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1. INTRODUCTION

The notion of contra-continuous functions (Donchev 1996[1]), perfectly continuous functions (Noiri 1984a[9]),
contra precontinuous functions(Jafari and Noiri 2002[6]) or RC- continuous functions due to (Donchev and
Noiri 1999[2]) plays a significant role in general topology. In this paper, we introduce and study the notion of
weak form of strong continuity, RC-continuity, perfectly continuity, contra- precontinuity and contra continuity
in bitopological spaces. Also investigated the relationships between graphs and contra 5-precontinuous
functions in bitopological spaces, which is a generalization of [16].

2.PRELIMINARIES

In this paper, the spaces (X,T1,T,) and (X,T) denote respectively the bitopological space and
topological space.

Let (X,T1,T,) be a bitopological space and let A be a subset of X, then the closure and interior of A
with respect to T;are denoted by iCl(A) and ilnt(A) respectively , fori=1,2.

Definition 2.1:A subset Aof a bitopological space (X,T4,T,) is said to be

(i) (i,j)- regular open [13] if A = iInt(jCI(A)) where i= j,i,j = 1,2.

(ii) (i,j)-regular closed [14] if A =iCl(jint(A)) where i=], i,j = 1,2.

(iii) (i,j)- preopen [15]if A cilnt(jCI(A)) where i=, i,j = 1,2.

(iv) (i,j)- semi-open [14] if A cjCI(ilnt(A)) where iz |, i,j = 1,2.

Remark 2.1: From above definition 2.1, we have (i) = (iii) and (ii) = (iv) but converse are not true.
For these we have shown the following example.
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Example 2.1: Let X = {a,b,c,d} with topologies T,:={X, @ ,{a},{b,c}}, T,={X, @ ,{b},{c,d}} and

A = {c,d}be a subset of X. Then jCI(A) = {a,c,d}and iInt(jCI(A)) = {a}. Therefore ilnt(jCI(A)) &
A. Hence (iii)does not imply(i).

Again, let A = {a,b}be a subset of X. Then jInt(A) = {b}and iCl(jint(A)) = {b,c,d}. Therefore
iCl(jint(A)) & A. Hence (iv)does not imply(ii).

Definition 2.2: A subset Aof a bitopological space (X,T4,T>) is said to be

(M The union of all(i,j)- regular open sets of X contained in A is called (i,j)- O - interior of a
subset Aof X and is denoted by (i,j)- O -(Int(A))(Velicko 1968[12]).

(i) Ais called (i,j)- O -open if A = (i,j)- O -(Int(A)) (Velicko 1968[12]).

(iii)  The complement of a (i,j)- O -open set is called (i,j)- O -closed . Equivalently, A is (i,j)- O -
closed iff A = (i,j)- O -(CI(A)) where (i,j)- O -(CI(A)) = {xEX: AN U # @, Uis (i,j)- O -open, x € U}

(iv) A subset A of X is said to be (i,j)- O -preopen if A cilnt((i,j) O -CI(A)). The family of all (i,j)- O -
preopen sets of X containing a point X €X is denoted by (i,j)- O PO(X,x)(M. et al.1982, R and M
1993[9]).

(V) The complement of a (i,j)- O -preopen set is called (i,j)- O -preclosed(El-Deeb et al. 1983[4])

(vi) The intersection of all(ij)- O -preclosed sets of X containing A is called the (ij)- O -
preclosure of A and is denoted by (i,j)- O -p(CI(A)).

(vii)  The union of all(i,j)- O -preopen sets of X contained in A is called the (i,j)- O -preinterior of A
and is denoted by (i,j)- O -p(Int(A))(Raychoudhuri and Mukherjee 1993[9]).

(viii)  Asubset U of X is said to be (i,j)- O -pre neighbourhood (Raychoudhuri and Mukherjee
1993[9]) of a point X €X if 3 a (i,j)- O -preopen set V such that X Vc U.

(iX)  The family of all (i,j)- O -open (resp. (i,j)- O -preopen, semi-open, (i,j)- O -preclosed , (i,j)-
closed ) sets of X containing a point X €X is denoted by (i,j)- O O(X,x) (resp. (i,j)- O PO(X,x), (i,j)-
SO(X,x), (i,j)- O PC(X,x),(i,j)-C(X,x)).

Definition 2.3:A function f: (X,T,,T,) —> (Y, O 1, O ,) is said to be

(i) (i,j)-perfectly continuous ([2], Noiri 1984 a, N and P. 2007[8]) if f _1(V) is T-clopen in X for
each O ;.opensetVofY, for i=1,2.

(ii) (i,j)-contra-continuous (Dontchev 1996[1]) if f _1(V) is Ti-closed in X for each O ;. open set
VofY, for i,=1,2.

(iii) (i,j)-RC- continuous (Dontchev and Noiri 1999(2]) if f _1(V) is (i,j)- regular closed in X for
each O ;.opensetVofY,fori=j,ij=1,2.
(iv) (i,j)-contra-precontinuous (Jafari and Noiri 2002[6]) if f _1(V) is (i,j)- pre- closed in X for

each O ;.opensetVofY,fori=j,ij=1,2.
(v) (i,j)-strongly- continuous (Levine 1960[7]) if f(iCl(jInt(A))) < f(A) for every subset A of X .

3.Contra O -precontinuous functions in bitopological spaces

Definition 3.1:A function f:(X,T.,T,)— (Y, 0 1, 0 ,) is said to be (i,j)—contra—5-precontinuous at a
point X €X if for each O .. closed set V in Y with f(x) € V, 3 a (i,j)- O -preopen set U in X such that
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X €U and f(U)  V and f is called (i,j)-contra- O -precontinuous if it has this property at each point of
X.

Theorem 3.1:The following are equivalent for a function f: (X, T, T.) —> (Y, 0 1,0 ) :

(i) fis(i,j)-contra-§ -precontinuous ;

(ii) the inverse image of a O ;.closed set, i = 1,2 of Yis (i,j)- O -preopen ;

(iii) the inverse image of a O ;.openset,i=1,2 of Yis (i,j)- O -preclosed ;

Proof:(i) = (ii) . Let Vbe a 0 ;.closed set,i=1,2in Ywith X € f _1(V) . Since f(x) € Vand fis (i,j)-
contra- O -precontinuous , 3 a (i,j)- O -preopen set U in X containing x such that f(U) < V. It follows

that XeUc f _1(V) .Hence f _1(V) is (i,j)- O -preopen.
(i) = (iii) . Let U be a 0 ;.open set, i =1,2 of Y. Since Y\U is O ;. closed , then by (ii) it follows that

f _1(Y\U) =x\ f _1(U) is (i,j)- O -preopen. Therefore f _1(U) is (i,j)- O -preclosed in X .

f _1(Y\V) =x\ f _1(V) is (i,j)- O -preclosed and so _1(V) is (i,j)- O -preopen . LetU = f _1(V).

We obtain that X € U and f(U) = V . This shows that f is(i,j)-contra- O -precontinuous.

Remark 3.1:The following diagram holds:
(i,j)-strongly- continuous

(i,j)-perfectly continuous

U

(i,j)-RC- continuous

U

(i,j)-contra-continuous

U

(i,j)-contra-precontinuous

U

(i,j)-contra-5 -precontinuous
None of these implications are reversible. For these we have shown the following examples.
Example 3.1: let, X = {abcdl and T, = {X @,faLib,ch}T={X, @, blicd}}. Let,
f:(X,T1,T2) —> (X, T4, T,) be the identity function. Then f is (i,j)-perfectly continuous but not (ij)-
strongly- continuous. For, let A = {a.b} be a subset of X and f(A) = A, then f(iCl(jint(A))) Z f(A.
Example 3.2: Consider the topologies on X ={a,b,c} and Y = {p,q} respectively by
T = {X, @ {bliachTo={X, @ faL{bliabLibel and o1 = {Y,@,{p}}, 0> = {Y,P.,{a}}. Let,
f:(X, T, T2) —>(Y, 0 1, 0 ;) be a map defined as f(a) =p, f(b) = q, f(c) = p. Then fis (i,j)-RC- continuous
but not (i j)-perfectly continuous , since f*(p) and f(q) are clopen in T; but not in T,.
Example 3.3: Consider the topologies on X ={a, b, c} and Y = {p, q, r} respectively by
T1 = {X,@,{chib, c},To={X, P falickia, c}} and o1 = {Y,@,(p}), O, = {V,P,{p, a}}. Let,
f:(X, T, T.) —> (Y, 0 1,0 ,) be a map defined as f(a) =p, f(b) = g, f(c) = r. Then f is (i,j)-contra-
continuous but not (i,j)-RC- continuous , since thenf™(p, q) is not regular closed in X.
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Example 3.4: Consider the topologieson X ={a, b, c} and Y = {p, q, r} respectively by
T = {X,@.{a, bL{bLT={X, @ {akiclia, c}} and o1 = {Y,0,p}}, O, = {Y,9,{}}) Let,
f:(X, T, To) —> (Y, 0 1,0 ,) be a map defined as f(a) =p, f(b) = q, f(c) = r. Then f is(i,j)-contra-
precontinuous but not (i,j)-contra- continuous, since then f(p) is not T; closed in X.
Example 3.5: Let Rbe the set of all real numbers, P,-be the countable extension topology on Ri.e,the
topology with subbaseT,\UT,, where T, is the Euclidian topology of Rand T, is the topology of
countable complements of Rand O ; be the discrete topology of Rand P,=0 ,= T, . Define a
function f:(R,P,,P,) = (R, O 1, O ,) as follows
F(x) = {1 if x is rational

3 f xis irrational

Then f is (i,j)-contra-O -precontinuous but not (i,j)-contra-precontinuous since {1} is closed in

(R,O4,0,)and f _1({1}) = QwhereQis the set of rationals, is not (i,j)-preopen in (R, T,,T,).
Definition 3.2:A function f:(X, T, T.)—>(Y,0.,0,) is said to be almost (ij)-contra-

precontinuous(Ekici 2004[3]) if f _1(V) is (i,j)- preclosed in X for each (i,j)- regular open set Vin .
Remark 3.2:Almost contra-precontinuity is a generalization of contra-precontinuity. Almost contra-
precontinuity and contra-5—precontinuity are independent. We have shown the following
examples.

Example 3.6: If we take the function f such as in Example 3.3(i) then f is (i,j)-contra-o -
precontinuous but not almost (i,j)-contra-precontinuous.

Example 3.7: Let, X = {a,b,c,d,e}, T, = {X, @ ,{b},{d},{b,d}}, T,={X, @ ,{a},{c},{a,c}} and Y = {a,b,c.d}, O,
=Y, ¢,{a}, {a,b},{a,c}}, o, ={Y, ¢,{b}, {b,c},{b,d}}. If we take a function f:(X,T,,T,) —>(Y,0 1,0 »)
defined as f(a) =a, f(b) = b, f(c) = ¢, f(d) = d, f(e) = d. Then f is almost (i,j)-contra-precontinuous but
not (i,j)-contra- O -precontinuous.

For topological spaces, Noiri and Ekici stated that if A and B be subsets of a space (X,T) and if A

€ O PO(X) and B € O O(X), then A n Be O PO(B)(Raychoudhuri and Mukherjee 1993[9]), then we can
state and prove the following lemma.

Lemma 3.1: Let A and B be subsets of abitopological space(X,T1,T>). If A € (i,j)-O PO(X) and B € (i,j)-
O 0(X), then AN Be (i,j)- O PO(B).

Proof:We need to prove that A N BC ilnt((i,j)- O -CI(A N B)).

Let, xeA N B, then xeilnt((i,j)- O -CI(A)) and xe&(i,j)- O -Int(B), since A € (i,j)-O PO(X) and B € (i,j)-
O O(X). This implies that Ji-open set G such that, xeG C (i,j)- O -CI(A).

Also since x&(i,j)- O -Int(B), this implies that 3(i,j)- O -open set U such that xeUC B and hence U N
A+ ¢ . Therefore, V (i,j)- O -open set U containing x, U N (A N B)# ¢ Hence xeG C (ij)- O -CI(A
M B). Thus AN BCilnt((i,j)- O -CI(A N B)).

lemma 3.2: let A c B c X. If B € (i,j)j-O00(X)and A e (i,j)-O PO(B) , then A e (ij)-
O PO(X)(Raychoudhuri and Mukherjee 1993[9]).

Theorem 3.2:1ff:(X,T.,T,) —=>(Y,0 1,0 ,) is a (i,j)-contra-5 -precontinuous function and A is any (i,j)-
5-open subset of X, then the restriction f |A A —>Yis (i,j)—contra—5—precontinuous.
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Proof: Let F be a 0 ;. closed set in Y. Then by Theorem 3.2, f _1(F) € (i,j)-5 PO(X). Since A is (i,j)-
5-open in X, it follows from Lemma 3.5, that (f |A)71(F) =An f _1(F) € (i,j)-5 PO(A). Hence
f |Ais a (i,j)-contra- O -precontinuous.
Theorem 3.3:Letf:(X,T,,T,) —>(Y,O0 1, 0 ,) be a function and ‘pa oA |} be a (i,j)- 5-open
cover of X . If for each ael, f| U is (i,j)-contra- O -precontinuous  then
(94

f:(X,T,T2) —=>(Y,0 1,0 ,) is a (i,j)—contra-5 -precontinuous function.
Proof: Let F be a0 . closed set in Y. Since for each & € | , f| U is (i,j)-contra- O -precontinuous
o

-1 -
,[”U } (F) € (i)}-6PO(U ). Since U _ € (i)-5 O(x), by Lemma 356 , [”U j F) < (i)

a

O PO(X), for each & € | . Then f_l(F) = -1 e (i,j)-O O(X) . This shows that f is a (i,j)-
o,

contra-o0 -precontinuous function.
Definition 3.3:Let (X, T, T,) be a bitopological space. The collection of all (i,j)- regular open sets forms

a base for topology T>l< . It is called the semi-regularization. If T4= T2=T>l< then (X,T,,T,) is called
semi-regular bitopological space.

Theorem 3.4:Letf:(X,T,,T.) —> (Y, 0 1, 0 ;) be a function and g:X—>XXY the graph function of f,
defined by g(x) = (x,f(x)) for every x eX . If g is (i,j)-contra- O -precontinuous then f is (i,j)-contra- O -
precontinuous .

Proof:Let U be a0 i_open setin Y, then XX U is a 0 ;.open set in XXY. It follows from Theorem 3.1

that f _1(U) = g_1

Lemma 3.3:Let A be a subset of abitopological space(X,T1,T>). Then A € (i,j)- & PO(X) iff A N Ue (i,j)-
O PO(X) for each (i,j)- regular open ((i,j)-O -open) set U of X (Raychoudhuri and Mukherjee

1993[9]).
Definition 3.4:A function f:(X,T,,T,) —> (Y, O 1, O ,) is called (i,j)-contra-super-continuous for every x

(XX U)e (i,j)- O PC(X). Thus fis (i,j)-contra- O -precontinuous .

eX and each F €(i,j)-C(Y,f(x)), there exists a (i,j)- regular open set U in X containing x such that f(U) c
F (Jafari and Noiri 1999[5]).

Theorem 3.5:If f:(X,T,,T,) —> (Y, 0 1, 0 ,) is (i,j)-contra-super-continuous , g:X—>Y is (i j)-contra- O -
precontinuous and Y is Urisohn , then E = {x € X: f(x) = g(x)} is (i,j)- O -preclosed in X.

Proof: If x € X\E, then it follows that f(x) # g(x) . Since Y is Urisohn , there exist O ;. open set V and
O ;. open set W such that f(x) € V ,g(x) € W and iCl(V) njCI(W) = ¢ Since fis (i,j)-contra-super-
continuous and g is (i,j)—contra—5 -precontinuous , there exists a (i,j)- regular open set U containing x
and there exists a (i,j)- O -preopen set G containing x such that f(U) <iCl(V) and g(G) <jCI(W) . Set O =
U N G. By the previous Lemma, O is (i,j)- O -preopen in X . Hence f(O) N g(0) = ¢5 and it follows that

X & (i,j)- O PC(E) . This shows that E is (i,j)- O -preclosed in X.

Vol.3.Issue.2.2015 5



SANJOY KUMARBISWAS et al Bull.Math.&Stat.Res

Definition 3.5:A filter base Ais said to be (i,j)- O -preconvergent (resp. (i,j)-C-convergent ) to a point
xin Xif forany U € (i,j)-5 PO(X) containing x (resp. U €(i,j)-C(X) containing x) , there existsa B € A
suchthatBc U.

Theorem 3.6:Iff:(X, T, T.) —>(Y,0 1,0 ,) is a (i,j)—contra—§ -precontinuous , then for each x €X and
each filter base A in X which is (i,j)- O -preconvergent to x ,the filter base f( A ) is (i,j)-C-convergent
to f(x) .

Proof: Let x €X and A be any filter base in X which is (i,j)- O -preconvergent to x . Since f is (i,j)-
contra- O -precontinuous, then for any V e C(Y) containing f(x) , there exists U € (i,j)-O PO(X)
containing x such that f(U) c V.. Since A s (i,j)- O -preconvergent to x there exists a B € A such that
B — U. It follows that f(B) — V and hence the filter base f( A) is (i,j)-C-convergent to f(x) .

Theorem 3.7:Letf:(X,T1,T,) —> (Y, 0 1, O ,) be a function and x €X . If there exists U € (i,j)- O O(X)
such that x € U and the restriction of f to U is a (i,j)-contra- O -precontinuous function at x , then f is
(i,j)-contra- O -precontinuous at x .

Proof: Suppose that Fe C(Y) containing f(x). Since f| U is (i,j)-contra- O -precontinuous at x , there
exists V € (i,j)- O PO(U) containing x such that f(V) = (| U )(V)c F . Since U € (i,j)- O O(X) containing x

, it follows from Lemma 3.6 that V € (i,j)-O PO(X) containing x . This shows clearly that f is (ij)-
contra- O -precontinuous at x .
Definition 3.6:A function f:(X,T1,T,) —> (Y, O 1, O ) is said to be (i,j)- O -preirresolute if for each x eX

and each V € (i,j)- O PO(Y,f(x)), there exists a (i,j)- O -preopen set U in X containing x such that f(U) =
V.

Theorem 3.8:Letf:(X,T1,To) —> (Y, 0 1,0 ,) and g:(Y, 0 1, 0 ) —> (2,24, €2,) be functions. Then the
following properties hold :

(i) If fis (i,j)- O -preirresolute and g is (i j)-contra- O -precontinuous , then gof:X—>Z is (i,j)-
contra- O -precontinuous .

(i) If f is (i,j)-contra- O -precontinuous and g is (i,j)-continuous , then gof:X —>Z is (i,j)-contra- O -
precontinuous .

Proof: (i) Let x eX and We(Z,(gof)(x)) , since g is (i,j)-contra- O -precontinuous , there exists a (i,j)-
O -preopen set V in Y containing f(x) such that g(V) = W . Since fis (i,j)- O -preirresolute, there exists
a (i,j)- O -preopen set U in X containing x such that f(U) < V . This shows that (gof)(U)c W . Hence gof
is (i,j)-contra- O -precontinuous .

(ii) Letx eX and We(Z,(gof)(x)), since g is (i,j)-continuous , V= _1(V) is (i,j)-closed. Since f
is (i,j)-contra- O -precontinuous, there exists a (i,j)- O -preopen set U in X containing x such that f(U)
< V. Therefore (gof)(U)= W . This shows that gof is (i,j)-contra- O -precontinuous .
Definition 3.7:A function f:(X,T1,T,) —> (Y, O 1, 0 ,) is called (i,j)- O -preopen if image of each (i,j)-O -
preopen set is (i,j)- O -preopen .
Theorem 3.9:ff:(X, T, T.)—>(Y,0,,0,) is a surjective (i,j)-§ -preopen function and
g:(Y,0 1, 0,)—(Z, Q,0 ») is a function such that gof:(X,T,,T,) —>(Z, Q,Q ,) is (i,j)—contra—5 -

precontinuous , then g is (i,j)-contra- O -precontinuous .
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Proof: Let x eX and y €Y such that f(x) = y. Let VeC(Z,(gof)(x)) . Then there exists a (i,j)—§-preopen
set U in X containing x such that g(f(U)) c V. Since fis (i,j)-5-preopen, f(U) is a (i,j)-5-preopen set
in Ycontaining y such that g(f(U)) < V. This shows that g is (i,j)-contra- O -precontinuous .

Corollary 3.1: Letf:(X, T, T,) —> (Y, O 1, O ,) be a surjective (i,j)-5-preirreso|ute and (i,j)—5-preopen
function and let g:(Y,0 1,0 ,) —>(Z, Q. Qz) be a function . Then gof:X—>7Z is (i,j)-contra—5 -
precontinuousiff g is (i,j)-contra- O -precontinuous .

Proof: It can be obtained from Theorem 3.18 and Theorem 3.20.

Definition 3.8:A function f:(X,T,T,) —> (Y, O 1, O ) is said to be (i,j)-weakly contra-O0 -precontinuous
if for each X €X and each O -closed set F, | = 1,2 of Ycontaining f(x) ,(3 a (i,j)- O -preopen set U in X
containing x such that ilnt(jCIf(U))c V.

Definition 3.9:A function f:(X,T,,T,)—>(Y,0 1, 0 5) is called (i,j)- O -pre-semiopenif the image of
each (i,j)-O -preopen set is (i,j)-semi-open .

Theorem 3.10:If afunction f:(X,T1,T,) —> (Y, O 1, 0 ,) is (i,j)-weakly contra- O -precontinuous and (i,j)-
O -pre-semi-open , then f is (i,j)-contra- O -precontinuous .

Proof: Let X €X and F be a (ij)-closed set containing f(x) . Since f is (i,j)-weakly contra-O -
precontinuous , 3 a (i,j)-O -preopen set U in X containing x such that ilnt(jCI(f(U)))c F. Since f s (i,j)-
O -pre-semiopen , f(U)&(i,j)-SO(Y) and f(U) ciCl(jint(f(U)))< F. This shows that f is (i,j)-contra-O -
precontinuous.

4. Several theorems in bitopological spaces

In this section, graphs and preservation theorems of (i,j)-contra- O -precontinuity are studied.
Definition 4.1:A bitopological space (X,T4,T,) is said to be

(i) (i,j)-weakly Hausdorff(Soundararajan , 1971[10]) if each element of X is an intersection of
(i,j)-regular closed sets.

(ii) (i,j)-§ -pre-Hausdorff if for each pair of distinct points x and y in X, 3 Ue(i,j)-5 PO(X,x) and
Ve(i,j)- O PO(X,y) such that UnV = ¢ .

(iii) (i,j)-5-pre-T1 if for each pair of distinct points x and y in X,3 (i,j)- O -preopen set U and V

containing x and y respectively such that y & U and x& V.

Here we have given the following examples:

Example 4.1: Consider the topologies on X = {a, b, c} be

T1={X, § {a}{b}, {c}, {a, bl{b, c}{a,chhand To={X, # {a},{b},{a,b},{b,ch

and let A = {b}, B={b, c}, C={a, c}and D={a, b}be subsets of X, then we have A, B, C, D are (1, 2)-regular
closed. Also we have AM B={b}, B\ C={c} and C/\ D={a}. Therefore, X is (1, 2)-weakly Hausdorff.
Example 4.2: Consider the topologies on X = {a, b, c} be

T, = {X, @ {a}{b}, {a, b}tand T,={X, @ ,{c}.{a, c}{b, c}}. Then we have
(1, 2)- o -preopen sets are X, ¢ , {a},{b},{a, b} and
(2, 1)—5 -preopen sets are X, ¢ , {c}{b, c}{a, c}. Hence (X, T1, T,) is a (i,j)—§ -pre-Hausdorff space.

Example 4.3:Same as example 4.2.
Remark 4.1:Thefollowingimplications are hold for a bitopological space (X,T4,T>):

(i) Pairwise Tl = (i,j)-O0 -pre-Tl
(i) PairwiseT2 :>(i,j)-5-pre-T2
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These implications are not reversible.

Example 4.4:Let X = {a,b,c,d} with topologies T,;={X, ¢,{a},{b,c}}, T,={X, ¢,{b},{c,d}}. Then (X,T,,T,)
is (i,j)—5—pre—T2 but not T2.

Definition 4.2:For a function f:(X,T,,T,) = (Y, 0 1, O ), the subset {(x,f(x)): x eX}c XX is called the
graph of f and is denoted by G(f).

Definition 4.3:The graph G(f) of a function f:(X,T1,T,)—>(Y, 0 1,0 ,) is said to be (i,j)-contra-o -
preclosed if for each (x,y)e(XXY\G(f) , 3 (i,j)- O -preopen set U in X containing x and Ve(x,y) such
that (UX V)N G(f) =@

Lemma 4.1: The following properties are equivalent for the graph G(f) of a function f :

(i) G(f) is (i,j)-contra- O -preclosed

(ii) for each (x,y)e(XXY)\G(f), 3 (i,j)- O -preopen set U in X containing x and V&(i,j)- (Y,y) such
that f(U)"\V = @ .

Proof: Obvious.

Theorem 4.1: Iff:(X, T, T,) —> (Y, 0 1,0 ,) is (i,j)- contra-O -precontinuous and Y is Urysohn , G(f) is
(i,j)-contra- O -preclosed in XX Y .

Proof: Suppose that Y is Urysohn . Let (x,y) (XX Y)\G(f). It follows that f(x)# y. Since Y is Urysohn
,dO i_open set Vand O ;_open set W such that f(x)e V, y € W and iCI(V) njCI(W) = ¢ Since fis
(i,j)- contra-O -precontinuous , 3 (i,j)-O -preopen set U in X containing x such that f(U)ciCI(V).
Therefore f(U) NjCI(W) = @ and G(f) is (i,j)-contra- O -preclosed in XX Y .

Theorem 4.2: Let f:(X,T1,T,) —>(Y, 0 1, O ,) have a (i,j)-contra-O -preclosed graph. If f is injective,
then Xis (i,j)- O -pre-Tl.

Proof: Let x and y be any two distinct points of X. Then we have (x,f(y)) € (XX Y)\G(f). By Lemma 4.5,
3 (i,j)- O -preopen set U in X containing x and FeC(Y,f(y)) such that f(U)~F = ¢ Hence Un f _1(F):
¢ . Therefore we have y & U. This implies that X is (i,j)- ) -pre-Tl.

Definition 4.4:A bitopological space (X,T4,T>) is called (i,j)- O -preconnected provided that X is not
the union of two disjoint non-empty (i,j)- O -preopen sets .

Theorem 4.3: Iff:(X,T,,T,) —> (Y, 0 1, 0 ,) is (i,j)- contra- O -precontinuous surjection and X is (i,j)- O -
preconnected , then Y is (i,j)-connected .

Proof:SupposeY is not (i,j)-connected space . There exist disjoint O ;_open set Vl and O ;_open set

V2 such that Y = Vl UVZ . Therefore Vland V2 are (i,j)-clopen in Y. Since f is (i,j)- contra-O -
precontinuous , f_l(Vl) and f_l(VZ) are (i,j)-O -preopen in X . Moreover, f _1(Vl) and

f _1(V2) are non-empty disjoint and X = i f _1(V1) U jf _1(V2) . This shows that X is not

(i,j)-§ -pre-connected, which is a contradiction. Hence Y is (i,j)-connected .
Definition 4.5:A bitopological space (X,T4,T,) is called

(i) (i,j)- O -pre-ultra-connectedif every two non-empty (i j)- O -preclosed subsets of X intersect ,
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(ii) (i,j)-hyperconnected (Steen and Seebach 1970[11]) if everyi-open set is j- dense.
Here we have given the following examples:
Example 4.5:Consider the topologies on X = {a, b, c} be

T, = {X, @ {a},{b}, {a, bltand To={X, @ ,{c},{a, c}{b, c}}. Then we have

(1, 2)- O -preclosed subsets are X, ¢ , {b, c},{a, c},{c} and we see that any two non-empty subsets are
intersect, hence (X, Ty, T,) is (1, 2)- O -pre-ultra-connected.

Example 4.6:Consider the topologies on X = {a, b, c} be

T1 = {X, @,{b}, {b, c}tand T,={X, @ ,{b},{a, b}}. Then we have

T,-Cl{b,c}= X and T,-Cl{b}= X.

Again, T;-Cl{a, b}= X and T,-Cl{b}= X.

Hence (X, T4, T»)is (i,j)-hyperconnected.

Theorem 4.4:If X is (i,j)—5—pre—ultra—connected and f:(X, T, To)—>(Y,0 1,0 ,) is (i,j)- contra- o0 -
precontinuous and surjective , then Yis (i,j)-hyperconnected.

Proof:Let us suppose that Y is not (i,j)-hyperconnected. Then 30 ; _ open set V such that V is not j-
dense in Y. Then 3 disjoint non-empty O ;_open subset Bland O j_open subset Bzin Y, such that

Bl= iInt(jCl(V)) and BZ= Y\JCI(V). Since f s (i,j)- contra- O -precontinuous and onto, by Theorem 3.2,

Al= f_l( Bl) and A2= f_l( BZ) are disjoint non-empty (i,j)-preclosed subsets of X . By
assumption, the (i,j)- O -pre-ultra-connectedness of X implies that Aland AZ must intersect, which

is a contradiction. Hence Y is (i,j)-hyperconnected.

Theorem 4.5: Iff:(X,T,,T,)—>(Y,0 ,0,) is (i,j)- contra- O -precontinuous injection and Y is
Urysoshn , then X is (i,j)- O -pre-Hausdorff.

Proof:Suppose that Y is Urysohn. By the injectivityof f, it follows that f(x)= f(y) for any distinct points
x,yeX. Since Y is Urysohn ,30 ; _ open set V and O ;_open set W such that f(x)e V, f(y) € W and
iCl(V) njCl{wW) = ¢ Since fis (i,j)- contra- O -precontinuous , 3 (i,j)- O -preopen set U and G in X
containing x and y respectively such that f(U)ciCI(V) and f(G)cjCI(W) . Hence UN G = ¢ . This shows
that X is (i,j)- O -pre-Hausdorff.

Theorem 4.6: Iff:(X,T,,T,) —>(Y,0 1,0 ,) is (i,j)- contra-5-precontinuous injection and Y is (i,j)-
weakly Hausdorff then X is (i,j)- O -pre-Tl.

Proof:Suppose that Y is (i,j)-weakly Hausdorff. For any distinct points x,yeX, 3 (i,j)-regular closed
sets V, W in Y such that f(x)e V, f(y)&V , f(x)€W and f(y)e W. Since f is (ij)- contra-O -

precontinuous, by Theorem 3.1, f _1(V) and f _1(W) are (i,j)-5 -preopen subsets of X such that
xe | _1(V), ye f _1(V), xg f _1(W) andye f _1(W). This shows that X is (i,j)-5-pre-T1.

Definition 4.6:Abitopological space (X,T,T,) is said to be

(i) (i,j)- O -pre-compact (Dontchev 1996[1]) if every (i,j)- O -preopen (resp. (i,j)-closed ) cover of
X has a finite subcover

(ii) (i,j)-countably O -pre-compact ((i,j)-strongly countably S-closed ) if every countable cover of

X by (i,j)- O -preopen (resp. (i,j)-closed ) sets has a finite subcover.

Vol.3.Issue.2.2015 9



SANJOY KUMARBISWAS et al Bull.Math.&Stat.Res

(iii) (i,j)- O -pre-Lindel O f ((i,j)-strongly S-Lindel O f) if every (i,j)- O -preopen (resp. (i,j)-closed )
cover of X has a countablesubcover.

Theorem 4.7:The (ij)- contra-O -precontinuous image of (ij)-O -pre-compact((i,j)- O -pre-
Lindel O f,(i,j)-countably O -pre-compact) space are (i,j)-strongly S-closed (resp.(i,j)-strongly S-

Lindel O f, (i,j)-strongly countably S-closed).
Proof:Suppose that f:(X,T,,T,)—>(Y,0 1,0,) is (i,j)- contra-O -precontinuous surjection. Let
VO( NOAS |}be any closed cover of Y. Since f is (ij)- contra-O -precontinuous, then

{ f _1(V05 ) €l }isa (i,j)- O -preopen cover of X and hence Ja finite subset |0 of I such that X

I ) . .
= f (Va o e |O} . Hence we have Y = U Va ae |O}and Y is (i,j)-strongly S-closed.

Similarly, the other proof can be obtained.
Definition 4.7:Abitopological space (X,T,,T,) is said to be

(i) (i,j)- O -preclosed-compact if every (i,j)- O -preclosed cover of X has a finite subcover

(i) (i,j)-countably O -preclosed-compact if every (i,j)-countable cover of X by (i,j)- O -preclosed
sets has a finite subcover.

(iii) (i,j)- O -preclosed-Lindel O f if every cover of X by (i,j)- O -preclosed set has a countable
subcover.

Theorem 4.8: The (i,j)- contra-O -precontinuous image of (i,j)-O -preclosed-compact((i,j)- O -
preclosed-Lindel O f,(i,j)-countably O -preclosed-compact) space are pairwise compact (resp.

pairwise Lindel O f,pairwisecountably compact ).
Proof:Suppose that f:(X,T,,T,)—>(Y,0 1,0 ;) is (i,j)- contra-5-precontinuous surjection. Let
VaZCZEWbe any open cover of Y. Since f is (i,j)- contra-O -precontinuous, then

{ f _1(\/05 aellisa (ij-O -preclosed cover of X. Since X is (i,j)- O -preclosed-compact , Ja

finite subset IO of | such that X = U{f_l(Va):a€|0} . Hence we have Y =

|\ Va . e |0 } and Y is pairwise compact.Similarly, the other proof can be obtained.
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