

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON CONTRA δ -precontinuous functions in bitopological spaces

SANJOY KUMARBISWAS^{1*}, NASIMA AKTHER² ^{1,2}Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh

ABSTRACT

In this paper,we introduce the notion of contra δ -precontinuous functions in bitopological spaces. Further we obtain a characterization and preservation theorems for contra δ -precontinuous functions in bitopological spaces.

Keywords: Contra precontinuous functions, contra-continuous functions, RC- continuous functions, perfectly continuous functions, bitopologicalspaces, contra δ -precontinuous functions.

©KY PUBLICATIONS

1. INTRODUCTION

The notion of contra-continuous functions (Donchev 1996[1]), perfectly continuous functions (Noiri 1984a[9]), contra precontinuous functions(Jafari and Noiri 2002[6]) or RC- continuous functions due to (Donchev and Noiri 1999[2]) plays a significant role in general topology. In this paper, we introduce and study the notion of weak form of strong continuity, RC-continuity, perfectly continuity, contra- precontinuity and contra continuity in bitopological spaces. Also investigated the relationships between graphs and contra δ -precontinuous functions in bitopological spaces, which is a generalization of [16].

2.PRELIMINARIES

In this paper, the spaces (X,T_1,T_2) and (X,T) denote respectively the bitopological space and topological space.

Let (X,T_1,T_2) be a bitopological space and let A be a subset of X, then the closure and interior of A with respect to T_i denoted by iCl(A) and iInt(A) respectively, for i = 1,2.

Definition 2.1: A subset Aof a bitopological space (X, T_1, T_2) is said to be

- (i) (i,j)- regular open [13] if A = iInt(jCl(A)) where $i \neq j$, i,j = 1,2.
- (ii) (i,j)-regular closed [14] if A = iCl(jInt(A)) where $i \neq j$, i,j = 1,2.
- (iii) (i,j)- preopen [15] if A \subset iInt(jCl(A)) where i \neq j, i,j = 1,2.
- (iv) (i,j)- semi-open [14] if $A \subset jCl(iInt(A))$ where $i \neq j$, i,j = 1,2.

Remark 2.1: From above definition 2.1, we have (i) \Rightarrow (iii) and (ii) \Rightarrow (iv) but converse are not true. For these we have shown the following example.

Example 2.1: Let X = {a,b,c,d} with topologies $T_1 = \{X, \phi, \{a\}, \{b,c\}\}, T_2 = \{X, \phi, \{b\}, \{c,d\}\}$ and

A = {c,d}be a subset of X. Then $jCl(A) = \{a,c,d\}$ and $iInt(jCl(A)) = \{a\}$. Therefore $iInt(jCl(A)) \not\subset$ A. Hence (iii)does not imply(i).

Again, let A = {a,b}be a subset of X. Then $jInt(A) = {b}and iCl(jInt(A)) = {b,c,d}$. Therefore $iCl(jInt(A)) \not\subset A$. Hence (iv)does not imply(ii).

Definition 2.2: A subset Aof a bitopological space (X,T_1,T_2) is said to be

(i) The union of all(i,j)- regular open sets of X contained in A is called (i,j)- δ - interior of a subset Aof X and is denoted by (i,j)- δ -(Int(A))(Velicko 1968[12]).

(ii) A is called (i,j)- δ -open if A = (i,j)- δ -(Int(A)) (Velicko 1968[12]).

(iii) The complement of a (i,j)- δ -open set is called (i,j)- δ -closed . Equivalently, A is (i,j)- δ - closed iff A = (i,j)- δ -(Cl(A)) where (i,j)- δ -(Cl(A)) = {x \in X : A \cap U \neq \varphi, U is (i,j)- δ -open, x \in U}

(iv) A subset A of X is said to be (i,j)- δ -preopen if A \subset iInt((i,j) δ -Cl(A)). The family of all (i,j)- δ - preopen sets of X containing a point $x \in X$ is denoted by (i,j)- δ PO(X,x)(M. et al.1982, R and M 1993[9]).

(v) The complement of a (i,j)- δ -preopen set is called (i,j)- δ -preclosed(El-Deeb et al. 1983[4]) .

(vi) The intersection of all(i,j)- δ -preclosed sets of X containing A is called the (i,j)- δ -preclosure of A and is denoted by (i,j)- δ -p(Cl(A)).

(vii) The union of all(i,j)- δ -preopen sets of X contained in A is called the (i,j)- δ -preinterior of A and is denoted by (i,j)- δ -p(Int(A))(Raychoudhuri and Mukherjee 1993[9]).

(viii) Asubset U of X is said to be (i,j)- δ -pre neighbourhood (Raychoudhuri and Mukherjee 1993[9]) of a point $x \in X$ if \exists a (i,j)- δ -preopen set V such that $x \in V \subset U$.

(ix) The family of all (i,j)- δ -open (resp. (i,j)- δ -preopen, semi-open, (i,j)- δ -preclosed , (i,j)- closed) sets of X containing a point $x \in X$ is denoted by (i,j)- δ O(X,x) (resp. (i,j)- δ PO(X,x), (i,j)- SO(X,x), (i,j)- δ PC(X,x),(i,j)-C(X,x)).

Definition 2.3:A function f: $(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be

(i) (i,j)-perfectly continuous ([2], Noiri 1984 a, N and P. 2007[8]) if $f^{-1}(V)$ is T_i-clopen in X for each σ_i open set V of Y, for i= 1,2.

(ii) (i,j)-contra-continuous (Dontchev 1996[1]) if $f^{-1}(V)$ is T_i -closed in X for each σ_i open set V of Y, for i, = 1,2.

(iii) (i,j)-RC- continuous (Dontchev and Noiri 1999[2]) if $f^{-1}(V)$ is (i,j)- regular closed in X for each σ_i open set V of Y, for $i \neq j$, i,j = 1,2.

(iv) (i,j)-contra-precontinuous (Jafari and Noiri 2002[6]) if $f^{-1}(V)$ is (i,j)- pre- closed in X for each σ_i open set V of Y, for $i \neq j$, i,j = 1,2.

(v) (i,j)-strongly- continuous (Levine 1960[7]) if $f(iCl(jInt(A))) \subset f(A)$ for every subset A of X.

3.Contra δ -precontinuous functions in bitopological spaces

Definition 3.1:A function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i,j)-contra- δ -precontinuous at a point $x \in X$ if for each σ_{i} -closed set V in Y with $f(x) \in V$, \exists a (i,j)- δ -preopen set U in X such that

 $x \in U$ and f(U) \subset V and f is called (i,j)-contra- δ -precontinuous if it has this property at each point of X.

Theorem 3.1:The following are equivalent for a function f: $(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$:

(i) f is(i,j)-contra- δ -precontinuous ;

(ii) the inverse image of a σ_{i} closed set, i = 1,2 of Y is (i,j)- δ -preopen ;

(iii) the inverse image of a σ_{i} open set, i = 1,2 of Y is (i,j)- δ -preclosed ;

Proof:(i) \Rightarrow (ii) . Let V be a σ_{i} closed set, i = 1,2 in Y with $x \in f^{-1}(V)$. Since $f(x) \in V$ and f is (i,j)contra- δ -precontinuous, \exists a (i,j)- δ -preopen set U in X containing x such that $f(U) \subset V$. It follows that $x \in U \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is (i,j)- δ -preopen.

(ii) \Rightarrow (iii) . Let U be a σ_{i} open set, i = 1,2 of Y. Since Y\U is σ_{i} closed , then by (ii) it follows that $f^{-1}(Y\setminus U) = X \setminus f^{-1}(U)$ is (i,j)- δ -preopen. Therefore $f^{-1}(U)$ is (i,j)- δ -preclosed in X.

(iii) \Rightarrow (i) . Let $x \in X$ and V be a σ_i closed set, i = 1,2 in Y with $f(x) \in V$. By (iii), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is (i,j)- δ -preclosed and so $f^{-1}(V)$ is (i,j)- δ -preopen. Let $U = f^{-1}(V)$. We obtain that $x \in U$ and $f(U) \subset V$. This shows that f is(i,j)-contra- δ -precontinuous.

Remark 3.1: The following diagram holds:

(i,j)-contra-
$$\delta$$
 -precontinuous

None of these implications are reversible. For these we have shown the following examples. **Example 3.1:** Let, $X = \{a,b,c,d\}$ and $T_1 = \{X, \phi, \{a\}, \{b,c\}\}, T_2=\{X, \phi, \{b\}, \{c,d\}\}$. Let, f: $(X,T_1,T_2) \rightarrow (X,T_1,T_2)$ be the identity function. Then f is (i,j)-perfectly continuous but not (i,j)strongly- continuous. For, let $A = \{a.b\}$ be a subset of X and f(A) = A, then f(iCl(jInt(A))) \subset f(A. **Example 3.2:** Consider the topologies on X = {a,b,c} and Y = {p,q} respectively by $T_1 = \{X, \phi, \{b\}, \{a,c\}\}, T_2=\{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$ and $\sigma_1 = \{Y, \phi, \{p\}\}, \sigma_2 = \{Y, \phi, \{q\}\}$. Let, f: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map defined as f(a) =p, f(b) = q, f(c) = p. Then f is (i,j)-RC- continuous but not (i,j)-perfectly continuous, since f⁻¹(p) and f⁻¹(q) are clopen in T_1 but not in T_2. **Example 3.3:** Consider the topologies on X = {a, b, c} and Y = {p, q, r} respectively by $T_1 = \{X, \phi, \{c\}, \{b, c\}, T_2=\{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma_1 = \{Y, \phi, \{p\}\}, \sigma_2 = \{Y, \phi, \{p, q\}\}$. Let, f: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map defined as f(a) =p, f(b) = q, f(c) = r. Then f is (i,j)-contracontinuous but not (i,j)-RC- continuous, since thenf⁻¹(p, q) is not regular closed in X. **Example 3.4:** Consider the topologies on X = {a, b, c} and Y = {p, q, r} respectively by

 $T_1 = \{X, \phi, \{a, b\}, \{b\}\}, T_2 = \{X, \phi, \{a\}, \{c\}, \{a, c\}\} \text{ and } \sigma_1 = \{Y, \phi, \{p\}\}, \sigma_2 = \{Y, \phi, \{r\}\}.$ Let, f: $(X, T_1, T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map defined as f(a) =p, f(b) = q, f(c) = r. Then f is(i,j)-contraprecontinuous but not (i,j)-contra- continuous, since then f¹(p) is not T_i closed in X.

Example 3.5: Let Rbe the set of all real numbers, P₂-be the countable extension topology on Ri.e,the topology with subbaseT₁ \cup T₂, where T₁ is the Euclidian topology of Rand T₂ is the topology of countable complements of Rand σ_1 be the discrete topology of Rand P₁= σ_2 = T₁. Define a function f:(R,P₁,P₂) \rightarrow (R, σ_1 , σ_2) as follows

$$f(\mathbf{x}) = \begin{cases} 1 & if x is rational \\ 3 & f x is irrational \end{cases}$$

Then f is (i,j)-contra- δ -precontinuous but not (i,j)-contra-precontinuous since {1} is closed in (R, σ_1 , σ_2) and $f^{-1}({1}) = Q$ whereQ is the set of rationals, is not (i,j)-preopen in (R,T₁,T₂).

Definition 3.2:A function $f:(X,T_1,T_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be almost (i,j)-contraprecontinuous(Ekici 2004[3]) if $f^{-1}(V)$ is (i,j)- preclosed in X for each (i,j)- regular open set V in Y.

Remark 3.2: Almost contra-precontinuity is a generalization of contra-precontinuity. Almost contra-precontinuity and contra- δ -precontinuity are independent. We have shown the following examples.

Example 3.6: If we take the function f such as in Example 3.3(i) then f is (i,j)-contra- δ - precontinuous but not almost (i,j)-contra-precontinuous.

Example 3.7: Let, X = {a,b,c,d,e}, T₁ = {X, ϕ , {b}, {d}, {b,d}}, T₂={X, ϕ , {a}, {c}, {a,c}} and Y = {a,b,c,d}, $\sigma_1 =$ {Y, ϕ , {a}, {a,b}, {a,c}}, $\sigma_2 =$ {Y, ϕ , {b}, {b,c}, {b,d}}. If we take a function f:(X,T₁,T₂) \rightarrow (Y, σ_1 , σ_2) defined as f(a) =a, f(b) = b, f(c) = c, f(d) = d, f(e) = d. Then f is almost (i,j)-contra-precontinuous but not (i,j)-contra- δ -precontinuous.

For topological spaces, Noiri and Ekici stated that if A and B be subsets of a space (X,T) and if A $\in \delta$ PO(X) and B $\in \delta$ O(X), then A \cap B $\in \delta$ PO(B)(Raychoudhuri and Mukherjee 1993[9]), then we can state and prove the following lemma.

Lemma 3.1: Let A and B be subsets of abitopological space(X,T₁,T₂). If $A \in (i,j)$ - δ PO(X) and $B \in (i,j)$ - δ O(X), then $A \cap B \in (i,j)$ - δ PO(B).

Proof:We need to prove that $A \cap B \subset iInt((i,j) - \delta - CI(A \cap B))$.

Let, $x \in A \cap B$, then $x \in iInt((i,j)-\delta - CI(A))$ and $x \in (i,j)-\delta - Int(B)$, since $A \in (i,j)-\delta PO(X)$ and $B \in (i,j)-\delta O(X)$. This implies that $\exists i$ -open set G such that, $x \in G \subset (i,j)-\delta - CI(A)$.

Also since $x \in (i,j)$ - δ -Int(B), this implies that $\exists (i,j)$ - δ -open set U such that $x \in U \subseteq B$ and hence U $\land A \neq \phi$. Therefore, \forall (i,j)- δ -open set U containing x, U \land (A \land B) $\neq \phi$. Hence $x \in G \subset (i,j)$ - δ -Cl(A \land B). Thus A \land B \subset iInt((i,j)- δ -Cl(A \land B)).

Lemma 3.2: Let $A \subset B \subset X$. If $B \in (i,j)$ - $\delta O(X)$ and $A \in (i,j)$ - $\delta PO(B)$, then $A \in (i,j)$ - $\delta PO(X)$ (Raychoudhuri and Mukherjee 1993[9]).

Theorem 3.2:Iff:(X,T₁,T₂) \rightarrow (Y, σ_1 , σ_2) is a (i,j)-contra- δ -precontinuous function and A is any (i,j)- δ -open subset of X, then the restriction $f|_A : A \rightarrow Y$ is (i,j)-contra- δ -precontinuous.

Proof: Let F be a σ_{i} closed set in Y. Then by Theorem 3.2, $f^{-1}(F) \in (i,j)-\delta$ PO(X). Since A is (i,j)- δ -open in X, it follows from Lemma 3.5, that $(f|_A)^{-1}(F) = A \cap f^{-1}(F) \in (i,j)-\delta$ PO(A). Hence $f|_A$ is a (i,j)-contra- δ -precontinuous.

Theorem 3.3:Letf:(X,T₁,T₂) \rightarrow (Y, σ_1, σ_2) be a function and $U_{\alpha} : \alpha \in I$ be a (i,j)- δ -open cover of X. If for each $\alpha \in I$, $f|_{U_{\alpha}}$ is (i,j)-contra- δ -precontinuous then

f:(X,T₁,T₂) \rightarrow (Y, σ_1 , σ_2) is a (i,j)-contra- δ -precontinuous function.

Proof: Let F be a
$$\sigma_i$$
 closed set in Y. Since for each $\alpha \in I$, $f \mid_U^{-1}$ is (i,j)-contra- σ -precontinuous $(\alpha \mid \beta)^{-1}(F) \in (i,i)-\delta$ PO (U_{-1}) . Since $U_{-1} \in (i,i)-\delta$ O(X), by Lemma 3.6, $(\alpha \mid \beta)^{-1}(F) \in (i,i)-\delta$

$$\left[f\right]_{U_{\alpha}}$$
 (F) \in (I,J)- ∂ PO(U_{α}). Since $U_{\alpha} \in$ (I,J)- ∂ O(X), by Lemma 3.6, $\left[f\right]_{U_{\alpha}}$ (F) \in (I,J)-

 δ PO(X), for each $\alpha \in I$. Then $f^{-1}(F) = \bigcup_{\substack{\cup \\ \alpha \in I}} \left[f_{U_{\alpha}} \right]^{-1}(F) \in (i,j) - \delta$ O(X). This shows that f is a (i,j)-

contra- δ -precontinuous function.

Definition 3.3:Let (X,T_1,T_2) be a bitopological space. The collection of all (i,j)- regular open sets forms a base for topology T^* . It is called the semi-regularization. If $T_1 = T_2 = T^*$ then (X,T_1,T_2) is called semi-regular bitopological space.

Theorem 3.4:Letf: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function and g: $X \rightarrow X \times Y$ the graph function of f, defined by g(x) = (x,f(x)) for every $x \in X$. If g is (i,j)-contra- δ -precontinuous then f is (i,j)-contra- δ -precontinuous.

Proof:Let U be a σ_{i} open set in Y, then X×U is a σ_{i} open set in X×Y. It follows from Theorem 3.1 that $f^{-1}(U) = g^{-1}(X \times U) \in (i,j)$. Thus f is (i,j)-contra- δ -precontinuous.

Lemma 3.3:Let A be a subset of abitopological space(X,T₁,T₂). Then A \in (i,j)- δ PO(X) iff A \cap U \in (i,j)- δ PO(X) for each (i,j)- regular open ((i,j)- δ -open) set U of X (Raychoudhuri and Mukherjee 1993[9]).

Definition 3.4:A function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (i,j)-contra-super-continuous for every $x \in X$ and each $F \in (i,j)-C(Y,f(x))$, there exists a (i,j)- regular open set U in X containing x such that $f(U) \subset F$ (Jafari and Noiri 1999[5]).

Theorem 3.5: If $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i,j)-contra-super-continuous, $g:X \rightarrow Y$ is (i,j)-contra- δ - precontinuous and Y is Urisohn, then $E = \{x \in X: f(x) = g(x)\}$ is (i,j)- δ -preclosed in X.

Proof: If $x \in X \setminus E$, then it follows that $f(x) \neq g(x)$. Since Y is Urisohn, there exist σ_{i} open set V and σ_{j} open set W such that $f(x) \in V$, $g(x) \in W$ and $iCl(V) \cap jCl(W) = \phi$. Since f is (i,j)-contra-supercontinuous and g is (i,j)-contra- δ -precontinuous, there exists a (i,j)- regular open set U containing x and there exists a (i,j)- δ -preopen set G containing x such that $f(U) \subset iCl(V)$ and $g(G) \subset jCl(W)$. Set $O = U \cap G$. By the previous Lemma, O is (i,j)- δ -preopen in X. Hence $f(O) \cap g(O) = \phi$ and it follows that $x \notin (i,j)-\delta$ PC(E). This shows that E is (i,j)- δ -preclosed in X. **Definition 3.5:**A filter base \land is said to be (i,j)- δ -preconvergent (resp. (i,j)-**C**-convergent) to a point x in X if for any U \in (i,j)- δ **PO**(X) containing x (resp. U \in (i,j)-C(X) containing x), there exists a B $\in \land$ such that B \subset U.

Theorem 3.6:Iff: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a (i,j)-contra- δ -precontinuous , then for each $x \in X$ and each filter base \wedge in X which is (i,j)- δ -preconvergent to x , the filter base $f(\wedge)$ is (i,j)-**C**-convergent to f(x).

Proof: Let $x \in X$ and \wedge be any filter base in X which is (i,j)- δ -preconvergent to x. Since f is (i,j)-contra- δ -precontinuous, then for any $V \in C(Y)$ containing f(x), there exists $U \in (i,j)$ - δ **PO**(X) containing x such that $f(U) \subset V$. Since \wedge is (i,j)- δ -preconvergent to x there exists a $B \in \wedge$ such that $B \subset U$. It follows that $f(B) \subset V$ and hence the filter base $f(\wedge)$ is (i,j)-**C**-convergent to f(x).

Theorem 3.7:Letf: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function and $x \in X$. If there exists $U \in (i,j)$ - $\delta O(X)$ such that $x \in U$ and the restriction of f to U is a (i,j)-contra- δ -precontinuous function at x, then f is (i,j)-contra- δ -precontinuous at x.

Proof: Suppose that $F \in C(Y)$ containing f(x). Since f| U is (i,j)-contra- δ -precontinuous at x , there

exists V \in (i,j)- δ PO(U) containing x such that f(V) = (f| $_U$)(V) \subset F . Since U \in (i,j)- δ O(X) containing x

, it follows from Lemma 3.6 that $V \in (i,j)$ - $\delta PO(X)$ containing x. This shows clearly that f is (i,j)-contra- δ -precontinuous at x.

Definition 3.6:A function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i,j)- δ -preirresolute if for each $x \in X$ and each $V \in (i,j)$ - δ **PO**(Y,f(x)), there exists a (i,j)- δ -preopen set U in X containing x such that $f(U) \subset V$.

Theorem 3.8:Letf: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \Omega_1, \Omega_2)$ be functions. Then the following properties hold :

(i) If f is (i,j)- δ -preirresolute and g is (i,j)-contra- δ -precontinuous , then gof:X \rightarrow Z is (i,j)-contra- δ -precontinuous .

(ii) If f is (i,j)-contra- δ -precontinuous and g is (i,j)-continuous , then gof:X \rightarrow Z is (i,j)-contra- δ -precontinuous .

Proof: (i) Let $x \in X$ and $W \in (Z,(gof)(x))$, since g is (i,j)-contra- δ -precontinuous, there exists a (i,j)- δ -preopen set V in Y containing f(x) such that $g(V) \subset W$. Since f is (i,j)- δ -preirresolute, there exists a (i,j)- δ -preopen set U in X containing x such that $f(U) \subset V$. This shows that $(gof)(U) \subset W$. Hence gof is (i,j)-contra- δ -precontinuous.

(ii) Let $x \in X$ and $W \in (Z,(gof)(x))$, since g is (i,j)-continuous, $V = g^{-1}(V)$ is (i,j)-closed. Since f is (i,j)-contra- δ -precontinuous, there exists a (i,j)- δ -preopen set U in X containing x such that f(U) $\subset V$. Therefore (gof)(U) $\subset W$. This shows that gof is (i,j)-contra- δ -precontinuous.

Definition 3.7:A function f:(X,T₁,T₂) \rightarrow (Y, σ_1, σ_2) is called (i,j)- δ -preopen if image of each (i,j)- δ -preopen set is (i,j)- δ -preopen.

Theorem 3.9:Iff: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a surjective (i,j)- δ -preopen function and g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \Omega_1, \Omega_2)$ is a function such that gof: $(X,T_1,T_2) \rightarrow (Z, \Omega_1, \Omega_2)$ is (i,j)-contra- δ -precontinuous, then g is (i,j)-contra- δ -precontinuous.

Proof: Let $x \in X$ and $y \in Y$ such that f(x) = y. Let $V \in C(Z, (gof)(x))$. Then there exists a (i, j)- δ -preopen set U in X containing x such that $g(f(U)) \subset V$. Since f is (i, j)- δ -preopen, f(U) is a (i, j)- δ -preopen set in Ycontaining y such that $g(f(U)) \subset V$. This shows that g is (i, j)-contra- δ -precontinuous.

Corollary 3.1: Letf:(X,T₁,T₂) \rightarrow (Y, σ_1, σ_2) be a surjective (i,j)- δ -preirresolute and (i,j)- δ -preopen function and let g:(Y, σ_1, σ_2) \rightarrow (Z, Ω_1, Ω_2) be a function . Then gof:X \rightarrow Z is (i,j)-contra- δ - precontinuousiff g is (i,j)-contra- δ -precontinuous .

Proof: It can be obtained from Theorem 3.18 and Theorem 3.20.

Definition 3.8:A function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i,j)-weakly contra- δ -precontinuous if for each $x \in X$ and each σ_i -closed set F, I = 1,2 of Ycontaining f(x) , \exists a (i,j)- δ -preopen set U in X containing x such that iInt(jClf(U)) \subset V.

Definition 3.9:A function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (i,j)- δ -pre-semiopenif the image of each (i,j)- δ -preopen set is (i,j)-semi-open.

Theorem 3.10: If a function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i,j)-weakly contra- δ -precontinuous and (i,j)- δ -pre-semi-open, then f is (i,j)-contra- δ -precontinuous.

Proof: Let $x \in X$ and F be a (i,j)-closed set containing f(x). Since f is (i,j)-weakly contra- δ -precontinuous, \exists a (i,j)- δ -preopen set U in X containing x such that $iInt(jCl(f(U))) \subset F$. Since f is (i,j)- δ -pre-semiopen, $f(U) \in (i,j)$ -SO(Y) and $f(U) \subset iCl(jInt(f(U))) \subset F$. This shows that f is (i,j)-contra- δ -precontinuous.

4. Several theorems in bitopological spaces

In this section, graphs and preservation theorems of (i,j)-contra- δ -precontinuity are studied.

Definition 4.1: A bitopological space (X,T_1,T_2) is said to be

(i) (i,j)-weakly Hausdorff(Soundararajan , 1971[10]) if each element of X is an intersection of (i,j)-regular closed sets.

(ii) (i,j)- δ -pre-Hausdorff if for each pair of distinct points x and y in X, $\exists U \in (i,j)-\delta PO(X,x)$ and $V \in (i,j)-\delta PO(X,y)$ such that $U \cap V = \phi$.

(iii) (i,j)- δ -pre- T_1 if for each pair of distinct points x and y in X, \exists (i,j)- δ -preopen set U and V

containing x and y respectively such that $y \notin U$ and $x \notin V$.

Here we have given the following examples:

Example 4.1: Consider the topologies on X = {a, b, c} be

 $T_1 = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ and $T_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$

and let A = {b}, B={b, c}, C={a, c}and D={a, b}be subsets of X, then we have A, B, C, D are (1, 2)-regular closed. Also we have $A \cap B=$ {b}, $B \cap C=$ {c} and $C \cap D=$ {a}. Therefore, X is (1, 2)-weakly Hausdorff. **Example 4.2:** Consider the topologies on X = {a, b, c} be

 $T_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $T_2 = \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}$. Then we have

(1, 2)- δ -preopen sets are X, ϕ , {a},{b},{a, b} and

(2, 1)- δ -preopen sets are X, ϕ , {c},{b, c},{a, c}. Hence (X, T₁, T₂) is a (i,j)- δ -pre-Hausdorff space. **Example 4.3:**Same as example 4.2.

Remark 4.1:Thefollowing implications are hold for a bitopological space (X, T_1, T_2) :

- (i) Pairwise $T_1 \Longrightarrow$ (i,j)- δ -pre- T_1
- (ii) Pairwise $T_2 \Longrightarrow$ (i,j)- δ -pre- T_2

These implications are not reversible.

Example 4.4:Let X = {a,b,c,d} with topologies T₁={X, ϕ , {a}, {b,c}}, T₂={X, ϕ , {b}, {c,d}}. Then (X,T₁,T₂) is (i,j)- δ -pre- T_2 but not T_2 .

Definition 4.2: For a function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the subset $\{(x,f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 4.3:The graph G(f) of a function $f:(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i,j)-contra- δ - preclosed if for each $(x,y) \in (X \times Y) \setminus G(f)$, \exists (i,j)- δ -preopen set U in X containing x and $V \in (x,y)$ such that $(U \times V) \cap G(f) = \phi$.

Lemma 4.1: The following properties are equivalent for the graph G(f) of a function f :

(i) G(f) is (i,j)-contra- δ -preclosed

(ii) for each $(x,y) \in (X \times Y) \setminus G(f)$, \exists (i,j)- δ -preopen set U in X containing x and $V \in (i,j)$ - (Y,y) such that $f(U) \cap V = \phi$.

Proof: Obvious.

Theorem 4.1: Iff: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i,j)- contra- δ -precontinuous and Y is Urysohn, G(f) is (i,j)-contra- δ -preclosed in X×Y.

Proof: Suppose that Y is Urysohn . Let $(x,y) \in (X \times Y) \setminus G(f)$. It follows that $f(x) \neq y$. Since Y is Urysohn $\exists \sigma_{i-}$ open set V and σ_{j-} open set W such that $f(x) \in V$, $y \in W$ and $iCl(V) \cap jCl(W) = \phi$. Since fis (i,j)- contra- δ -precontinuous $\exists (i,j) \cdot \delta$ -preopen set U in X containing x such that $f(U) \subset iCl(V)$. Therefore $f(U) \cap jCl(W) = \phi$ and G(f) is (i,j)-contra- δ -preclosed in X \times Y.

Theorem 4.2: Let $f:(X,T_1,T_2) \rightarrow (Y,\sigma_1,\sigma_2)$ have a (i,j)-contra- δ -preclosed graph. If f is injective, then X is (i,j)- δ -pre- T_1 .

Proof: Let x and y be any two distinct points of X. Then we have $(x,f(y)) \in (X \times Y) \setminus G(f)$. By Lemma 4.5, $\exists (i,j) \cdot \delta$ -preopen set U in X containing x and $F \in C(Y,f(y))$ such that $f(U) \cap F = \phi$. Hence $U \cap f^{-1}(F) = \phi$. Therefore we have $y \notin U$. This implies that X is $(i,j) \cdot \delta$ -pre- T_1 .

Definition 4.4: A bitopological space (X,T_1,T_2) is called $(i,j)-\delta$ -preconnected provided that X is not the union of two disjoint non-empty $(i,j)-\delta$ -preopen sets.

Theorem 4.3: Iff:(X,T₁,T₂) \rightarrow (Y, σ_1 , σ_2) is (i,j)- contra- δ -precontinuous surjection and X is (i,j)- δ - preconnected , then Y is (i,j)-connected .

Proof: Suppose Y is not (i,j)-connected space. There exist disjoint σ_{i-} open set V_1 and σ_{j-} open set V_2 such that $Y = V_1 \cup V_2$. Therefore V_1 and V_2 are (i,j)-clopen in Y. Since f is (i,j)- contra- δ -precontinuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are (i,j)- δ -preopen in X. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are non-empty disjoint and X = i $f^{-1}(V_1) \cup j f^{-1}(V_2)$. This shows that X is not (i,j)- δ -pre-connected, which is a contradiction. Hence Y is (i,j)-connected. **Definition 4.5:** A bitopological space (X,T_1,T_2) is called

(i) (i,j)- δ -pre-ultra-connectedif every two non-empty (i,j)- δ -preclosed subsets of X intersect ,

(ii) (i,j)-hyperconnected (Steen and Seebach 1970[11]) if everyi-open set is j- dense.

Here we have given the following examples:

Example 4.5:Consider the topologies on X = {a, b, c} be

 $T_1 = {X, \phi, {a}, {b}, {a, b}}and T_2 = {X, \phi, {c}, {a, c}, {b, c}}.$ Then we have

(1, 2)- δ -preclosed subsets are X, ϕ , {b, c},{a, c},{c} and we see that any two non-empty subsets are

intersect, hence (X, T₁, T₂) is (1, 2)- δ -pre-ultra-connected.

Example 4.6:Consider the topologies on X = {a, b, c} be

 $T_1 = \{X, \phi, \{b\}, \{b, c\}\}$ and $T_2 = \{X, \phi, \{b\}, \{a, b\}\}$. Then we have

 T_2 -Cl{b,c}= X and T_2 -Cl{b}= X.

Again, T_1 -Cl{a, b}= X and T_1 -Cl{b}= X.

Hence (X, T₁, T₂)is (i,j)-hyperconnected.

Theorem 4.4: If X is (i,j)- δ -pre-ultra-connected and f:(X,T₁,T₂) \rightarrow (Y, σ_1, σ_2) is (i,j)- contra- δ -precontinuous and surjective, then Y is (i,j)-hyperconnected.

Proof:Let us suppose that Y is not (i,j)-hyperconnected. Then $\exists \sigma_{i}$ open set V such that V is not jdense in Y. Then \exists disjoint non-empty σ_{i} open subset B_1 and σ_{j} open subset B_2 in Y, such that

 $B_1 = iInt(jCl(V))$ and $B_2 = Y (Cl(V))$. Since f is (i,j)- contra- δ -precontinuous and onto, by Theorem 3.2,

 $A_1 = f^{-1}(B_1)$ and $A_2 = f^{-1}(B_2)$ are disjoint non-empty (i,j)-preclosed subsets of X. By assumption the (i,j)- δ -pre-ultra-connectedness of X implies that A_1 and A_2 must intersect which

assumption, the (i,j)- δ -pre-ultra-connectedness of X implies that A_1 and A_2 must intersect, which is a contradiction. Hence Y is (i,j)-hyperconnected.

Theorem 4.5: Iff: $(X,T_1,T_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i,j)- contra- δ -precontinuous injection and Y is Urysoshn, then X is (i,j)- δ -pre-Hausdorff.

Proof:Suppose that Y is Urysohn. By the injectivity of f, it follows that $f(x) \neq f(y)$ for any distinct points $x,y \in X$. Since Y is Urysohn $\exists \sigma_{i-}$ open set V and σ_{j-} open set W such that $f(x) \in V$, $f(y) \in W$ and $iCl(V) \cap jCl(W) = \phi$. Since fis (i,j)- contra- δ -precontinuous , \exists (i,j)- δ -preopen set U and G in X containing x and y respectively such that $f(U) \subset iCl(V)$ and $f(G) \subset jCl(W)$. Hence $U \cap G = \phi$. This shows that X is (i,j)- δ -pre-Hausdorff.

Theorem 4.6: Iff: $(X,T_1,T_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (i,j)- contra- δ -precontinuous injection and Y is (i,j)- weakly Hausdorff then X is (i,j)- δ -pre- T_1 .

Proof: Suppose that Y is (i,j)-weakly Hausdorff. For any distinct points $x,y \in X$, \exists (i,j)-regular closed sets V, W in Y such that $f(x) \in V$, $f(y) \notin V$, $f(x) \notin W$ and $f(y) \in W$. Since f is (i,j)- contra- δ -precontinuous, by Theorem 3.1, $f^{-1}(V)$ and $f^{-1}(W)$ are (i,j)- δ -preopen subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is (i,j)- δ -pre- T_1 .

Definition 4.6:Abitopological space (X, T_1, T_2) is said to be

(i) (i,j)- δ -pre-compact (Dontchev 1996[1]) if every (i,j)- δ -preopen (resp. (i,j)-closed) cover of X has a finite subcover

(ii) (i,j)-countably δ -pre-compact ((i,j)-strongly countably S-closed) if every countable cover of X by (i,j)- δ -preopen (resp. (i,j)-closed) sets has a finite subcover.

(iii) (i,j)- δ -pre-Lindel o f ((i,j)-strongly S-Lindel o f) if every (i,j)- δ -preopen (resp. (i,j)-closed) cover of X has a countable subcover.

Theorem 4.7: The (i,j)- contra- δ -precontinuous image of (i,j)- δ -pre-compact((i,j)- δ -pre-

Lindel o f,(i,j)-countably δ -pre-compact) space are (i,j)-strongly S-closed (resp.(i,j)-strongly S-

Lindel *O* f, (i,j)-strongly countably S-closed).

Proof:Suppose that $f:(X,T_1,T_2) \to (Y, \sigma_1, \sigma_2)$ is (i,j)- contra- δ -precontinuous surjection. Let $V_{\alpha}: \alpha \in I$ be any closed cover of Y. Since f is (i,j)- contra- δ -precontinuous, then $\{f^{-1}(V_{\alpha}): \alpha \in I\}$ is a (i,j)- δ -preopen cover of X and hence $\exists a$ finite subset I_0 of I such that X = $\cup \{f^{-1}(V_{\alpha}): \alpha \in I_0\}$. Hence we have $Y = \bigcup V_{\alpha}: \alpha \in I_0$ and Y is (i,j)-strongly S-closed.

Similarly, the other proof can be obtained.

Definition 4.7:Abitopological space (X,T₁,T₂) is said to be

(i) (i,j)- δ -preclosed-compact if every (i,j)- δ -preclosed cover of X has a finite subcover

(ii) (i,j)-countably δ -preclosed-compact if every (i,j)-countable cover of X by (i,j)- δ -preclosed sets has a finite subcover.

(iii) (i,j)- δ -preclosed-Lindel o f if every cover of X by (i,j)- δ -preclosed set has a countable subcover.

Theorem 4.8: The (i,j)- contra- δ -precontinuous image of (i,j)- δ -preclosed-compact((i,j)- δ -...

preclosed-Lindel o f,(i,j)-countably δ -preclosed-compact) space are pairwise compact (resp. . .

pairwise Lindel ${\it O}\,$ f, pairwise countably compact).

Proof: Suppose that $f:(X,T_1,T_2) \to (Y, \sigma_1, \sigma_2)$ is (i,j)- contra- δ -precontinuous surjection. Let $V_{\alpha}: \alpha \in I$ be any open cover of Y. Since f is (i,j)- contra- δ -precontinuous, then $\{f^{-1}(V_{\alpha}): \alpha \in I\}$ is a (i,j)- δ -preclosed cover of X. Since X is (i,j)- δ -preclosed-compact, $\exists a$

finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Hence we have $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ and Y is pairwise compact. Similarly, the other proof can be obtained.

5. REFERENCES

- Dontchev, J. (1986): Contra-continuous functions and stongly S-closed spaces, Internat J. Math. Sci., 19, 303.
- [2] Dontchev, J. and Noiri, T. (1999): Contra-semicontinuous functions, Math. Pannon., 10,159.
- [3] Ekici, E. (2004): Almost Contra-precontinuous functions, Bull. Mlaysian Math. Sc. Soc.(Second series), 27,53.
- [4] El-Deeb,S.N.,Hasanein,I.A., Mashhour, A.S. and Noiri,T. (1983): On p-rgular spaces, Bull.Math. Soc. Sci. Math. R.S. Roumania,27(75),311.

- [5] Jafari,S. and Noiri,T. (1999): Contra-super-continuous functions, Ann.Univ.Sci. Budapest Eotvos Sect. Math., 42,27.
- [6] Jafari,S. and Noiri,T. (2002): On contra-precontinuous functions, Bull. Mlaysian Math. Sci. Soc., (2),25,115.
- [7] Levine, N.(1960): Stong continuity in topological spaces, Amer. Math. Monthly,67,269.
- [8] Noiri, T. (1984a): Super-continuity and some strong forms of continuity, Indian J.Pure Appl. Math., 15,241.
- [9] Raychaudhuri, S. and Mukherjee, N. (1993): On δ -almost continuity and δ -preopen sets, Bull. Inst. Math.Acad.Sinica,21,357.
- [10] Soundararajan, T. (1968): Weakly Hausdorff spaces and the cardinality of topological spaces, General Topology and its Relation to Modern Analysis and Algebra III, Proc. Conf. Kanpur, Academia, Prague 1971,301.
- [11] Steen, L.A. and Seebach Jr., J.A. (1970): Counterexamples in Topology, Holt, Rinerhart and Winston, New York.
- [12] Velicko, N.V. (1968): H-closed topological spaces, Amer. Math. Soc. Transl., 78,103.
- [13] G. K. Banerjee, On pairwise almost strongly θ -continuous mappings, Bull. Calcutta Math. Soc., 79(1987), 314-320.
- [14] S. Bose, Semi-open sets, semi-continuity and semi-open mapping in bitopological spaces, Bull. Calcutta Math. Soc., 73(1981), 237-246.
- [15] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3(1990), 25-29.
- [16] Ekici, E. and Noiri, T. (2006): Contra δ -precontinuous functions, Bull. Cal. Math. Soc., 98,(3) 275-284.