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1. INTRODUCTION 

The notion of contra-continuous functions (Donchev 1996[1]), perfectly continuous functions (Noiri 1984a[9]), 

contra precontinuous functions(Jafari and Noiri 2002[6]) or RC- continuous functions due to (Donchev and 

Noiri 1999[2]) plays a significant role in general topology. In this paper, we introduce and study the notion of 

weak form of strong continuity, RC-continuity, perfectly continuity, contra- precontinuity and contra continuity 

in bitopological spaces. Also investigated the relationships between graphs and contra  -precontinuous 

functions in bitopological spaces, which is a generalization of [16]. 

2.PRELIMINARIES 

In this paper, the spaces (X,T1,T2) and (X,T) denote respectively the bitopological space and 

topological space. 

Let (X,T1,T2) be a  bitopological space and let A be a subset of X, then the closure and interior of A 

with respect to Tiare denoted by iCl(A) and iInt(A) respectively , for i = 1,2 . 

Definition 2.1:A subset Aof a bitopological space (X,T1,T2) is said to be 

(i) (i,j)- regular open [13] if A = iInt(jCl(A)) where i j, i,j = 1,2. 

(ii) (i,j)-regular closed [14] if A = iCl(jInt(A)) where i j, i,j = 1,2. 

(iii) (i,j)-  preopen [15] if A iInt(jCl(A)) where i j, i,j = 1,2. 

(iv) (i,j)- semi-open [14] if A jCl(iInt(A)) where i j, i,j = 1,2. 

Remark 2.1: From above definition 2.1, we have (i) (iii) and (ii) (iv) but converse are not true. 

For these we have shown the following example. 
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Example 2.1: Let X = {a,b,c,d} with topologies T1={X, ,{a},{b,c}}, T2={X, ,{b},{c,d}} and 

A = {c,d}be a subset of X. Then jCl(A) = {a,c,d}and iInt(jCl(A)) = {a}. Therefore iInt(jCl(A))    

A. Hence (iii)does not imply(i). 

Again, let A = {a,b}be a subset of X. Then jInt(A) = {b}and iCl(jInt(A)) = {b,c,d}. Therefore 

iCl(jInt(A))   A. Hence (iv)does not imply(ii). 

Definition 2.2:  A subset Aof a bitopological space (X,T1,T2) is said to be 

(i) The union of all(i,j)- regular open sets of X contained in A is called (i,j)-  - interior of a 

subset Aof X and is denoted by (i,j)-  -(Int(A))(Velicko 1968[12]). 

(ii) A is called (i,j)-  -open if A = (i,j)-  -(Int(A)) (Velicko 1968[12]). 

(iii) The complement of a (i,j)-  -open set is called (i,j)-  -closed . Equivalently, A is (i,j)-  -

closed iff A =  (i,j)-  -(Cl(A)) where (i,j)-  -(Cl(A)) = {xX: AU  , U is (i,j)-  -open, xU} 

(iv) A subset A of X is said to be (i,j)-  -preopen if A iInt((i,j) -Cl(A)). The family of all (i,j)-  -

preopen sets of X containing a point x X is denoted by (i,j)-  PO(X,x)(M. et al.1982, R and M 

1993[9]). 

(v) The complement of a (i,j)-  -preopen set is called (i,j)-  -preclosed(El-Deeb et al. 1983[4]) 

. 

(vi) The intersection of all(i,j)-  -preclosed sets of X containing A is called the (i,j)-  -

preclosure of A and is denoted by (i,j)-  -p(Cl(A)). 

(vii) The union of all(i,j)-  -preopen sets of X contained in A is called the (i,j)-  -preinterior of A 

and is denoted by (i,j)-  -p(Int(A))(Raychoudhuri and Mukherjee 1993[9]). 

(viii) Asubset U of X is said to be (i,j)-  -pre neighbourhood (Raychoudhuri and Mukherjee 

1993[9]) of a point x X if   a (i,j)-  -preopen set V such that x  V  U . 

(ix) The family of all (i,j)-  -open (resp. (i,j)-  -preopen, semi-open, (i,j)-  -preclosed , (i,j)- 

closed ) sets of X containing a point x X is denoted by (i,j)-  O(X,x) (resp. (i,j)-  PO(X,x), (i,j)- 

SO(X,x) , (i,j)-  PC(X,x),(i,j)-C(X,x)). 

Definition 2.3:A function f: (X,T1,T2) (Y, 1, 2) is said to be  

(i) (i,j)-perfectly continuous ([2], Noiri 1984 a, N and P. 2007[8]) if  1f (V) is Ti-clopen in X for 

each  i- open set V of Y, for  i= 1,2. 

(ii) (i,j)-contra-continuous (Dontchev 1996[1]) if  
1f (V) is Ti-closed in X for each i- open set 

V of Y, for  i, = 1,2. 

(iii) (i,j)-RC- continuous  (Dontchev and Noiri 1999[2])  if  
1f (V) is (i,j)- regular closed in X for 

each  i- open set V of Y, for i j, i,j = 1,2. 

(iv) (i,j)-contra-precontinuous (Jafari and Noiri 2002[6])  if  
1f (V) is (i,j)- pre- closed in X for 

each  i- open set V of Y, for i j, i,j = 1,2. 

(v) (i,j)-strongly- continuous  (Levine 1960[7]) if  f(iCl(jInt(A)))  f(A) for every subset A of X . 

 

3.Contra  -precontinuous functions in bitopological spaces 

 

Definition 3.1:A function f:(X,T1,T2) (Y, 1, 2) is said to be (i,j)-contra- -precontinuous at a 

point x X if for each  i- closed set V in Y with f(x)  V ,  a (i,j)-  -preopen set U in X such that 
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x U and f(U)  V and f is called (i,j)-contra- -precontinuous if it has this property at each point of 

X . 

Theorem 3.1:The following are equivalent for a function f: (X,T1,T2) (Y, 1, 2) : 

(i) f is(i,j)-contra- -precontinuous ; 

(ii) the inverse image of a  i- closed set, i = 1,2 of  Y is (i,j)-  -preopen ; 

(iii) the inverse image of a  i- open set, i = 1,2  of  Y is (i,j)-  -preclosed ; 

Proof:(i)  (ii) . Let V be a  i- closed set, i = 1,2 in  Y with x 1f (V) . Since f(x)  V and f is (i,j)-

contra- -precontinuous ,  a (i,j)-  -preopen set U in X containing x such that  f(U)  V . It follows 

that  x U  1f (V) . Hence 1f (V) is (i,j)-  -preopen. 

(ii)  (iii) . Let U be a  i- open set, i = 1,2 of Y . Since Y\U is  i- closed , then by (ii) it follows that 

1f (Y\U) = X\ 1f (U) is (i,j)-  -preopen. Therefore 1f (U) is (i,j)-  -preclosed in X .  

(iii)  (i) . Let x X and V be a  i- closed set, i = 1,2 in  Y with f(x)  V . By (iii) , we have 

1f (Y\V) = X\ 1f (V) is (i,j)-  -preclosed and so 1f (V) is (i,j)-  -preopen . Let U = 1f (V). 

We obtain that x U and f(U)  V . This shows that f is(i,j)-contra- -precontinuous. 

 

Remark 3.1:The following diagram holds: 

(i,j)-strongly- continuous 

  

(i,j)-perfectly continuous 

  

(i,j)-RC- continuous 

  

(i,j)-contra-continuous 

  

(i,j)-contra-precontinuous 

  

(i,j)-contra- -precontinuous 

None of these implications are reversible. For these we have shown the following examples. 

Example 3.1: Let, X = {a,b,c,d} and T1 = {X, ,{a},{b,c}},T2={X, ,{b},{c,d}}. Let, 

f:(X,T1,T2) (X,T1,T2) be the identity function. Then f is (i,j)-perfectly continuous but not (i,j)-

strongly- continuous. For, let A = {a.b} be a subset of X and f(A) = A, then f(iCl(jInt(A))) f(A. 

Example 3.2: Consider the topologies on X = {a,b,c} and Y = {p,q} respectively by  

T1 = {X, ,{b},{a,c}},T2={X, ,{a},{b},{a,b},{b,c}} and  1 = {Y, ,{p}},   2 = {Y, ,{q}}. Let, 

f:(X,T1,T2) (Y, 1, 2) be a map defined as f(a) =p, f(b) = q, f(c) = p. Then f is (i,j)-RC- continuous 

but not (i,j)-perfectly continuous , since f-1(p) and f-1(q) are clopen in T1 but not in T2. 

Example 3.3: Consider the topologies on X = {a, b, c} and Y = {p, q, r} respectively by  

T1 = {X, ,{c},{b, c}},T2={X, ,{a},{c},{a, c}} and  1 = {Y, ,{p}},   2 = {Y, ,{p, q}}. Let, 

f:(X,T1,T2) (Y, 1, 2) be a map defined as f(a) =p, f(b) = q, f(c) = r. Then f is (i,j)-contra- 

continuous but not (i,j)-RC- continuous , since thenf-1(p, q)  is not regular closed in X. 
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Example 3.4: Consider the topologies on X = {a, b, c} and Y = {p, q, r} respectively by  

T1 = {X, ,{a, b},{b}},T2={X, ,{a},{c},{a, c}} and  1 = {Y, ,{p}},   2 = {Y, ,{r}}. Let, 

f:(X,T1,T2) (Y, 1, 2) be a map defined as f(a) =p, f(b) = q, f(c) = r. Then f is(i,j)-contra-

precontinuous but not  (i,j)-contra- continuous, since then f-1(p)  is not Ti closed in X. 

Example 3.5: Let Rbe the set of all real numbers, P2-be the countable extension topology on Ri.e,the 

topology with subbaseT1T2, where T1 is the Euclidian topology of Rand T2 is the topology of 

countable complements of Rand  1 be the discrete topology of Rand P1= 2= T1 . Define a 

function f:(R,P1,P2) (R, 1, 2) as follows 

f(x) = 





irrationalisxf

rationalisxif

3

1  

Then f is (i,j)-contra- -precontinuous  but not (i,j)-contra-precontinuous since {1} is closed in  

(R, 1, 2) and 1f ({1}) = QwhereQis the set of rationals, is not (i,j)-preopen in (R,T1,T2). 

Definition 3.2:A function f:(X,T1,T2) (Y, 1, 2) is said to be almost (i,j)-contra-

precontinuous(Ekici 2004[3]) if 1f (V) is (i,j)- preclosed in X for each (i,j)- regular open set V in Y.  

Remark 3.2:Almost contra-precontinuity is a generalization of contra-precontinuity. Almost contra-

precontinuity and contra- -precontinuity are independent. We have shown the following 

examples. 

Example 3.6: If we take the function f such as in Example 3.3(i) then f is (i,j)-contra- -

precontinuous but not almost (i,j)-contra-precontinuous. 

Example 3.7: Let, X = {a,b,c,d,e}, T1 = {X, ,{b},{d},{b,d}},T2={X, ,{a},{c},{a,c}} and Y = {a,b,c,d},  1 

= {Y, ,{a}, {a,b},{a,c}},  2 = {Y, ,{b}, {b,c},{b,d}}. If we take a function f:(X,T1,T2) (Y, 1, 2) 

defined as f(a) =a, f(b) = b, f(c) = c, f(d) = d, f(e) = d. Then f is almost (i,j)-contra-precontinuous but 

not (i,j)-contra- -precontinuous. 

For topological spaces, Noiri and Ekici stated that if A and B be subsets of a space (X,T) and if A 

 PO(X) and B  O(X), then A  B PO(B)(Raychoudhuri and Mukherjee 1993[9]), then we can 

state and prove the following lemma. 

Lemma 3.1: Let A and B be subsets of abitopological space(X,T1,T2). If A  (i,j)- PO(X) and B  (i,j)-

 O(X), then A  B (i,j)- PO(B). 

Proof:We need to prove that A  B iInt((i,j)- -Cl(A  B)). 

Let, xA  B, then xiInt((i,j)- -Cl(A)) and  x(i,j)- -Int(B), since A  (i,j)- PO(X) and B  (i,j)-

 O(X). This implies that i-open set G such that, xG (i,j)- -Cl(A). 

Also since x(i,j)- -Int(B), this implies that (i,j)- -open set U such that xU B and hence U  

A   . Therefore,  (i,j)- -open set U containing x, U  (A  B)  . Hence xG (i,j)- -Cl(A 

 B). Thus A  B iInt((i,j)- -Cl(A  B)). 

 

Lemma 3.2: Let A  B  X. If B  (i,j)- O(X)and A  (i,j)- PO(B) , then A  (i,j)-

 PO(X)(Raychoudhuri and Mukherjee 1993[9]). 

Theorem 3.2:Iff:(X,T1,T2) (Y, 1, 2) is a (i,j)-contra- -precontinuous function and A is any (i,j)- 

 -open subset of X , then the restriction 
A

f |  : A   Y is (i,j)-contra- -precontinuous. 
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Proof: Let F be a i- closed set in Y. Then by Theorem 3.2, 1f (F)  (i,j)- PO(X). Since A is (i,j)- 

 -open in X , it follows from Lemma 3.5 , that   1| 
A

f (F) =A  1f (F)  (i,j)- PO(A). Hence 

A
f | is a (i,j)-contra- -precontinuous. 

Theorem 3.3:Letf:(X,T1,T2) (Y, 1, 2) be a function and  IU 


:  be a  (i,j)-  -open 

cover of X . If for each I , f|


U

is  (i,j)-contra- -precontinuous then 

f:(X,T1,T2) (Y, 1, 2) is a (i,j)-contra- -precontinuous function. 

Proof: Let F be a i- closed set in Y. Since for each I , f|


U

is  (i,j)-contra- -precontinuous 

,
1

|


















U

f (F)  (i,j)- PO(


U ). Since 


U  (i,j)- O(X), by Lemma 3.6 , 
1

|


















U

f (F)  (i,j)-

 PO(X), for each I . Then 1f (F) = 
 

I

F
U

f



































 

1

|
 (i,j)- O(X) . This shows that f is a (i,j)-

contra- -precontinuous function. 

Definition 3.3:Let (X,T1,T2) be a bitopological space. The collection of all (i,j)- regular open sets forms 

a base for topology T . It is called the semi-regularization. If T1= T2=T  then (X,T1,T2)  is called  

semi-regular bitopological space. 

Theorem 3.4:Letf:(X,T1,T2) (Y, 1, 2) be a function and g:XXY the graph function of f, 

defined by g(x) = (x,f(x)) for every x X . If g is (i,j)-contra- -precontinuous then f is (i,j)-contra- -

precontinuous . 

Proof:Let U be a i- open set in Y, then XU is a  i- open set in XY. It follows from Theorem 3.1 

that 1f (U) = 1g (XU) (i,j)- PC(X). Thus f is (i,j)-contra- -precontinuous . 

Lemma 3.3:Let A be a subset of abitopological space(X,T1,T2). Then A  (i,j)- PO(X) iff A  U (i,j)-

 PO(X) for each (i,j)- regular open ((i,j)- -open) set U of X  (Raychoudhuri and Mukherjee 

1993[9]). 

Definition 3.4:A function f:(X,T1,T2) (Y, 1, 2) is called (i,j)-contra-super-continuous for every x 

X and each F (i,j)-C(Y,f(x)), there exists a (i,j)- regular open set U in X  containing x such that f(U)  

F (Jafari and Noiri 1999[5]). 

Theorem 3.5:If f:(X,T1,T2) (Y, 1, 2) is  (i,j)-contra-super-continuous , g:XY is (i,j)-contra- -

precontinuous and Y is Urisohn , then E = {x  X: f(x) = g(x)} is (i,j)- -preclosed in X. 

Proof: If x  X\E, then it follows that f(x)  g(x) . Since Y is Urisohn , there exist  i- open set V and 

 j- open set W such that f(x)  V ,g(x)  W and iCl(V) jCl(W) =  . Since  f is  (i,j)-contra-super-

continuous and g is (i,j)-contra- -precontinuous , there exists a (i,j)- regular open set U containing x 

and there exists a (i,j)- -preopen set G containing x such that f(U) iCl(V) and g(G) jCl(W) . Set O = 

U  G. By the previous Lemma, O is (i,j)- -preopen in X . Hence f(O)  g(O) =   and it follows that 

x(i,j)- PC(E) . This shows that E is (i,j)- -preclosed in X. 
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Definition 3.5:A filter base  is said to be (i,j)- -preconvergent (resp. (i,j)-C-convergent ) to a point 

x in X if for any U  (i,j)- PO(X) containing x (resp. U (i,j)-C(X) containing x) , there exists a B    

such that B  U . 

Theorem 3.6:Iff:(X,T1,T2) (Y, 1, 2) is a (i,j)-contra- -precontinuous , then for each x X and 

each filter base   in X  which is (i,j)- -preconvergent to x ,the filter base f( ) is (i,j)-C-convergent 

to f(x) . 

Proof: Let x X and   be any filter base in X which is (i,j)- -preconvergent to x . Since f  is (i,j)-

contra- -precontinuous, then for any V  C(Y) containing f(x) , there exists U  (i,j)- PO(X) 

containing x such that f(U)  V . Since    is (i,j)- -preconvergent to x there exists a B  such that 

B  U . It follows that f(B)  V and hence the filter base f( ) is (i,j)-C-convergent to f(x) . 

Theorem 3.7:Letf:(X,T1,T2) (Y, 1, 2) be a function and x X . If there exists U  (i,j)- O(X) 

such that x  U and the restriction of f to U is a (i,j)-contra- -precontinuous function at x , then f is 

(i,j)-contra- -precontinuous at x . 

Proof: Suppose that F C(Y) containing f(x). Since f|
U

 is (i,j)-contra- -precontinuous at x , there 

exists V  (i,j)- PO(U) containing x such that f(V) = (f|
U

)(V) F . Since U  (i,j)- O(X) containing x 

, it follows from Lemma 3.6 that V  (i,j)- PO(X) containing x . This shows clearly that f is (i,j)-

contra- -precontinuous at x . 

Definition 3.6:A function f:(X,T1,T2) (Y, 1, 2) is said to be (i,j)- -preirresolute if for each x X 

and each V  (i,j)- PO(Y,f(x)), there exists a (i,j)- -preopen set U in X containing x such that f(U)  

V . 

Theorem 3.8:Letf:(X,T1,T2) (Y, 1, 2) and g:(Y, 1, 2) (Z, 1, 2) be functions. Then the 

following properties hold : 

(i) If f is (i,j)- -preirresolute and g is (i,j)-contra- -precontinuous , then gof:XZ is (i,j)-

contra- -precontinuous . 

(ii) If f is (i,j)-contra- -precontinuous and g is (i,j)-continuous , then gof:XZ is (i,j)-contra- -

precontinuous . 

 

Proof: (i) Let x X and W(Z,(gof)(x)) , since g is (i,j)-contra- -precontinuous , there exists  a (i,j)-

 -preopen set V in Y containing f(x) such that g(V)  W . Since f is (i,j)- -preirresolute, there exists 

a (i,j)- -preopen set U in X containing x such that f(U)  V . This shows that (gof)(U) W . Hence gof 

is (i,j)-contra- -precontinuous . 

             (ii)  Let x X and W(Z,(gof)(x)) , since g is (i,j)-continuous , V = 
1g (V) is (i,j)-closed. Since f 

is (i,j)-contra- -precontinuous, there exists a (i,j)- -preopen set U in X containing x such that f(U) 

 V. Therefore (gof)(U) W . This shows that gof is (i,j)-contra- -precontinuous . 

Definition 3.7:A function f:(X,T1,T2) (Y, 1, 2) is called (i,j)- -preopen if image of each  (i,j)- -

preopen set is  (i,j)- -preopen . 

Theorem 3.9:Iff:(X,T1,T2) (Y, 1, 2) is a surjective (i,j)- -preopen function and 

g:(Y, 1, 2) (Z, 1, 2) is a function such that gof:(X,T1,T2) (Z, 1, 2) is (i,j)-contra- -

precontinuous , then g is (i,j)-contra- -precontinuous . 
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Proof: Let x X and y Y such that f(x) = y. Let VC(Z,(gof)(x)) . Then there exists a (i,j)- -preopen 

set U in X containing x such that g(f(U))  V . Since f is (i,j)- -preopen, f(U) is a (i,j)- -preopen set 

in Ycontaining y such that g(f(U))  V. This shows that g is (i,j)-contra- -precontinuous . 

Corollary 3.1: Letf:(X,T1,T2) (Y, 1, 2) be a surjective (i,j)- -preirresolute and (i,j)- -preopen 

function and let g:(Y, 1, 2) (Z, 1, 2) be a function . Then gof:XZ is (i,j)-contra- -

precontinuousiff g is (i,j)-contra- -precontinuous . 

Proof:  It can be obtained from Theorem 3.18 and Theorem 3.20. 

Definition 3.8:A function f:(X,T1,T2) (Y, 1, 2) is said to be (i,j)-weakly contra- -precontinuous 

if for each x X and each  i-closed set F, I = 1,2 of Ycontaining f(x) , a  (i,j)- -preopen set U in X 

containing x such that iInt(jClf(U)) V. 

Definition 3.9:A function f:(X,T1,T2) (Y, 1, 2) is called  (i,j)- -pre-semiopenif the image of 

each  (i,j)- -preopen set is  (i,j)-semi-open . 

Theorem 3.10:If afunction f:(X,T1,T2) (Y, 1, 2) is (i,j)-weakly contra- -precontinuous and (i,j)-

 -pre-semi-open , then f is (i,j)-contra- -precontinuous . 

Proof: Let x X and F be a (i,j)-closed set  containing f(x) . Since f is (i,j)-weakly contra- -

precontinuous ,  a  (i,j)- -preopen set U in X containing x such that iInt(jCl(f(U))) F. Since f is (i,j)-

 -pre-semiopen , f(U)(i,j)-SO(Y)  and f(U) iCl(jInt(f(U))) F. This shows that f is (i,j)-contra- -

precontinuous. 

4. Several theorems in bitopological spaces 

In this section, graphs and preservation theorems of (i,j)-contra- -precontinuity are studied. 

Definition 4.1:A bitopological space (X,T1,T2) is said to be  

(i) (i,j)-weakly Hausdorff(Soundararajan , 1971[10]) if each element of X is an intersection of 

(i,j)-regular closed sets. 

(ii) (i,j)- -pre-Hausdorff if for each pair of distinct points x and y in X ,  U(i,j)- PO(X,x) and 

V(i,j)- PO(X,y) such that UV =   . 

(iii) (i,j)- -pre-
1

T if for each pair of distinct points x and y in X, (i,j)- -preopen set U and V 

containing x and y respectively such that yU and xV. 

Here we have given the following examples: 

Example 4.1: Consider the topologies on X = {a, b, c} be  

T1 = {X, ,{a},{b}, {c}, {a, b},{b, c},{a,c}}and T2={X, ,{a},{b},{a,b},{b,c}} 

and let A = {b}, B={b, c}, C={a, c}and D={a, b}be subsets of X, then we have A, B, C, D are (1, 2)-regular 

closed. Also we have AB={b}, BC={c} and CD={a}. Therefore, X is (1, 2)-weakly Hausdorff. 

Example 4.2: Consider the topologies on X = {a, b, c} be  

T1 = {X, ,{a},{b}, {a, b}}and T2={X, ,{c},{a, c},{b, c}}. Then we have  

(1, 2)- -preopen sets are X,  , {a},{b},{a, b} and  

(2, 1)- -preopen sets are X,  , {c},{b, c},{a, c}. Hence (X, T1, T2) is a (i,j)- -pre-Hausdorff space. 

Example 4.3:Same as example 4.2. 

Remark 4.1:Thefollowingimplications are hold for a bitopological space (X,T1,T2):  

(i) Pairwise 
1

T (i,j)- -pre-
1

T  

(ii) Pairwise 
2

T (i,j)- -pre-
2

T  
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These implications are not reversible.  

Example 4.4:Let X = {a,b,c,d} with topologies T1={X, ,{a},{b,c}}, T2={X, ,{b},{c,d}}. Then (X,T1,T2) 

is (i,j)- -pre-
2

T  but not 
2

T . 

Definition 4.2:For a function f:(X,T1,T2) (Y, 1, 2) , the subset {(x,f(x)): x X} XY is called the 

graph of f and is denoted by G(f). 

Definition 4.3:The graph G(f) of a function f:(X,T1,T2) (Y, 1, 2) is  said to be (i,j)-contra- -

preclosed if for each (x,y)(XY)\G(f) ,  (i,j)- -preopen set U in X containing x and V(x,y) such 

that (UV) G(f) = . 

Lemma 4.1: The following properties are equivalent for the graph G(f) of a function f : 

(i) G(f) is (i,j)-contra- -preclosed 

(ii) for each (x,y)(XY)\G(f),  (i,j)- -preopen set U in X containing x and V(i,j)- (Y,y) such 

that f(U)V =  .   

Proof: Obvious. 

Theorem 4.1: Iff:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -precontinuous and Y is Urysohn , G(f) is 

(i,j)-contra- -preclosed in XY . 

Proof: Suppose that Y is Urysohn . Let (x,y)(XY)\G(f). It follows that f(x) y. Since Y is Urysohn 

, i – open set V and  j – open set W such that f(x) V, y  W and iCl(V) jCl(W) =  . Since fis  

(i,j)- contra- -precontinuous ,  (i,j)- -preopen set U in X containing x such that f(U)iCl(V). 

Therefore f(U) jCl(W) =   and G(f) is (i,j)-contra- -preclosed in XY . 

 

Theorem 4.2: Let f:(X,T1,T2) (Y, 1, 2) have a (i,j)-contra- -preclosed graph. If f is injective, 

then X is (i,j)- -pre-
1

T . 

Proof: Let x and y be any two distinct points of X. Then we have (x,f(y))  (XY)\G(f). By Lemma 4.5, 

 (i,j)- -preopen set U in X containing x and FC(Y,f(y)) such that f(U)F =  .  Hence U 1f (F)= 

 .  Therefore we have yU. This implies that X is (i,j)- -pre-
1

T . 

Definition 4.4:A bitopological space (X,T1,T2) is called (i,j)- -preconnected provided that X is not 

the union of two disjoint non-empty (i,j)- -preopen sets . 

Theorem 4.3: Iff:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -precontinuous surjection and X is (i,j)- -

preconnected , then Y is (i,j)-connected .    

Proof:SupposeY is not (i,j)-connected space . There exist disjoint  i – open set 
1

V  and  j – open set 

2
V   such that Y = 

21
VV   . Therefore 

1
V and 

2
V are (i,j)-clopen in Y. Since f is  (i,j)- contra- -

precontinuous , 
1f (

1
V ) and 

1f (
2

V ) are (i,j)- -preopen in X . Moreover, 
1f (

1
V ) and 

1f (
2

V ) are non-empty disjoint and X = i
1f (

1
V )   j

1f (
2

V ) . This shows that X is not 

(i,j)- -pre-connected, which is a contradiction. Hence Y is (i,j)-connected .      

Definition 4.5:A bitopological space (X,T1,T2) is called  

(i) (i,j)- -pre-ultra-connectedif every two non-empty (i,j)- -preclosed subsets of X intersect , 
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(ii) (i,j)-hyperconnected (Steen and Seebach 1970[11]) if everyi-open set is j- dense. 

Here we have given the following examples: 

Example 4.5:Consider the topologies on X = {a, b, c} be  

T1 = {X, ,{a},{b}, {a, b}}and T2={X, ,{c},{a, c},{b, c}}. Then we have  

(1, 2)- -preclosed subsets are X,  , {b, c},{a, c},{c} and we see that any two non-empty subsets are 

intersect, hence (X, T1, T2) is (1, 2)- -pre-ultra-connected. 

Example 4.6:Consider the topologies on X = {a, b, c} be  

T1 = {X, ,{b}, {b, c}}and T2={X, ,{b},{a, b}}. Then we have  

T2-Cl{b,c}= X and T2-Cl{b}= X. 

Again, T1-Cl{a, b}= X and T1-Cl{b}= X. 

Hence (X, T1, T2)is (i,j)-hyperconnected. 

Theorem 4.4:If X is (i,j)- -pre-ultra-connected and f:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -

precontinuous and surjective , then Y is  (i,j)-hyperconnected. 

Proof:Let us suppose that Y is not (i,j)-hyperconnected. Then  i – open set V such that V is not j- 

dense in Y. Then  disjoint non-empty  i – open subset 
1

B and  j – open subset 
2

B in Y, such that 

1
B = iInt(jCl(V)) and

2
B = Y\jCl(V). Since f is (i,j)- contra- -precontinuous and onto, by Theorem 3.2, 

1
A = 1f (

1
B ) and 

2
A = 1f (

2
B )  are disjoint non-empty (i,j)-preclosed subsets of X . By 

assumption, the (i,j)- -pre-ultra-connectedness of X implies that 
1

A and 
2

A must intersect, which 

is a contradiction. Hence Y is (i,j)-hyperconnected. 

Theorem 4.5: Iff:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -precontinuous injection and Y is 

Urysoshn , then X is (i,j)- -pre-Hausdorff. 

Proof:Suppose that Y is Urysohn. By the injectivityof f , it follows that f(x) f(y) for any distinct points 

x,yX. Since Y is Urysohn , i – open set V and  j – open set W such that f(x) V, f(y)  W and 

iCl(V) jCl(W) =  . Since fis  (i,j)- contra- -precontinuous ,  (i,j)- -preopen set U and G  in X 

containing x and y respectively such that f(U)iCl(V) and f(G)jCl(W) . Hence U G =  . This shows 

that X is (i,j)- -pre-Hausdorff.     

Theorem 4.6: Iff:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -precontinuous injection and Y is (i,j)-

weakly Hausdorff then X is (i,j)- -pre-
1

T . 

Proof:Suppose that Y is (i,j)-weakly Hausdorff. For any distinct points x,yX,   (i,j)-regular closed 

sets V, W in Y such that f(x) V, f(y)V , f(x)W and f(y) W. Since f is  (i,j)- contra- -

precontinuous, by Theorem 3.1, 
1f (V) and 

1f (W) are (i,j)- -preopen subsets of X such that 

x
1f (V), y 1f (V), x 1f (W) and y

1f (W). This shows that  X is (i,j)- -pre-
1

T . 

Definition 4.6:Abitopological space (X,T1,T2) is said to be  

(i) (i,j)- -pre-compact (Dontchev 1996[1]) if every (i,j)- -preopen (resp. (i,j)-closed ) cover of 

X has a finite subcover 

(ii) (i,j)-countably -pre-compact ((i,j)-strongly countably S-closed ) if every countable cover of 

X by (i,j)- -preopen (resp. (i,j)-closed ) sets has a  finite subcover. 
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(iii) (i,j)-  -pre-Lindel


o f ((i,j)-strongly  S-Lindel


o f) if every (i,j)- -preopen (resp. (i,j)-closed ) 

cover of X  has a countablesubcover. 

Theorem 4.7:The (i,j)- contra- -precontinuous image of (i,j)- -pre-compact((i,j)-  -pre-

Lindel


o f,(i,j)-countably -pre-compact) space are (i,j)-strongly  S-closed (resp.(i,j)-strongly  S-

Lindel


o f, (i,j)-strongly countably S-closed). 

Proof:Suppose that f:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -precontinuous surjection. Let 

 IV 


: be any closed cover of Y. Since f is  (i,j)- contra- -precontinuous, then 

{ 1f (


V ): I } is a  (i,j)- -preopen cover of X and hence a finite subset 
0

I  of I such that X 

=  { 1f (


V ):
0

I } . Hence we have Y =   
0

: IV 


 and Y is (i,j)-strongly S-closed.  

Similarly, the other proof can be obtained. 

Definition 4.7:Abitopological space (X,T1,T2) is said to be  

(i) (i,j)- -preclosed-compact if every (i,j)- -preclosed cover of X has a finite subcover 

(ii) (i,j)-countably -preclosed-compact if every (i,j)-countable cover of X by (i,j)- -preclosed  

sets has a  finite subcover. 

(iii) (i,j)-  -preclosed-Lindel


o f if every cover of X by (i,j)-  -preclosed set  has a countable 

subcover. 

Theorem 4.8: The (i,j)- contra- -precontinuous image of (i,j)- -preclosed-compact((i,j)-  -

preclosed-Lindel


o f,(i,j)-countably -preclosed-compact) space are pairwise compact (resp. 

pairwise Lindel


o f,pairwisecountably compact ). 

Proof:Suppose that f:(X,T1,T2) (Y, 1, 2) is  (i,j)- contra- -precontinuous surjection. Let 

 IV 


: be any open cover of Y. Since f is (i,j)- contra- -precontinuous, then 

{
1f (


V ): I } is a  (i,j)- -preclosed cover of X. Since X is (i,j)- -preclosed-compact , a 

finite subset 
0

I  of I such that X =  {
1f (


V ):

0
I } . Hence we have Y = 

  
0

: IV 


 and Y is pairwise compact.Similarly, the other proof can be obtained. 
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