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ABSTRACT 

 This is the sixth in a series of papers on U- spaces. Here 

connectedness has been introduced for U- spaces and many topological 

theorems related to connectedness have been generalized to U- spaces, as 

an extension of study of supratopological spaces. 
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INTRODUCTION 
          In a previous paper [1] we have introduced U- spaces and studied some of their properties there and in 

[2],[6] and [7]. In this paper we use the terminology of [1]. Some study of these spaces was done previously in 

([3],[4],[8],[10]) in less general form, and the spaces were called supratopological spaces.  In this paper we 

have generalized the concepts of connectedness in U-space. The concepts of a component, totally-

disconnectedness, local connectedness, path connectedness, locally path connectedness, connectedness in the 

topological spaces ([5], [9]) have been generalized to the case of  

U- spaces.   

We have constructed many examples and proved a number of theorems involving these concepts. 

2. CONNECTEDNESS 

Definition  2.1   Let X be the usual U-space R. A U-space X is said to be connected if X can not be written as a 

disjoint union of two nonempty U-open sets. i.e. if there do not exist nonempty U-open sets G and H such that 

XHGandHG  . 
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If X is not connected U-space then, it is called disconnected U-space. 

Let A be a nonempty subset of X. Then A is said to be connected if A is connected as a U-subspace of X. Thus, A 

is connected if there do not exist U-open sets G and H in X such that 

)(,.)()()()(,, HGAOrAHAGAandHAGAHAGA 

The empty set   and singleton sets {p} are obviously connected U-spaces. 

Example  2.1    We consider N as a U-subspace of the usual U-space R. Let  n0N.  

Let G = {rN : - < r < n0 + 1} and H = {r  N: n0 < r <  }. Then G and H are U- open subsets of N and G H = 

N. So, N is a disconnected U-space. 

Similarly we can prove that z is a disconnected U-space. 

We prove here that Q is disconnected.  

         Let A = Q. Since 2  is irrational, G = ),2()2,(  Hand  are U-open in the usual  

U-space R. Now, {G A q   Q: q < 2  },   {H A q   Q: q > 2 }. 

So, ( ) ( )G A H A     and  )()( AHAG Q. Therefore Q is a disconnected U-subspace of 

R.  

Example  2.2    R, (- , a), (b,  ) and (a, b), (a, b], [a, b) and every interval in R are  connected subsets of usual 

U-space R. In fact, these are the only connected U-subspace of R.  

The following theorems generalize the corresponding theorems about topological spaces [5]( p. 70 - 78). Here 

we only give the statements of the theorem. The proofs are almost exactly similar to those for topological 

spaces. The proof of Theorem 2.10 (Theorem 1.9, [5]) has been given to show that the arguments really hold. 

Also we have proved the proofs of the theorems about the continuous images, since these are different here 

from those in topology.  

 Theorem  2.1  If (X, U ) is a U-space and A and B are connected U-subspace of X such that A B  , then 

A B is connected. 

Theorem 2.2  Let (X, U  ) be a U-space and {A i } Ii  a collection of connected U-subspace of X . If i
i I

A

   , 

then i
Ii
A


  is connected. 

Theorem  2.3   The U-space R and each interval of R is connected and these are the only connected  

U-subspace of R. 

Theorem  2.4     A U-continuous image of a connected U-space is connected. 

Proof: Let X be a connected U-space and Y a U-space and f: X  Y is a U-continuous mapping. We shall show 

that f(X) is connected. If f(X) is not connected, let f(X) = (f(X)  G)  (f(X)  H) be separation of f(X). G and H 

be nonempty U-open sets of Y and f is a U-continuous function.  

Therefore f 
- 1

(G) and f 
- 1

(H) are U-open sets of X and X = (X  f 
- 1

(G))  (X  f 
- 1

(H))  

 = f 
- 1

(G)  f 
- 1

(H), f 
- 1

(G)   , f 
- 1

(H)    and f 
- 1

(G) f 
- 1

(H) =  . 

Hence X is disconnected, contradicting the assumption. 

Therefore f(X) is connected. 

Theorem  2.5    A Ū-continuous image of a connected U-space is connected. 

Proof: Let X be a U-space and Y  a connected space and f: X  Y is a Ū-continuous mapping. We shall show 

that f(X) is connected. If f(X) is not connected, let f(X) = (f(X)  G)  (f(X)  H) be separation of f(X). G and H 

be nonempty open sets of Y and f is a Ū-continuous function. 

Therefore f 
- 1

(G) and f 
- 1

(H) are U- open sets of X and X = (X  f 
- 1

(G))  (X  f 
- 1

(H))  

= f 
- 1

(G)  f 
- 1

(H), f 
- 1

(G)   , f 
- 1

(H)    and f 
- 1

(G) f 
- 1

(H) =  . 

Hence X is disconnected, contradicting the assumption. Therefore f(X) is connected. 

Theorem  2.6   A U*-continuous image of a connected U-space is connected. 

Proof: Let X be a connected space and Y  a U-space and f: X  Y is a U*-continuous mapping. We shall show 

that f(X) is connected U-space. If f(X) is not connected, let f(X) = (f(X)  G)  (f(X)  H) be separation of f(X). 

G and H be nonempty U-open sets of Y and f is a U*- continuous function. 
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Therefore f 
- 1

(G) and f 
- 1

(H) are open sets of X and  X = (X  f 
- 1

(G))  (X  f 
- 1

(H))  

= f 
- 1

(G)  f 
- 1

(H),  f 
- 1

(G)   , f 
- 1

(H)    and  f 
- 1

(G) f 
- 1

(H) =  .  

Hence X is disconnected, contradicting the assumption. 

Therefore f(X) is connected. 

Theorem  2.7  Let X be a connected U-space. Then there does not exist U-closed-open subsets of X except X 

and  . 

Theorem  2.8  Let X be a U-space and A is a connected U-subspace of X .If B is a U-subspace of X such that 

A B A , then B is connected;  

in particular A  is connected. 

Theorem 2.9  A U-space X is disconnected if and only if there exists a U -continuous mapping X onto the 

discrete two point space {0,1}. 

Proof: Let X be a U-space and E is the discrete two point space {0, 1}. Suppose that X is disconnected. Then X 

has two disjoint U-open sets G and H such that X = G H. 

Let us define a map f: X  E such that f(x) = 0, x   G 

                                                                     = 1, x   H 

Also G and H are U-open sets. This implies that f is U -continuous. 

Conversely, suppose that there exists a U -continuous map f: X  E. Then f 
-1

({0}) and f 
-1

({1}) are disjoint U-

open sets of X and X = f 
-1

 ({0})  f 
-1

 ({1}). So X is disconnected. 

Theorem  2.10  A finite Cartesian product of connected U-spaces is connected. 

Proof: Let X1, X2, X3, -------, Xn be connected U-spaces and  

X = X1  X2X3  -------  Xn. 

 We shall use induction.  

          Let n = 2, then X = X1X2.  Let (a, b)  X1X2. Since X1 {b} and X1 and for each x1X1, {x1}  X2 and X2 

are homeomorphic. So X1 {b} and {x1}  X2 are U-connected. 

 Again since (x1, b)   (X1 {b}) ({x1}  X2 ).  

This implies that U x 1
 = (X1 {b})  ({x1}  X2 ) is connected. 

          Let U = 
 11 Xx

U x 1
. This union is connected because it is the union of a collection of connected  

U-spaces that have the point (a, b) in common. Since this union U = X1X2, the space X1X2 is connected.  

Now let X1  X2X3  -------  Xn-1 be connected for n > 2. Since X1  X2X3  -------  Xn-1 Xn and (X1  

X2X3  -------  Xn-1 )   Xn are homeomorphic, X1  X2X3  -------  Xn is connected as in the case of  X1X2 .  

Theorem  2.11   Let {Xi} Ii  be collection of nonempty connected U-space and X = Xi, then X is connected. 

Theorem  2.12 (The generalized form of the Intermediate value theorem).  

          Let f: XY be a U -continuous map, where X is a connected U-space and Y is an ordered set with the 

order U-structure. If a and b are two points of X and if r is a point of Y lying between f(a) and f (b), then there 

exists a point c of X such that f(c) = r. 

Proof: Let A = f(X) {yY: y < r} and B = f(X) {yY: r < y}. So,  

A B =   and A  , B   because f(a) A and f(b) B. Since A and B are U-open, if there were no 

point c of X such that f(c) = r, then f(X) = A B and f(X) is disconnected, contradicting the fact that the image 

of a connected U-space under a U -continuous map is connected. 

Definition 2.2   Let X be a U-space. A subset M of X is said to be U-component or connected component if (i) 

M is connected, (ii) if A is a connected subset of X such that M  A  X, then A = M or A = X, i.e. M is a 

maximal subset of a U-space X.  

Example - 2.3   Let X = [3, 5)  (6, 9) be a subspace of the usual U-space R. Here X is a disconnected U-space 

and [3, 5) and (6, 9) are two components of X.  
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Example-  2.4    N, Z, Q are disconnected subspaces of usual U-space R. Singleton subsets are the  components 

of the above U-subspaces. 

Example  2.5  Let X = {a,b,c,d,e}, U  ={X, ,{e},{a, b}, {c, d}, {a, b, c}, {a, b, e}, {c, d, e},{a, b, c, d}, {a, b, c, e}}. 

Then X is a disconnected U-space and {a, b}, {c, d}, {e}, are the components of X. 

Theorem  2.13    Let X be a U-space. 

         (i) Every connected U-closed-open subset of X is a component of X. 

         (ii) Every component of X is U-closed. 

         (iii) Every element of X is contained in a unique component of X. 

         (iv) Every connected subset of U-space X is contained in a unique component of U-space X. 

Definition  2.3  Let X be a U-space. A U-space X is called totally disconnected U-space if for every pair of 

distinct points x and y (x  y), there exists a non-empty disjoint U-open set A, B such that X = A B with xA 

and y B. 

Example  2.6  The U-subspaces N, Z, Q and Q
/
(the set of irrational numbers) of the usual U-space R are totally 

disconnected. We prove the statement here. Prove this statement below:  

         (i)  Let m, n N with m < n.                                                                                   

Then, {1, 2, 3,........., m} {m + 1,m + 2, m + 3,.........} is a disconnection of N . Here, {1, 2, 3, .........m} = N  (- 

 , m + 
2

1
) and {m + 1,m + 2, m + 3,.........} = N  (m + 

2

1
,  ) are U-open subsets of  N which contain m and 

n respectively. 

Thus N is totally disconnected. 

         (ii) The proof that Z is totally disconnected is similar. 

         (iii) Let a, bQ with a < b. Then there exists an irrational number x such that a < x < b. Then, A B, 

where A = {yQ : y < x } and  

B = {yQ : y > x } is a disconnection of Q. Then aA, bB, and  

A = Q  (- , x ), B = Q  (x,  ). So that A and B are U-open in Q. Hence Q is totally disconnected. 

         (iv) We can prove similarly that Q
'
 is totally disconnected. 

Example 2.7   Every discrete U-space consisting of more than one element is totally disconnected. This is 

obvious.   

Theorem  2.14    The U-components of totally disconnected U-spaces consists of exactly one element. 

Proof: Let X be a totally disconnected U-space. It is enough to prove that every U-subspace of X with two 

distinct elements is disconnected. Let x, yX and x  y. Since X is totally disconnected, there exist X = A B 

such that xA and yB. Thus {x, y} = (A {x, y}) (B {x, y}).  

Hence {x, y} is disconnected. 

Definition  2.4 A U-space X is said to be locally connected if for every xX, and for every neighborhood G of x, 

there is a connected U-open set V of X, such that xVG. X is a locally connected U-space if and only if X is 

locally connected U-space at each of its points. 

Our Theorems 2.15-2.22 are generalizations of theorems in ([5], P-123-131) 

Theorem  2.15   Every U-open subspace of a locally connected U-space is locally  connected. 

Proof: Let X be a locally connected U-space and G be a U-open subspace of X. Let H be a U-open set containing 

a point x of G. Since G is U-open, so H is a U-open set of X. Since X is locally connected, there exists a 

connected U-open set V in X which contains x and is contained in H. Also V is a U-open set of G.  

Hence G is locally connected. 

Theorem  2.16   The image of a locally connected U-space under a mapping which is both U-continuous and U-

open is locally connected. 

Proof: Let X be a locally connected U-space and Y be a U-space. Let f : XY be U-continuous, U-open and 

onto mapping. Let yY and G be a U-open set of Y containing y. For each xX, y = f(x) and f 
-1

(G) is U-open set 

of X containing x.  

Since X is locally connected, there exists a connected U-open set V of    f 
-1

(G) containing x. i.e. 



Bull .Math.&Stat.Res  

Vol.3.Issue.1.2015                                38 

SWAPAN KUMAR DAS et al 

xV  f 
-1

(G). Since f is U-open and U-continuous.  

f(V) is a connected U-open set of Y and f(x) = y = f(V). Since V  f 
-1

(G), f(V) G.  

Hence f(X) = Y is locally connected.  

Theorem  2.17   The product space of two locally connected U-spaces is locally  connected. 

Proof: Let X and Y be locally connected U-space. We shall show that XY is locally connected.  

Let (x, y)   XY and G be a U-open set of XY containing (x, y). Since projection mapping X : XYX is 

U-open, X (G) is a U-open set containing x. Since X is locally connected, so there exists a connected U-open 

set V1 of X containing x of X (G). 

Again Y (G) is a U-open set and there exists a connected U-open set V2 of Y containing y of a locally 

connected U-open set Y (G). Therefore V1V2 is a connected U-open set of XY containing (x, y) and 

V1V2  G. 

Hence XY is locally connected.  

Theorem  2.18   A U-space X is locally connected if and only if for each U- component of every U-open set of X 

is U-open. 

Proof: Let X be a locally connected U-space and let G be a U-open set in X. According to the above Theorem 

2.15 G is locally connected. Let C be a component of G and let aC. Since G is a locally connected U-space, 

there exists connected U-open set V of G containing a. i.e. VG. Since C is a component and aC, V C. 

Therefore C is U-open in X. 

Conversely, suppose that U-components of U-open sets in X are open. Suppose xX and a neighborhood G of 

x. Let C be the U-component of G containing x. C is U-open in X by hypothesis. So C is a connected U-open set 

of G containing x.  

Hence X is locally connected. 

Definition  2.5   Let X be a U-space and let f : [0,1]X be a U-continuous mapping. 

If f(0) = x, f(1) = y, then f is called path from x to y. 

Definition  2.6    Any U-space X is called path connected U-space if there is a path in X from x to y. 

Definition  2.7  [5]( p. 131) 

A U- space X is said to be locally path connected U-space at x if for every open set G of x have a open subset V 

which is path connected U-space containing x. 

If X is locally path connected at each of its points, then it is said to be locally path connected U-space. 

Example 2.8 Each interval and each ray in the usual U-space R are connected, locally connected, path-

connected and locally path-connected U-spaces. 

Each of the subspaces [-1, 0)   (0, 1] and [1, 2]   [3, 4] of R is neither connected nor path-connected but 

each is both locally connected and locally path-connected. 

Example  2.9   Let C = ([0,1]  {0}) ({ 1

n

:nZ} [0,1]) ({0} [0,1]) be a U-subspace of R
2

 and let D = C - 

{0} (0,1) be a U-space. Here C is the union of connected U-subset I  , where I  = [0,1]  {0}, 1

n

 
 
 

 [0,1] or 

{0} [0,1]. Since each I  is connected and I  I
 

 
   
 


. Therefore C is a connected U- space and also D is a 

connected U-space and D = C. If p is any point on  {0} [0,1], then for any open sphere S (p) with centered at 

p there exist a U-open set G  S (p) such that G is disconnected. Therefore, C is not locally connected U-

space. If we consider p is (0,1), then similarly we can show that D is locally disconnected. 

Theorem  2.19    Every path connected U-space is connected. 

Proof: Suppose X be a path connected U-space and xo X. Then for any x X there is a path from xo to x. That 

means there exists a U-continuous mapping f : IX such that f(0) = xo , f(1) = xo. Since I is a connected U-
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space, f(I) is connected U-subset of X. Therefore xo and x are contained in same component of X. Since for any 

x X true that X has only one component.  

Therefore X is connected.  

Theorem  2.20   The image of a U-continuous mapping of path connected U-space is path connected. 

Proof: Let X be a path connected U- space and Y be a U-space. Let   : XY be a onto U-continuous mapping. 

We shall show that Y is a path connected U-space. Let y1 and y2 are two points of Y. Then there exists x1, x2 X 

such that   (x1) = y1 and   (x2) = y2. Since X is a path connected U-space, there exists a U-continuous mapping 

f : IX such that f(0) = x1  and f(I) = x2. Then   (f(0)) = y1,  (f(I)) = y2.  

So  f : IY is a U-continuous mapping i.e. Y is path connected.  

Theorem  2.21   The product space of any finite number of path connected U-spaces is path connected. 

Proof: Let X1, X2, X3, ---------, Xn be path connected U-spaces and  

X = X1X2X3 --------Xn. Suppose x, yX, then x = (x1, x2, x3, -------, xn) and y = (y1, y2, y3,------, yn), xi, yi Xi. 

Since each Xi path connected, there exists a U-continuous mapping fi : [0, 1] Xi such that fi(0) = xi, fi(1) = yi. 

If f : [0, 1]X defined by f(a) = (f1(t), f2(t),------,fn(t)), then  f(0) = (x1, x2, x3, -------, xn) = x and f(1) = (y1, y2, y3, ----

----, yn) = y.  

We shall show that f is U-continuous. Let G be a U-open set of X, then i (G) = Gi, Gi is a U-open set of Xi, 

where i (G):XXi is a projection mapping. Since fi is U-continuous, fi 
-1

(Gi) is a U- open set of  

[0, 1]. Now f
-1

 (G) = f1
-1

(G1)  f2
-1

(G2)  -------- fn
-1

(Gn). 

Therefore f
-1

(G) is U-open. i.e. f is U-continuous. 

Remark 2.1    The closure of a path connected subsets of U-space may not be path connected.  

Example 2.10   Let S = {(x, sin
x

1
) : 0 < x   1} be a subset of the product U-space RR. Then it is a path 

connected U-space but the closure S  is not a path connected U-space. 

Here, we see that S  is connected but not path connected. 

Definition  2.8    Let X be a U-space and a and b be two separate point of X. A finite sequence of subsets A1, A2, 

A3, ------, An of X is called simple chain from a to b if a only belongs to A1 and b only belongs to An and 

Ai Aj   iff 1 ji . 

Theorem   2.22.   If a and b are two separate points of connected U-space X and {U  } is a U-open cover of X, 

then there exists a simple chain of U   from a to b. 

Proof: Let {U  } be a U-open cover of X and let Y be a collection of points y of X and there exists a simple chain 

of U  from a to y. Then Y is U-open. 

Because if yY and U1, U2, U3, -----, Un (Ui{U  }) from a to y is a simple chain, then U1, U2, U3, ------, Un or U1, 

U2, U3, ------, Un-1 from a to y
'
 for each y

' Un is a simple chain. So, y
' Y and Un  Y. Therefore Y is a U-open 

set. 

         Now we shall show that Y is closed. Suppose y be a limit point of Y. Then there is a point y
'
 (y

'  y) of Y in 

each U-open set U containing y.  

          Therefore the exists a simple chain U1, U2, U3, ……, Un from a to y. Now we can consider y
'
 is a point of Y 

in which n is the smallest. 

Since UnU  , U1, U2, U3, …  , Un, U from a to y will be simple chain if for each i < n, Ui U =  . Because 

if UiU   (i0 < n) and let y ''  U
0i
U. Then y '' Y and U1, U2, U3, ..., U

0i
 from a to y

''
 is a simple chain. 

Since i 0 < n which is contradictory to the smallest n. So U1, U2, U3, …. ,Un, U from a to y is a simple chain. i.e. 

yY.    
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Hence theorem is proved. 
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