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ABSTRACT 

In the present paper , a subclass of analytic and multivalent function is 

defined by Al-Oboudi Operator and we have obtained among other 

results like, Coefficient stimates , Growth and distortion theorem , 

external properties for the classes  and 
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1. INTRODUCTION 

Let S denote the class of function of the form 

 
That are analytic and multivalent in the disk |z| < 1 for 0 ≤ <1,S*() and K denotes the 

subfamily of S consisting of the functions Starlike of order  and Convex of order respectively . 

 

The subfamily T of S consists of functions of the form 

  
Silverman [6] investigated function in the classes T*() = TS*() and C()=T  K() 

Let n N and ≥ 0 denote by  the Al-Oboudi Operator [3] defined by 
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, 

 

 
then 

 

In this paper using the operator  we introduce the classes ) and 

 and obtained coefficient estimates for these classes.When the functions have 

negative coefficient. We also obtain growth, and distortion theorems, closure theorem for function 

in these classes . 

Deffinition 2 : We say that a function f(z)  T is in the class  
 if and only if 

 

 
Definition 3 : A function f f(z)  T is said to belong to the class  

if and only if 
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If we replace  = 0 ,  = 1 we obtain the corresponding results of S.M.Khairnar and Meena More [4]. 

If we replace  = 0 ,  = 1 and  = 1 we obtain the results of Aghalary and Kulkarni [2] and Silvarman 

and Silvia [7] . If we replace  = 0 ,  = 1 and  = 1 we obtain the corresponding results of [9] . 

2. MAIN RESULTS COEFFICIENT ESTIMATES 

Theorem 2.1 : A function 

 

 

 

 
Proof : Suppose 

 

 
We have 

 
With the provision, 
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Hence 

 
Now we prove the converse result 

Let 

 

 

 

 

 

We close value of z on real axis such that is real and clearing the denominator  of above 

expression and allowing z→1 through real values . 

We obtain 
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Then 

 
and equality holds for 

 
Corollary 2.1 :  

 
Then We get , 

 
and equality holds for 

 
This corollary is due to [11] . 

Corollary 2.2:  

 
Then We get , 

 

 
and equality holds for 

 
This corollary is due to [4] . 

Corollary 2.3 :  

 
Then We get , 

 
and equality holds for 
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This corollary is due to [2] and [7]. 

Corollary 2.4 :  

 

 
Then We get , 

 
and equality holds for 

 
This corollary is due to [9]. 
Corollary 2.5: 

 

 
Then We get , 

 

 

 
and equality holds for 

 
Theorem 2.2 : 

 
if and only if 

  
Proof : The proof of this theorem is analogous to that of theorem 1 , because a function 

 if and only if  So it is enough 

that replacing  with + 1 in theorem 2.1. 

Remark 2.2 :  
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Corollary 2.6 : 

 
Then We get , 

 
and equality holds for 

 
This corollary is due to [11] . 

Corollary 2.7:  

  
Then We get , 

 

 
This corollary is due to [4] . 

Corollary 2.8: 

 
Then We get , 

 
and equality holds for 

 
This corollary is due to [2] and [7] . 

Corollary 2.9 : 

 
Then We get , 

 
and equality holds for 

 
 

This corollary is due to [9]. 

 

1 
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Corollary 2.10 : 

 
Then We get , 

 

 

 
and equality holds for 

 
3 . GROWTH AND DISTORTION THEOREM 

Theorem 3.1 :  

 
Then 

 
equality holds for 

 
Proof : By theorem 2.1 We have 

if and only if 

  
Let 

 

if and only if 
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similarly 

 
so 

 

 

 

 

 

 

 
By using the above value in equation [2.4] We get 

Hence the result 
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Corollary 3.1 : 

 
Then We get 

 
and equality holds 

 
This corollary is due to [4] . 

Corollary 3.2 : 

 
then we get  

 
and equality holds 

 
This corollary is due to [2] and [7] . 

Corollary 3.3 : 

 
then we get  

 
and equality holds for 

 
 

This corollary is due to [9]. 

Corollary 3.4 : 

 
then  
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Proof : The proof of this theorem is analogous to that of theorem 3.1 , because a function 

if and if only  So 

it is enough that replacing with + 1 in theorem 3.1. 

Corollary 3.4 :  

then we get  

 
and equality holds for 

 
This corollary is due to [4] . 

Corollary 3.5 : 

 
Then We get 

 
and equality holds for 

 
This corollary is due to [2] and [7] . 

Corollary 3.6 : 

 
Then We get 

 
and equality holds for 

 
This corollary is due to [9] 
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Theorem 3.3:  

Then 

 
Proof : By theorem 3.1 We have 

 

 
In view of theorem 3.1 We have 

 

  
Similarly 

 
By substituting the value of t in the above inequality We get 

 
Corollary 3.7 : 

 
Then We get 

 
This corollary is due to [4]. 

Corollary 3.8 : 
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Then We get 

 
 

This corollary is due to [2] and [7]. 

Corollary 3.9 :  

Then We get 

 
This corollary is due to [9] 

Theorem 3.4 : 

 
Then 

 

 
Corollary 3.10 : 

 
Then We get 

 
This corollary is due to [4]. 

Corollary 3.11 : 

 
Then We get 
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This corollary is due to [2] and [7] 

Corollary 3.12 : 

 
Then We get 

 
This corollary is due to [9]. 

4 . CLOSURE THEOREM 

Theorem 4.1 :  

 and 

 

 

 

 
Proof : Let 

 
We have 

 

 
Then 

 

 

 
Conversely suppose 
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Then Remark of theorem 2.1 gives us 

 
we take 

 
and 

 
then  

 

Corollary 4.1 :  

 
then 

 
If and only if f(z) can be expressed in the form 

 

 
This corollary is due to [4]. 

Corollary 4.2 : If f1(z) = zp
 and 

 
Then 

 
If and only if f(z) can be expressed in the form 

 
for (n + p − 1) = 1,2,3,4,... 

This corollary is due to [2] and [7]. 

Corollary 4.3 : If f1(z) = zp and 

 
then 

 
If and only if f(z) can be expressed in the form 
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for (n + p − 1) = 1,2,3,4,... 

This corollary is due to [9]. 

Corollary 4.4 : If f1(z) = zp and 

 

 

 
Then 

 
If and only if f(z) can be expressed in the form 

 
for (n + p − 1) = 1,2,3,4,... 

5 . CONCLUSIONS 

 In this paper making use Al-Oboudi Operator two new subclasses of analytic and multivalent 

functions are introduced for the functions with negative coefficient . Many subclasses which are 

already studied by various researchers are obtained as special cases of our two new subclasses . We 

have obtained varies properties such as coefficient estimates , growth distortion theorems ,Further 

new subclasses may be possible from the two classes introduced in this paper . 
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