Vol.3.Issue.2.2015

http://www.bomsr.com

RESEARCH ARTICLE

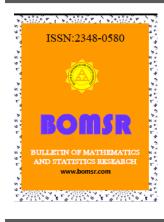
BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

$\Omega\textsc{-}\mathsf{FUZZY}$ SUBBIGROUP OF A BIGROUP

T. JUSTIN PRABU¹, K.ARJUNAN²

¹Department of Mathematics, Alagappa University Evening College, Paramakudi-Tamilnadu, India ²Department of Mathematics, H.H.The Rajahs College, Pudukkottai, Tamilnadu, India



ABSTRACT

In this paper, we made an attempt to study the algebraic nature of Ω -fuzzy subbigroup of a bigroup.

2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: Bigroup, fuzzy subset, fuzzy subbigroup, Ω -fuzzy subbigroup

©KY PUBLICATIONS

INTRODUCTION

In 1965, the fuzzy subset was introduced by L.A.Zadeh[10], after that several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups was introduced by Azriel Rosenfeld[2] and Gyu Ihn Chae, Young Sik Park and Chul Hwan Park [3] have introduced and defined a new algebraic structure called Ω -bifuzzy subsemigroup. After that A.Solairaju, R.Nagarajan[7, 8, 9] and K.Arjunan, Selvak Kumaraen [6] extend the theory to many algebraic structure. In this paper, we introduce the some theorems in Ω -fuzzy subbigroup of a bigroup. **1.PRELIMINARIES:**

1.1 Definition: A set $(G, +, \bullet)$ with two binary operations + and \bullet is called a bigroup if there exist two proper subsets G_1 and G_2 of G such that (i) $G = G_1 \cup G_2$ (ii) $(G_1, +)$ is a group (iii) (G_2, \bullet) is a group. **1.2 Definition:** A non-empty subset H of a bigroup $(G, +, \bullet)$ is called a sub-bigroup if H itself is a bigroup under the operations + and \bullet defined on G.

1.3 Definition: Let X be a non–empty set. A **fuzzy subset A** of X is a function A: $X \rightarrow [0, 1]$.

1.4 Definition: Let $G = (G_1 \cup G_2, +, \bullet)$ be a bigroup. Then a fuzzy set A of G is said to be a fuzzy subbigroup of G if there exist two fuzzy subsets A_1 of G_1 and A_2 of G_2 such that (i) $A = A_1 \cup A_2$ (ii) A_1 is a fuzzy subgroup of (G_1 , +) (iii) A_2 is a fuzzy subgroup of (G_2 , •).

1.5 Definition: Let $G = (G_1 \cup G_2, +, \bullet)$ be a bigroup and Ω be a nonempty set. The Ω -fuzzy subset A: $G \times \Omega \rightarrow [0, 1]$ of G is said to be a Ω -fuzzy subbigroup of G if there exist two Ω -fuzzy subsets A₁: $G_1 \times \Omega \rightarrow [0, 1]$ of G_1 and $A_2 : G_2 \times \Omega \rightarrow [0, 1]$ of G_2 such that (i) $A = A_1 \cup A_2$ (ii) A_1 is a Ω -fuzzy subgroup of (G_1 , +) (iii) A_2 is a Ω -fuzzy subgroup of (G_2 , •).

2. PROPERTIES:

2.1 Theorem: If $A = M \cup N$ is a Ω -fuzzy subbigroup of a bigroup $G = E \cup F$, then $\mu_M(-x, q) = \mu_M(x, q)$, $\mu_M(x, q) \le \mu_M(e, q)$, $\mu_N(x^{-1}, q) = \mu_N(x, q)$, $\mu_N(x, q) \le \mu_N(e', q)$ for all x, e in E and x, e' in F and q in Ω .

Proof: Let x, e in E and x, e' in F and q in Ω . Now $\mu_M(x, q) = \mu_M((-(-x)), q) \ge \mu_M(-x, q) \ge \mu_M(x, q)$. Therefore $\mu_M(-x, q) = \mu_M(x, q)$ for all x in E and q in Ω . And $\mu_M(e, q) = \mu_M(x-x, q) \ge \min \{ \mu_M(x, q), \mu_M(x, q) \} = \mu_M(x, q)$. Therefore $\mu_M(e, q) \ge \mu_M(x, q)$ for all x, e in E and q in Ω . Also $\mu_N(x, q) = \mu_N((x^{-1})^{-1}, q) \ge \mu_N(x^{-1}, q) \ge \mu_N(x, q)$. Therefore $\mu_N(x^{-1}, q) = \mu_N(x, q)$ for all x in F and q in Ω . And $\mu_N(e', q) = \mu_N(xx^{-1}, q) \ge \mu_N(x, q)$, $\mu_N(x^{-1}, q) \ge \mu_N(x, q)$. Therefore $\mu_N(x^{-1}, q) = \mu_N(x, q)$ for all x in F and q in Ω . And $\mu_N(e', q) = \mu_N(xx^{-1}, q) \ge \min \{ \mu_N(x, q), \mu_N(x^{-1}, q) \} = \mu_N(x, q)$. Therefore $\mu_N(e', q) \ge \mu_N(x, q)$ for all x, e' in F and q in Ω .

2.2 Theorem: If $A = M \cup N$ is a Ω -fuzzy subbigroup of a bigroup $G = E \cup F$, then (i) $\mu_M(x-y, q) = \mu_M(e, q)$ gives $\mu_M(x, q) = \mu_M(y, q)$ for all x, y and e in E and q in Ω

(ii) $\mu_N(xy^{-1}, q) = \mu_N(e', q)$ gives $\mu_N(x, q) = \mu_N(y, q)$ for all x, y and e' in F and q in Ω .

Proof: (i) Let x, y and e in E and q in Ω . Then $\mu_M(x, q) = \mu_M(x-y+y, q) \ge \min \{ \mu_M(x-y, q), \mu_M(y, q) \} = \min \{ \mu_M(q, q), \mu_M(q, q) \} = \mu_M(q, q) = \mu_M(q, q)$ for all x and y in E and q in Ω . (ii) Let x, y and e' in F and q in Ω . Then $\mu_N(x, q) = \mu_N(xy^{-1}y, q) \ge \min \{ \mu_N(xy^{-1}, q), \mu_N(q, q) \} = \min \{ \mu_N(q, q), \mu_N(q, q) \} = \min \{ \mu_N(q, q), \mu_N(q, q) \} = \mu_N(q, q) = \mu_N(q, q) \ge \min \{ \mu_N(q), \mu_N(q, q) \} = \min \{ \mu_N(q, q), \mu_N(q, q) \} = \mu_N(q, q) = \mu_N(q, q) \ge \min \{ \mu_N(q), \mu_N(q, q) \} = \min \{ \mu_N(q, q), \mu_N(q, q) \} = \mu_N(q, q)$

2.3 Theorem: If $A = M \cup N$ is a Ω -fuzzy subbigroup of a bigroup $G = E \cup F$, then

(i) H_1 = { x / x \in E and μ_M (x, q) = 1 } is either empty or a subgroup of E.

(ii) $H_2 = \{ x / x \in F \text{ and } \mu_N(x, q) = 1 \}$ is either empty or a subgroup of F.

(iii) K = $H_1 \cup H_2$ is either empty or a subbigroup of G.

Proof: If no element satisfies this condition, then H_1 and H_2 are empty. Also $K = H_1 \cup H_2$ is empty. (i) If x and y in H_1 , then $\mu_M(x-y, q) \ge \min \{ \mu_M(x, q), \mu_M(y, q) \} \ge \min \{ 1, 1 \} = 1$. Therefore $\mu_M(x-y, q) = 1$. We get x-y in H_1 . Hence H_1 is a subgroup of G_1 . (ii) If x and y in H_2 , then $\mu_N(xy^{-1}, q) \ge \min \{ \mu_N(x, q), \mu_N(y, q) \} = \min \{ 1, 1 \} = 1$. Therefore $\mu_N(xy^{-1}, q) = 1$. We get xy^{-1} in H_2 . Hence H_2 is a subgroup of G_2 . (iii) From (i) and (ii) we get $K = H_1 \cup H_2$ is a subbigroup of G.

2.4 Theorem: If $A = M \cup N$ is a Ω -fuzzy subbigroup of a bigroup $G = E \cup F$, then

(i) H_1 = { x / x \in E and μ_M (x, q) = μ_M (e, q) } is a subgroup of E

(ii) $H_2 = \{x \mid x \in F \text{ and } \mu_N(x, q) = \mu_N(e', q)\}$ is a subgroup of F

(iii) $K = H_1 \cup H_2$ is a subbigroup of G.

Proof: (i) Clearly e in H₁ so H₁ is a non empty. Let x and y be in H₁. Then $\mu_M(x-y, q) \ge \min \{ \mu_M(x, q), \mu_M(y, q) \}$ = min $\{ \mu_M(e, q), \mu_M(e, q) \}$ = $\mu_M(e, q)$. Therefore $\mu_M(x-y, q) \ge \mu_M(e, q)$ for all x and y in H₁ and q in Ω . We get $\mu_M(x-y, q) = \mu_M(e, q)$ for all x and y in H₁ and q in Ω . Therefore x–y in H₁. Hence H₁ is a subgroup of E. (ii) Clearly e' in H₂ so H₂ is a non empty. Let x and y be in H₂. Then $\mu_N(xy^{-1}, q) \ge \min \{ \mu_N(x, q), \mu_N(y, q) \}$ = min $\{ \mu_N(e', q), \mu_N(e', q) \} = \mu_N(e', q)$. Therefore $\mu_N(xy^{-1}, q) \ge \mu_N(e', q)$ for all x and y in H₂ and q in Ω . We get $\mu_N(xy^{-1}, q) = \mu_N(e', q)$ for all x and y in H₂ and q in Ω . Therefore xy^{-1} in H₂. Hence H₂ is a subgroup of F. (iii) From (i) and (ii) we get K = H₁ \cup H₂ is a subbigroup of G.

2.5 Theorem: Let $A = M \cup N$ be a Ω -fuzzy subbigroup of a bigroup $G = E \cup F$.

(i) If $\mu_M(x-y, q) = 1$, then $\mu_M(x, q) = \mu_M(y, q)$ for all x and y in E and q in Ω .

(ii) If $\mu_N(xy^{-1}, q) = 1$, then $\mu_N(x, q) = \mu_N(y, q)$ for all x and y in F and q in Ω .

Proof: (i) Let x and y belongs to E and q in Ω . Then $\mu_M(x, q) = \mu_M(x-y+y, q) \ge \min \{\mu_M(x-y, q), \mu_M(y, q)\}$

 $= \min \{ 1, \mu_M(y, q) \} = \mu_M(y, q) = \mu_M(-y, q) = \mu_M(-x + x - y, q) \ge \min \{ \mu_M(-x, q), \mu_M(x - y, q) \} = \min \{ 1, \mu_M(y, q) \} = \max \{ 1, \mu_$

{ $\mu_M(-x, q), 1$ } = $\mu_M(-x, q) = \mu_M(x, q)$. Therefore $\mu_M(x, q) = \mu_M(y, q)$ for all x and y in E and q in Ω .

(ii) Let x and y belongs to F and q in Ω . Then $\mu_N(x, q) = \mu_N(xy^{-1}y, q) \ge \min \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(y, q) \} \} = \max \{ \mu_N(xy^{-1}, q), \mu_N(xy^{$

 $1, \mu_{N}(y, q) \} = \mu_{N}(y, q) = \mu_{N}(y^{-1}, q) = \mu_{N}(x^{-1}xy^{-1}, q) \geq \min\{ \mu_{N}(x^{-1}, q), \mu_{N}(xy^{-1}, q) \} = \min\{ \mu_{N}(x^{-1}, q), 1 \}$

= $\mu_N(x^{-1}, q) = \mu_N(x, q)$. Therefore $\mu_N(x, q) = \mu_N(y, q)$ for all x and y in F and q in Ω .

2.6 Theorem: If A= M \cup N is a Ω -fuzzy subbigroup of a bigroup G = E \cup F, then

(i) $\mu_M(x+y, q) = \min\{ \mu_M(x, q), \mu_M(y, q) \}$ for each x and y in E and q in Ω with $\mu_M(x, q) \neq \mu_M(y, q)$ (ii) $\mu_N(xy, q) = \min\{ \mu_N(x, q), \mu_N(y, q) \}$ for each x and y in F and q in Ω with $\mu_N(x, q) \neq \mu_N(y, q)$.

Proof: (i) Let x and y belongs to E and q in Ω . Assume that $\mu_M(x, q) > \mu_M(y, q)$, then $\mu_M(y, q) = \mu_M(-x+x+y, q) \ge \min\{\mu_M(-x, q), \mu_M(x+y, q)\} \ge \min\{\mu_M(x, q), \mu_M(x+y, q)\} = \mu_M(x+y, q) \ge \min\{\mu_M(x, q), \mu_M(y, q)\} = \mu_M(y, q)$. Therefore $\mu_M(x+y, q) = \mu_M(y, q) = \min\{\mu_M(x, q), \mu_M(y, q)\}$ for x and y in E and q in Ω . (ii) Let x and y belongs to F and q in Ω . Assume that $\mu_N(x, q) > \mu_N(y, q)$, then $\mu_N(y, q) = \mu_N(x^{-1}xy, q) \ge \min\{\mu_N(x^{-1}, q), \mu_N(xy, q)\} \ge \min\{\mu_N(x, q), \mu_N(xy, q)\} = \mu_N(xy, q) \ge \min\{\mu_N(x, q), \mu_N(y, q)\} = \mu_N(y, q)$. Therefore $\mu_N(xy, q) = \mu_N(y, q) = \min\{\mu_N(x, q), \mu_N(y, q)\} = \min\{\mu_N(x, q), \mu_N(y, q)\} = \mu_N(y, q)$.

2.7 Theorem: If $A = M \cup N$ and $B = O \cup P$ are two Ω -fuzzy subbigroups of a bigroup $G = E \cup F$, then their intersection $A \cap B$ is a Ω -fuzzy subbigroup of G.

Proof: Let $A = M \cup N = \{ \langle (x, q), \mu_A(x, q) \rangle / x \in G \text{ and } q \in \Omega \}$ where $M = \{ \langle (x, q), \mu_M(x, q) \rangle / x \in E \text{ and } q \in \Omega \}$ and $N = \{ \langle (x, q), \mu_N(x, q) \rangle / x \in F \text{ and } q \in \Omega \}$ and $B = O \cup P = \{ \langle (x, q), \mu_B(x, q) \rangle / x \in G \text{ and } q \in \Omega \}$ where $O = \{ \langle (x, q), \mu_O(x, q) \rangle / x \in E \text{ and } q \in \Omega \}$ and $P = \{ \langle (x, q), \mu_P(x, q) \rangle / x \in F \text{ and } q \in \Omega \}$. Let $C = A \cap B = R \cup S$ where $C = \{ \langle (x, q), \mu_C(x, q) \rangle / x \in G \text{ and } q \in \Omega \}$, $R = M \cap O = \{ \langle (x, q), \mu_R(x, q) \rangle / x \in E \text{ and } q \in \Omega \}$ and $S = N \cap P = \{ \langle (x, q), \mu_S(x, q) \rangle / x \in F \text{ and } q \in \Omega \}$. Let x and y belong to E and q in Ω . Then $\mu_R(x-y, q) = \min\{\mu_M(x-y, q), \mu_O(x-y, q)\} \ge \min\{\min\{\mu_M(x, q), \mu_M(y, q), \mu_N(y, q)\}, \min\{\mu_O(x, q), \mu_O(y, q)\} \ge \min\{\min\{\mu_R(x, q), \mu_R(y, q), \mu_N(y, q)\}, \min\{\mu_R(x, q), \mu_R(y, q)\}$ for all x and y in E and q in Ω . Let x and y belong to F and q in Ω . Then $\mu_S(xy^{-1}, q)$, $\mu_P(x, q)$ if $min\{\mu_N(y, q), \mu_P(y, q)\} = \min\{min\{\mu_N(x, q), \mu_R(y, q), \mu_P(x, q)\} \ge \min\{min\{\mu_N(x, q), \mu_N(y, q)\}, \min\{\mu_N(x, q), \mu_P(y, q)\} \ge \min\{min\{\mu_N(x, q), \mu_S(y, q)\}, \min\{\mu_S(x, q), \mu_S(y, q)\}$. Therefore $\mu_S(xy^{-1}, q) \ge \min\{min\{\mu_N(x, q), \mu_S(y, q)\}$ for all x and y in F and $q \in \Omega$.

2.8 Theorem: The intersection of a family of Ω -fuzzy subbigroups of a bigroup G is a Ω -fuzzy subbigroup of G.

Proof: It is trivial.

2.9 Theorem: If $A = M \cup N$ is a Ω -fuzzy subbigroup of a bigroup $G = E \cup F$, then (i) $\mu_M(x+y, q) = \mu_M(y+x, q)$ if and only if $\mu_M(x, q) = \mu_M(-y+x+y, q)$ for all x and y in E and q in Ω (ii) $\mu_N(xy, q) = \mu_N(yx, q)$ if and only if $\mu_N(x, q) = \mu_N(y^{-1}xy, q)$ for all x and y in F and q in Ω .

Proof: (i) Let x and y be in E and q in Ω . Assume that $\mu_M(x+y, q) = \mu_M(y+x, q)$, then $\mu_M(-y+x+y, q) = \mu_M(-y+x+y, q) = \mu_M(-y+x+y, q) = \mu_M(e_1+x, q) = \mu_M(x, q)$. Therefore $\mu_M(x, q) = \mu_M(-y+x+y, q)$ for all x and y in E and q in Ω . Conversely, assume that $\mu_M(x, q) = \mu_M(-y+x+y, q)$, then $\mu_M(x+y, q) = \mu_M(x+y-x+x, q) = \mu_M(y+x, q)$. Therefore $\mu_M(x+y, q) = \mu_M(y+x, q)$ for all x and y in E and q in Ω . (ii) Let x and y be in F and q in Ω . Assume that $\mu_N(x+y, q) = \mu_N(y+x, q)$, then $\mu_N(y^{-1}xy, q) = \mu_N(y^{-1}xy, q) = \mu_N(x, q)$. Therefore $\mu_N(x, q) = \mu_N(y^{-1}xy, q)$ for all x and y in F and q in Ω . Conversely, assume that $\mu_N(x, q) = \mu_N(y^{-1}xy, q)$, then $\mu_N(xy, q) = \mu_N(yxxx^{-1}, q) = \mu_N(yx, q)$. Therefore $\mu_N(xy, q) = \mu_N(yx, q)$ for all x and y in F and q in Ω .

REFERENCE

- [1] Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124 -130 (1979)
- [2] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
- [3] Gyu Ihn Chae, Young Sik Park and Chul Hwan Park, Bifuzzy bi-ideals with operators in semigroups, International Mathematical Forum, 2, no. 59, 2927–2935 (2007).
- [4] Palaniappan. N & K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64.
- [5] Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
- [6] Selvak Kumaraen.N and K. Arjunan, A study on anti (Q, L)-fuzzy subhemiring of a hemiring, International journal of computational and applied mathematics, Vol. 8, Num. 3, 267-274 (2013).
- [7] Solairaju.A and Nagarajan.R, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics, Volume 4, Number 1 (2009) pp. 23-29.
- [8] Solairaju.A and Nagarajan.R, Lattice Valued Q-fuzzy left R-submodules of near rings with respect to T-norms, Advances in fuzzy mathematics, Vol 4, Num. 2, 137-145(2009).
- [9] Solairaju.A and Nagarajan.R, "Q-Fuzzy left R-subgroups of near rings with respect to tnorms". Antarctica Journal of Mathematics, 5(2008) 1-2, 59-63.
- [10] Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965)