

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON $\theta\text{-}CLOSEDNESS$ AND H-CLOSEDNESS

MALLIKA MITRA^{*1}, SUBRATA MAJUMDAR²

Assistant professor, Dept. of Natural Science, Varendra University, Rajshahi, Bangladesh, UGC Professor, Dept of Mathematics, University of Rajshahi, Bangladesh *E-mail: mitramallika02@yahoo.com

ABSTRACT

In this paper the set of all θ -open sets in a topological space (X, \mathfrak{T}) has been shown to form a topology \mathfrak{T}_{θ} . It has been proved that \mathfrak{T}_{θ} is contained in \mathfrak{T}

. \mathfrak{T}_{a} -compactness and \mathfrak{T}_{a} -connectedness of subsets of X have been studied.

It has been shown that the class of all H-continua is closed under formation of sum, product and continuous image. Relations among

connectedness, θ -connectedness and \mathfrak{T}_{θ} -connectedness have been discussed.

AMS Classification : 54D10, 54D15, 54D30, 54B10.

Keywords : \mathfrak{I}_{θ} -compact, \mathfrak{I}_{a} -connected, H-closed, H-continuum, Sum.

©KY PUBLICATIONS

1.INTRODUCTION

The concept of a θ -open set was introduced by $Veli\breve{c}ko$ [5].We have established the arbitrary union and finite intersection property of θ -open sets. Clay and Joseph [3] introduced the notion of θ -connectivity as generalization of ordinary connectivity and established some properties of θ - connectedness. Ganguly and Bandayopadhayay [2] defined an H-continuum as a generalization of continuum by using a generalized concept of compactness called H-closedness. Sums of topological spaces were studied by Majumdar and Asaduzzaman [4]. We show that connectivity implies θ -connectivity and then \mathfrak{T}_{θ} - counnectivity. Here it has been shown that the sums of two θ -connected spaces is θ -connected. A compact set is also \mathfrak{T}_{θ} -compact. We have also proved that if X and Y are H-continua, then so is X×Y, if moreover X \cap Y \neq Φ then X \cap Y and X+Y (when it exists) are H-continuum need be an H-continuum; however the image of an H-continuum under a map which is both continuous and open is an H-continuum. In particular, every identification space of an H-continuum is an H-continuum.

2. \mathfrak{I}_{θ} -Topology.

In this section we shall prove that the θ -open sets in a topological space (X, \Im) form a topology \mathfrak{T}_{θ} on X. We shall also prove a few results on (X, \mathfrak{T}_{θ}).

Let X be a topological space. We recall [1] that for a subset A of X the θ -closure of A, written cl_{θ} (A), is defined as cl_{θ} (A)= {x \in X | \forall open sets G in X with $x \in G$, $\overline{G} \cap A \neq \Phi$ }.

A is said to be θ -closed if A=cl_{θ} (A). A is called θ -open if X-A is θ -closed. Thus, A is θ -open \Leftrightarrow

 $[\forall x \in X | (\forall open sets G in X with x \in G, G \cap (X-A) \neq \Phi) \Leftrightarrow x \in X - A].$

Lemma 2.1: Union of θ -open sets is θ -open.

Proof:

Let $\{V_{\alpha}\}$ be a non-empty collection of θ -open sets in X.Let W_0 be an open set in X with $x \in W$ such that

Then $\overline{W_0} \cap (X - \bigcup_{\alpha} V_{\alpha}) \neq \Phi$ and so, $\cap (\overline{W_0} \cap (X - \bigcup_{\alpha} V_{\alpha})) \neq \Phi$.

Hence, $\overline{W_0} \cap (X - \bigcup_{\alpha} V_{\alpha}) \neq \Phi$

Thus $x \in W_0 \& \overline{W_0} \cap (X - V_\alpha) \neq \Phi$, for each α .

By Lemma-2.1 $x \notin V_{\alpha}$, for each α , since each V_{α} is θ -open.

Therefore $x \notin \bigcup V_{\alpha}$ and so, (1) implies that $\bigcup V_{\alpha}$ is θ -open in X.

Lemma-2.2: The intersection of a finite number of θ -open sets is θ -open.

Proof:

Let V_1 , V_2 ,..., V_n be θ -open sets in X.

Then let x∈X and W be an open set in X with x∈W and

$$W \cap (X - (V_1 \cap V_2 \cap \dots \cap V_n) \neq \Phi$$

$$\Rightarrow \overline{W} \cap (\sqrt[n]{(X-V_i)}) \neq \Phi$$

$$\rightarrow W \cap (\bigcup_{i=1}^{i} (X - V))$$

 $\Rightarrow \overline{W} \cap (X-V_i) \neq \Phi$ for at least one $1 \leq i \leq n$

 \Rightarrow x \notin V_i for at least one $1 \le i \le n$ [since V₁, V_2 , ..., V_n are θ -open in X]

$$\Rightarrow \mathsf{x} \notin \mathsf{V}_1 \cap V_2 \cap \dots \cap V_n$$

 \Rightarrow V₁ \cap V₂ \cap ... \cap V_n is θ -open in X.

Since obviously both X and Φ are θ -closed, both are θ -open as well. Lemma 2.1 & Lemma 2.2 therefore yield:

Theorem 2.1: The θ -open sets in X form a topology on X.

If \Im is a topology on X, we denote by \Im_{θ} the topology on X consisting of the θ -open sets.

Theorem-2.2: $\mathfrak{I}_{\theta} \subseteq \mathfrak{I}$

Proof:

Let A be a subsets of X.

Then, $A \subseteq A \subseteq cl_{\theta} A$. Hence, A is θ -closed $\Rightarrow cl_{\theta} A=A$

$$\Rightarrow A = A$$

 \Rightarrow A is closed.

Hence, $V \in \mathfrak{I}_{\theta} \Longrightarrow X$ -V is θ -closed $\Rightarrow X$ -V is closed $\Rightarrow V \in \mathfrak{I}$.

Remark 2.1: It is easily seen that if X and Y are two topological spaces and $G \subseteq X$, $H \subseteq Y$, then $G \times H$

$=\overline{G} \times H$

Theorem-2.3: Product of two θ -closed sets in two different topological spaces is θ -closed in their product space.

Proof:

Let (X, \mathfrak{T}_1) and (X, \mathfrak{T}_2) be two Hausdorff spaces and let A and B be two θ -closed subsets of X and Y respectively.

Since A and B are θ -closed A= cl_{θ} A, B= cl_{θ} A,

i. e.,
$$A = \{x \in X | \forall \text{ open sets } G \text{ in } X \text{ with } x \in G, \overline{G} \cap A \neq \Phi \}$$

and $B = \{y \in Y | \forall \text{ open sets } H \text{ in } Y \text{ with } y \in H, \overline{H} \cap B \neq \Phi \}$(2)

Let $(x, y) \in cl_{\theta} (A \times B)$. Then $(x, y) \in X \times Y$ is such that for each open set W in X × Y with $(x, y) \in W$, $W \cap (A \times B) \neq \Phi$. In particular, for each open sets G in X with $x \in G$ and for each open set H in Y such that $(x, y) \in G \times H$ and $\overline{G \times H} \cap (A \times B) \neq \Phi$, i.e., $(\overline{G} \times \overline{H}) \cap (A \times B) \neq \Phi$ by Remark 2.1. (2) implies, $(x, y) \in A \times B$. So, $A \times B = cl_{\theta} (A \times B)$, *i.e.*, $A \times B$ is θ -closed.

Corollary -2.1: Product of two θ -open subsets in two different topological spaces is θ -open in their product space.

Proof:

Let (X, \mathfrak{I}_1) and (X, \mathfrak{I}_2) be two topological spaces and let A and B be two θ -open subsets of X and Y respectively. Then X-A and Y-B are θ -closed in X and Y respectively. Now $(X \times Y)$ - $(A \times B)$ =[$(X - A) \times Y$] \cup [$X \times (Y - B)$].

Since X-A and Yare θ -closed,(X-A) ×Y is θ -closed. Similarly, X×(Y-B) is also θ -closed. Hence, (A× *B*) is θ -open in X×Y.

Corollary-2.2: If \mathfrak{T} and $\overline{\mathfrak{T}}$ denote the product topologies on $(X, \mathfrak{T}^1) \times (Y, \mathfrak{T}^2)$ and $(X, \mathfrak{T}^1_{\theta}) \times (Y, \mathfrak{T}^2_{\theta})$

respectively then $\overline{\mathfrak{I}} \subseteq \mathfrak{I}_{\theta}$ or briefly, $(\mathfrak{I}_{\theta}^{1} \times \mathfrak{I}_{\theta}^{2}) \subseteq (\mathfrak{I}^{1} \times \mathfrak{I}^{2})_{\theta}$.

Defination-2.1. \mathfrak{I}_{θ} -compactness

We call a subset A of X \mathfrak{T}_{θ} -compact (\mathfrak{T}_{θ} -connected) if A is compact (connected) in (X, \mathfrak{T}_{θ}).

Since $\mathfrak{I}_{\theta} \subseteq \mathfrak{I}$, X is compact \Rightarrow X is \mathfrak{I}_{θ} -compact.

3.θ- connectedness

We recollect the definition of θ - connectedness defined in [2].

A pair (P, Q) of non-empty subsets of X is called **\theta-separation** [2] relative to X if (P $\cap cl_{\theta}Q$) $\cup (Q \cap cl_{\theta}P) = \Phi$.

A subset A of X is called **\theta-connected** [2] if A \neq P \cup Q, where (P, Q) is a θ -separation relative to X.

Here we prove some results on θ -connectedness and \mathfrak{T}_{θ} -connectedness.

Theorem-3.1: X is connected \Rightarrow X is θ -connected \Rightarrow X is \mathfrak{I}_{θ} -connected.

Proof:

Suppose X is connected. If possible, let X be θ -disconnected. Then X = PUQ, where P, Q are nonempty and P $\cap cl_{\theta} Q = \Phi$. Clearly P $\cap Q = \Phi$.

Let $x \in P$. Then $x \notin cl_{\theta} Q$, and so, there exists an open set G in X such that $x \in G$ and $Q \cap G = \Phi$. Then

 $\overline{G} \subseteq X$ -Q=P and so G \subseteq P. Hence P is open.

Similarly, we can show that Q is open. Therefore X is disconnected. The contradiction proves that X is θ -connected.

Next let X be θ -connected. Suppose X is not \Im_{θ} -connected. Then, X = PUQ for disjoint non-empty θ -

open sets P and Q. Since X is θ -connected, either P $\cap cl_{\theta} Q \neq \Phi$ or Q $\cap cl_{\theta} P \neq \Phi$. i.e., either $cl_{\theta} Q \not\subset d$

X-P=Q or $cl_{\theta} P \not\subset X-Q=P$

i.e., either Q is not θ -closed or P is not θ -closed.

But this is a contradiction to the hypothesis. Hence X is \mathfrak{T}_{θ} -connected.

Comment 3.1: While connectedness implies θ -connectedness, the converse is not true. This was proved by Clay and Joseph [3]. They provided an example of a θ -connected space which is not connected. Regularity of a space of course compels the two properties to coincide. We give below the above –mentioned example of a θ -connected space which is not connected.

Example ([3], p. 270).

Let I be the unit interval [0, 1] and $Y=I \times \{0\}$ and let $X=I \times I$ with the topology generated by the following base for the open sets:

(1) The relative open sets from the plane X-Y

and (2) for $x \in Y$, sets of the form $(V \cap (X - Y)) \cup \{x\}$ where V is open in the plane with $x \in V$.

Y is discrete in the relative topology from X and hence Y is not connected.

Suppose that (P, Q) is a θ -separation relative to X and that Y=PUQ. Choose (r, 0) \in P without loss of generality, assume that there is an s \in I with r<s and (s, 0) \in Q. Let c = sup {r \in I:r<s and (r, 0) \in P}. We see easily that (c, 0) \in cl_{θ} Q, we obtain a contradiction and Y is θ -connected relative to X.

Majumdar & Asaduzzaman [4] defined sum of two topological space. Let X and Y be two topological spaces with topologies \mathfrak{T}_1 and \mathfrak{T}_2 respectively. Let either X∩Y be empty or be a subspace of both X and Y. Then X and Y are said to be **compatible** with each other and X∪Y made into a topological space by imposing on it the topology \mathfrak{T} generated by $\mathfrak{T}_1 \cup \mathfrak{T}_2$ is called the **sum** of X and Y. We denote it by X+Y.

Our next result is about θ -connectivity of the sum of two spaces when it exits.

Theorem-3.2: Sum of two θ -connected spaces is also θ -connected.

Proof:

Let X and Y be two θ -connected spaces. If possible suppose X+Y is not θ -connected. Then there exists two non-empty subsets P, Q of X+Y such that X+Y=PUQ with

 $P \cap cl_{\theta} Q = \Phi$ (α)

 $Q \cap cl_{\theta} P = \Phi$ (β)

Let $P_1=P\cap X$, $Q_1=Q\cap X$(1)

 $P_2 = P \cap Y, Q_2 = Q \cap Y$(2)

```
Then X=P_1\cup Q_1, Y=P_2\cup Q_2.
```

Since X and Y are $\theta\text{-connected},$

- (i) $P_1 \cap cl_{\theta} Q_1 \neq \Phi \text{ or } Q_1 \cap cl_{\theta} P_1 \neq \Phi$
- (ii) $P_2 \cap cl_\theta Q_2 \neq \Phi \text{ or } Q_2 \cap cl_\theta P_2 \neq \Phi$

Now P $\cap cl_{\theta} Q$ = (P₁UP₂) $\cap cl_{\theta} (Q_1UQ_2)$

 $= (\mathsf{P}_1 \cup \mathsf{P}_2) \cap (cl_\theta \mathsf{Q}_1 \cup cl_\theta \mathsf{Q}_2)$

 $= (\mathsf{P}_1 \cap \, cl_{\theta} \, \mathsf{Q}_1) \cup (\mathsf{P}_1 \cap \, cl_{\theta} \, \mathsf{Q}_2) \cup (\mathsf{P}_2 \cap \, cl_{\theta} \, \mathsf{Q}_1) \cup (\mathsf{P}_2 \cap \, cl_{\theta} \, \mathsf{Q}_2)$

By (a)(P₁ \cap cl_{θ} Q₁)= Φ and (P₂ \cap cl_{θ} Q₂)= Φ

So from (i) and (ii)

 $Q_1 \cap cl_{\theta} P_1 \neq \Phi \text{ and } Q_2 \cap cl_{\theta} P_2 \neq \Phi$

Hence, $\mathbf{Q} \cap cl_{\theta} \mathbf{P} = (\mathbf{Q}_1 \cap cl_{\theta} \mathbf{P}_1) \cup (\mathbf{Q}_1 \cap cl_{\theta} \mathbf{P}_2) \cup (\mathbf{Q}_2 \cap cl_{\theta} \mathbf{P}_1) \cup (\mathbf{Q}_2 \cap cl_{\theta} \mathbf{P}_2) \neq \Phi$, by (4).

This contradicts (β).

Hence, X+Y is θ -connected.

4. H-continuum

Velicko [5] defined a spaceX to be**H-closed** if every open cover {V_a} of X has a finite sub collection V

 $_{\alpha_1}$,...,V $_{\alpha_n}$ such that $\overline{V}_{\ \alpha_1}$ U...U $\overline{V}_{\ \alpha_n}$ =X

Ganguly and Bandyopadhyaya [2] defined and studied **H-continua.** An**H-continuum** is a topological space which is both connected and H-closed.

As for compact spaces, we have

Theorem-4.1: The product of two H-closed spaces is H-closed.

Proof:

Let X and Y be two H-closed spaces and W be an open cover of X×Y. Without loss of generality we may assume that each member of W is of the form $W_{\alpha\beta} = U_{\alpha} \times V_{\beta}$ where U_{α} and V_{β} are open sets in X and Y respectively. Then $\{U_{\alpha}\}$ is an open cover of X and $\{V_{\beta}\}$ is an open cover of Y. Since X and Y are H-closed, there exist $\{U_{\alpha_{1}},...,U_{\alpha_{m}}\}$ and $\{V_{\alpha_{1}},V_{\alpha_{2}},...,V_{\alpha_{n}}\}$ such that $\overline{U_{\alpha_{1}}} \cup ... \cup \overline{U_{\alpha_{m}}} = X$ and

$$\overline{V_{\beta_1}} \cup ... \cup \overline{V_{\beta_n}} = Y.$$
 Then $\bigcup_{\substack{i=1\\i=1}}^n \overline{W}_{\alpha_i \ \beta_j} = X \times Y.$ So, $X \times Y$ is an H-closed space.

It is known that if both X and Y are Hausdorff or connected then $X \times Y$ too is Hausdorffor connected respectively. We therefore have from Theorem-4.1:

Theorem-4.2: Product of two H-continua spaces is also H-continuum.

Majumdar and Asaduzzaman have established the fact that connectivity of each compatible spaces X and Y implies the same of X+Y iff $X \cap Y \neq \Phi$.

Lemma-4.1: If X and Y are compatible H-closed spaces then X+Y is H-closed.

Proof:

Let {W_a} be an open cover of X+Y. Then each W_a=U_a \cup V_a, for some U_a, V_a open in X and Y respectively. Then {U_a} and {V_a} are open covers of X and Y respectively. Since X and Y are closed, X= $\overline{U}_{\alpha_1} \cup \overline{U}_{\alpha_2} \cup \dots \cup \overline{U}_{\alpha_m}$ and Y= $\overline{V}_{\beta_1} \cup \overline{V}_{\beta_2} \cup \dots \cup \overline{V}_{\beta_n}$ for some $\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_n$. Then X+Y= $\overline{W}_{\alpha_1} \cup \dots \cup \overline{W}_{\alpha_m} \cup \overline{W}_{\beta_1} \cup \dots \cup \overline{W}_{\beta_n}$. Hence X+Y is H-closed. So we have, **Theorem-4.3:** If X and Y are H-continua, then X+Y will be an H-continuum iff $X \cap Y \neq \Phi$.

Comment: A subspace of an H-continuum space need not be so. For [0, 1] is an H-continuum, but the subspace {0, 1} is not H-continuum as it is not connected. The property of being an H-continuum does not hold for intersection. If C= {(x, y) | $x^2+y^2=1$ }, C₁ = {(x, y) $\in C | x \le 0$ } and C₂ = {(x, y) $\in C | x \ge 0$ }, then C₁ \cap C₂ ={(0, 1), (0, -1)} is not H-continuum as it is not connected.

Theorem-4.4: Let X be an H-continuum and Y a topological space and let $f : X \rightarrow Y$ be both continuous and open. Then f(X) is an H-continuum.

Proof:

X is an H-continuum and so, X is H-closed, Hausdorff and connected. Let $\{V_{\alpha}\}$ be an open cover off(X). Since f is continuous, $\{f^{-1}(V_{\alpha})\}$ is an open cover of X. As X is H-closed, there exist $\{f^{-1}(V_{\alpha})\}$ is an open cover of X.

n) } such that $\overline{f^{-1}(V{\alpha_1})} \cup ... \cup \overline{f^{-1}(V_{\alpha_n})} = X$. So, $\overline{V_{\alpha_1}} \cup ... \cup \overline{V_{\alpha_n}} = f(X)$. Thus f(X) is H-closed. As f is continuous, f(X) is connected. Hence f(X) is an H-continuum.

Comments: If f is only open or only continuous, then f(X) need not be an H-continuum.

For, if (X, \mathfrak{T}) is a continuum and X has at least two elements and $f : (X, \mathfrak{T}) \to (X, D)$ is the identity map on X where D is the discrete topology, then f is open but f(X) is not an H-continuum because it is disconnected.

If for the above continuum (X, \mathfrak{I}), f: (X, \mathfrak{I}) \rightarrow (X, \mathfrak{I}_0) is the identity map on X where \mathfrak{I}_0 denotes the indiscrete topology, then f is continuous, but f(X)=X is not an H-continuum since f(X) is not Hausdorff.

(1) If X is an H-continuum and R an equivalence relation on X, then the identification space X/R is an H-continuum as the projection map $X \rightarrow X/R$ is onto and both continuous and open.

REFERENCES

- [1]. Fomin,S. (1943): Extensions of Topological spaces, Ann. Math., Vol.44, 471-480.
- [2]. Ganguly,S. and Bandayopadhayay,T.(1993): On H-Continuum, Bull.Cal.Math.Soc., 85, 311-318.
- [3]. Clay, J.P. and Joseph, J.E.(1981) : On a connectivity property induced by the θ-closure operator, Illinois J. of Math., 25, 2.
- [4]. Majumdar.S. and Asaduzzaman.M.(2001): The sums of topological spaces, Rajshahi University Studies, Part-B, Journal of Science, Vol-29.
- [5]. Velicko, N. V., H-closed Topological Spaces, Mat. Sb., Vol. 70, 1966.