finite.

If $x \ge \frac{1}{2}$, $x \in [n, n + 1)$ for some $n \in \{0\} \cup N$. Then $\overline{[n, n+1]} = [n, n + 1)$ which is obviously compact, since [n, n + 1] is U-closed.

(iv) All the U-open sets except (- ∞ , $\frac{1}{2}$) and [0, 1) are both U-open and U-closed & so the U-closure of any

union of these is U-open. Also, $\overline{\left(-\infty,\frac{1}{2}\right)}$ = (- ∞ , 1), $\overline{\left(0,1\right)}$ = (- ∞ , 1).

Hence the closure of every U-open set is U-open.

Thus X is extremally disconnected U-space, and so, X is projective U-space.

Example 2.5 Let X = Z, U ={X, Φ , {n \in Z $| -\infty < n \le 1$ }, {0,1,2}, {3,4,5}, {6,7,8} and their unions}. X is a proper U-space.

For $\{n \in Z \mid -\infty < n \le 1\} \cap \{0,1,2\} = \{0,1\} \notin U$.

(i) X is not compact. For the U-open cover

 $\{ n \in Z \mid -\infty < n \le 1 \}, \{0,1,2\}, \{3,4,5\}, \{6,7,8\}, \dots \}$ has no finite sub cover .

(ii) However, **X** is locally compact. To sec this, let $x_o \in X$. If $x_o \le 1$,

the $\{n \in Z | -\infty < n \le 1\}$ is a U-open neighborhood of x_0 and its closure is

 $\{n \in Z \mid -\infty < n \le 2\}$ which is clearly compact. If $x_0 > 1$, then for $x_0 = 2$, $\{0, 1, 2\}$ is a U-open neighborhood of x_0 and its closure is $\{n \in Z \mid -\infty < n \le 2\}$ which again is U-compact, and for $x_0 = n > 2$, $x \in \{3r, 3r + 1, 3r + 2\}$ for some positive r, and this set is a U-open neighborhood of x_0 . Also, it is its own closure. Clearly it is compact. **Thus X is locally compact U-space.**

(iii) The sets {3r, 3r + 1, 3r + 2} are both U-open and U-closed for each $r \ge 1$, { $n \in \mathbb{Z} \mid -\infty < n \le 1$ } = { $n \in \mathbb{Z}$

$$\left| \begin{array}{c} -\infty < n \leq 2 \end{array} \right\} = \left\{ n \in Z \ \left| \begin{array}{c} -\infty < n \leq 1 \end{array} \right\} \cup \left\{ 0, 1, 2 \right\}$$

(iv) which is U-open. Also, $\{0,1,2\} = \{n \in Z \mid -\infty < n \le 2\}$ is U-open, as before.

Hence X is extremally disconnected U-space.

Therefore X is projective U-space.

3. Cover of compact Hausdorff U-space

We now generalize definitions and results of [6] (p-7-8). The proofs in [6] carry over to U-spaces as we shall see below.

Definition 3.1 Let X be a compact Hausdorff U-space. A pair (C, f) is called a **U-cover of X**, provided that C is a compact Housdorff U-space and f: $C \rightarrow X$ is a U-continuous map that is onto X.

Definition 3.2 Let X and C be compact Housdorff U-spaces and f: $C \rightarrow X$ a U-continuous map that is onto X. A pair (C, f) is called a **U-essential cover of X** if it is a U-cover and whenever Y is a compact, Hausdorff U-space, h: $Y \rightarrow C$ is U-continuous and f(h(y)) = X, then necessarily h(Y) = C.

Definition 3.3 Let X and C be compact Housdorff U-space and f: $C \rightarrow X$ a U-continuous map that is onto X. A pair (C, f) is called a **U-rigid cover of X** if it is a U-cover and the only U-continuous map h: $C \rightarrow C$ satisfying f(h(c)) = f(c) for every $c \in C$ is the identity map.

Theorem 3.1 Let X be a compact Hausdorff U-space and let (C, f) be a U- essential cover of X. Then (C, f) is a U-rigid cover of X.

Proof: Let h: C \rightarrow C satisfy f(h(c)) = f(c) for every c \in C. Let C₁ = h(C) which is a compact U-subset of C that still maps onto X. The inclusion map of i: C₁ \rightarrow C satisfies, f(i(C₁)) = X and hence must be onto C. Thus h(C) = C.

Next, we claim that if $G \subseteq C$ is any non- empty U-open set, then $G \cap h^{-1}(G)$ is non- empty. For assume to the contrary, and let $F = C \setminus G$. Then F is compact U-space and given any $c \in G$ there exist $y \in h^{-1}(G)$ with h(y) = c. Hence, $y \in F$ and f(c) = f(h(y)) = f(y). Thus f(F) = X, again contradicting the essentiality of C. Thus, for every U-open set G, we have that $G \cap h^{-1}(G)$ is non-empty.

Now fix any $c \in C$ and for every neighborhood G of c pick $x_G \in G \cap h^{-1}(G)$. We have that the net $\{x_G\}$ converges to c. Hence, by continuity, $\{h(x_G)\}$ converges to h(c). But since $h(x_G) \in G$ for every G, we also have that $\{h(x_G)\}$ converges to c. Thus, h(c) = c and since c was arbitrary, C is U-rigid cover of X.

Theorem 3.2 Let (C, f) be a U-cover of X with C a projective U-space. Then (C, f) is a U-essential cover if and only if (C, f) is a U-rigid cover.

Proof: We already have that a U-essential cover is always a U-rigid cover. So assume that (C, f) is a

U-rigid cover. Let h: $Y \rightarrow C$ with f(h(Y))= X. Since C is projective, then there exists a map s: $C \rightarrow Y$ with (foh)os = f. We have hos : $C \rightarrow C$ and f(hos(c))= f(c) and so by rigidity, hos(c)= c for every $c \in C$. In particular, h must be onto and so C is U-essential cover.

Theorem 3.3 Let (Y, f) be a U-cover of X and let C \subset Y be a minimal, compact U-subset of Y that maps onto X. Then (C, f) is a U-rigid, essential cover of X.

Proof: First, we prove U-essential. Given any compact Hausdorff U-space Z and h: $Z \rightarrow C$ such that f(h(Z)) = X, we have that $h(Z) \subseteq C$ is compact U-space and hence h(Z) = C by minimality.

Since (C, f) is a U-essential cover of X, by the above results it is also a U-rigid cover.

REFERENCE

- [1]. Akhter N., Das S. K. and Majumdar S.(2014), On Hausdorff and Compact U-spaces, Annals Pure and Applied Mathematics, Vol. 5, No. 2, 168-182.
- [2]. Andrijevic D.(1996), On b- open sets, Mat. Vesnik, 48, 59-64.
- [3]. Devi R, Sampathkumar S and Caldas M (2008), On supra α open sets and S α continuous functions, General Mathematics, Vol. 16, Nr. 2, 77-84
- [4]. Dieudonne (1994), Algebraic topology and differential geometry.
- [5]. Gleason A. M (1958), 'Projective topological spaces', Illinois J. Math. 2, 482 489.
- [6]. Hadwin D. and Paulsen V. I.(2007) , Injectivity and Projectivity in analysis and topology.
- [7]. Majumdar S., Akher N. and Das S. K, Paracompact U- spaces (2014), Journal of Physical Sciences, Vol. 19, ISSN: 2350-0352, 26 December 2014.
- [8]. S. Majumdar and M. Mitra (31 Dec 2012), Anti- Hausdorff spaces, Journal of Physical Sciences Vol.16, 2012, 117-123. ISSN: 0972 8791.
- [9]. Majumdar S. and Akhter N.(2009), Topology (Bengali), Adhuna Prakashan.
- [10]. Mashhour A. et al. (1983), On supratopological spaces, Indian J. pure appl, Math, 14(4), 502-510.
- [11]. Mitchell B.(1965), Theory of categories, (Academic Press, New York).
- [12]. Munkres J. R. (2006), Topology, Prentice Hall of India Private Limited, New Delhi-110001.
- [13]. Raha A. B. (1983), Projectives in some categories of Hausdorff spaces, J. Austral. Math. Soc.(Series A) 34,7-15.
- [14]. Sayed O. R. and Noiri T (2010), On supra b- open sets and supra b- continuity on topological spaces, European Journal of pure and applied Mathematics, Vol. 3, No. 2, 295-302.
- [15]. Henriksen M. and Isbell J.R., Some properties of compactifications, Duke Math. J. 25 (1958) 88-106.