

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

http://www.bomsr.com

RESEARCH ARTICLE

A Peer Reviewed International Research Journal

(T, S)-INTUITIONISTIC FUZZY NORMAL SUBNEARRING OF A NEARRING

M.PALANIVELRAJAN¹, K.GUNASEKARAN², K.KALIRAJU³

¹Department of Mathematics, Government Arts College, Paramakudi, Tamilnadu, India. ^{2,3}Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College, Kumbakonam, Tamilnadu, India.

Email: palanivelrajan1975@gmail.com¹, kgunasekaran1963@gmail.com², kalirajuindia@gmail.com³

ABSTRACT

In this paper, we made an attempt to study the algebraic nature of a (T, S)-intuitionistic fuzzy normal subnearring of a nearring.

2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: T-fuzzy subnearring, (T, S)-intuitionistic fuzzy subnearring, (T, S)-intuitionistic fuzzy normal subnearring, product.

©KY PUBLICATIONS

M.PALANIVELRAJAN

INTRODUCTION

After the introduction of fuzzy sets by L.A.Zadeh[16], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subset was introduced by K.T.Atanassov[4, 5], as a generalization of the notion of fuzzy set. Azriel Rosenfeld[6] defined the fuzzy groups. Asok Kumer Ray[3] defined a product of fuzzy subgroups. The notion of homomorphism and anti-homomorphism of fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan [13, 14]. In this paper, we introduce the some Theorems in (T, S)-intuitionistic fuzzy normal subnearring of a nearring.

1.PRELIMINARIES:

1.1 Definition: A (T, S)-norm is a binary operations T: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ and S: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following requirements;

- (i) T(0, x) = 0, T(1, x) = x (boundary condition)
- (ii) T(x, y) = T(y, x) (commutativity)
- (iii) T(x, T(y, z))= T (T(x,y), z)(associativity)
- (iv) if $x \le y$ and $w \le z$, then T(x, w) \le T (y, z)(monotonicity).
- (v) S(0, x) = x, S (1, x) = 1 (boundary condition)
- (vi) S(x, y) = S(y, x)(commutativity)

(vii) S (x, S(y, z))= S (S(x, y), z) (associativity)

(viii) if $x \le y$ and $w \le z$, then S (x, w) \le S (y, z)(monotonicity).

1.2 Definition: Let (R, +, .) be a nearring. A fuzzy subset A of R is said to be a T-fuzzy subnearring (fuzzy subnearring with respect to T-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x-y) \ge T(\mu_A(x), \mu_A(y))$

(ii) $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y))$ for all x and y in R.

1.3 Definition: Let (R, +, .) be a nearring. An intuitionistic fuzzy subset A of R is said to be an (T, S)-intuitionistic fuzzy subnearring (intuitionistic fuzzy subnearring with respect to (T, S)-norm) of R if it satisfies the following conditions:

(i) $\mu_A(x - y) \ge T (\mu_A(x), \mu_A(y))$

(ii) $\mu_A(xy) \ge T(\mu_A(x), \mu_A(y))$

(iii) $v_A(x-y) \leq S(v_A(x), v_A(y))$

(iv) $v_A(xy) \leq S(v_A(x), v_A(y))$ for all x and y in R.

1.4 Definition: Let A and B be intuitionistic fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by A×B, is defined as $A×B = \{\langle (x, y), \mu_{A\times B}(x, y), \nu_{A\times B}(x, y) \rangle / \text{ for all } x \text{ in G and } y \text{ in H } \}$, where $\mu_{A\times B}(x, y) = \min \{ \mu_A(x), \mu_B(y) \}$ and $\nu_{A\times B}(x, y) = \max \{ \nu_A(x), \nu_B(y) \}$.

1.5 Definition: Let A be an intuitionistic fuzzy subset in a set S, the strongest intuitionistic fuzzy relation on S, that is an intuitionistic fuzzy relation on A is V given by $\mu_V(x, y) = \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_V(x, y) = \max\{\nu_A(x), \nu_A(y)\}$, for all x and y in S.

1.6 Definition: Let (R, +, .) and $(R^{I}, +, .)$ be any two nearrings. Let $f : R \rightarrow R^{I}$ be any function and A be an (T, S)-intuitionistic fuzzy subnearring in R, V be an (T, S)-intuitionistic fuzzy subnearring in $f(R) = R^{I}$, defined by $\mu_{V}(y) = \sup_{x \in f^{-1}(y)} \mu_{A}(x)$ and $v_{V}(y) = \inf_{x \in f^{-1}(y)} v_{A}(x)$, for all x in R and

y in R^{I} . Then A is called a preimage of V under f and is denoted by $f^{-1}(V)$.

1.7 Definition: Let (R, +, .) be a nearring. An (T, S)-intuitionistic fuzzy subnearring A of R is said to be an (T, S)-intuitionistic fuzzy normal subnearring of R if it satisfies the following conditions:

(i) $\mu_A(x+y) = \mu_A(y+x)$

(ii) $\mu_A(xy) = \mu_A(yx)$

(iii) $v_A(x+y) = v_A(y+x)$

(iv) $v_A(xy) = v_A(yx)$ for all x and y in R.

2. PROPERTIES:

2.1 Theorem: Intersection of any two (T, S)-intuitionistic fuzzy subnearrings of a nearring R is a (T, S)-intuitionistic fuzzy subnearring of a nearring R.

2.2 Theorem: The intersection of a family of (T, S)-intuitionistic fuzzy subnearrings of nearring R is an (T, S)-intuitionistic fuzzy subnearring of a nearring R.

2.3 Theorem: If A and B are any two (T, S)-intuitionistic fuzzy subnearrings of the nearrings R_1 and R_2 respectively, then A×B is an (T, S)-intuitionistic fuzzy subnearring of $R_1 \times R_2$.

2.4 Theorem: Let A be an intuitionistic fuzzy subset of a nearring R and V be the strongest intuitionistic fuzzy relation of R. Then A is an (T, S)-intuitionistic fuzzy subnearring of R if and only if V is an (T, S)-intuitionistic fuzzy subnearring of $R \times R$.

2.5 Theorem: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring H and f is an isomorphism from a nearring R onto H. Then A \circ f is an (T, S)-intuitionistic fuzzy subnearring of R. **2.6 Theorem:** Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring H and f is an anti-

isomorphism from a nearring R onto H. Then $A^\circ f$ is an (T, S)-intuitionistic fuzzy subnearring of R.

2.7 Theorem: Let (R, +, .) and (R', +, .) be any two nearrings. The homomorphic image of an (T, S)-intuitionistic fuzzy subnearring of R is an (T, S)-intuitionistic fuzzy subnearring of R¹.

2.8 Theorem: Let (R, +, .) and (R', +, .) be any two nearrings. The homomorphic preimage of an (T, S)-intuitionistic fuzzy subnearring of R' is a (T, S)-intuitionistic fuzzy subnearring of R.

2.9 Theorem: Let (R,+,.) and $(R^{I},+,.)$ be any two nearrings. The anti-homomorphic image of an (T, S)-intuitionistic fuzzy subnearring of R is an (T, S)-intuitionistic fuzzy subnearring of R^I.

2.10 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two nearrings. The anti-homomorphic preimage of an (T, S)-intuitionistic fuzzy subnearring of R^{I} is an (T, S)-intuitionistic fuzzy subnearring of R.

2.11 Theorem: Let (R, +, .) be a nearring. If A and B are two (T, S)-intuitionistic fuzzy normal subnearrings of R, then A \cap B is an (T, S)-intuitionistic fuzzy normal subnearring of R.

Proof: Let x and y∈R. Let A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in R$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in R$ } be an (T, S)-intuitionistic fuzzy normal subnearrings of a nearring R. Let C = A∩B and C = { $\langle x, \mu_C(x), \nu_C(x) \rangle / x \in R$ }, where $\mu_C(x) = \min{\{\mu_A(x), \mu_B(x)\}}$ and $\nu_C(x) = \max{\{\nu_A(x), \nu_B(x)\}}$. Then clearly C is an (T, S)-intuitionistic fuzzy subnearring of a nearring R, since A and B are two (T, S)-intuitionistic fuzzy subnearring R. And $\mu_C(x+y) = \min{\{\mu_A(x+y), \mu_B(x+y)\}} = \min{\{\mu_A(y+x), \mu_B(y+x)\}} = \mu_C(y+x)$ for all x and y in R. Therefore $\mu_C(x+y) = \mu_C(y+x)$ for all x and y in R. Also $\mu_C(xy) = \min{\{\mu_A(xy), \mu_B(xy)\}} = \min{\{\mu_A(yx), \mu_B(yx)\}} = \mu_C(yx)$ for all x and y in R. And $\nu_C(x+y) = \max{\{\nu_A(x+y), \nu_B(x+y)\}} = \max{\{\nu_A(y+x), \nu_B(y+x)\}} = \nu_C(y+x)$ for all x and y in R. Therefore $\mu_C(xy) = \min{\{\mu_A(yx), \nu_B(x+y)\}} = \max{\{\nu_A(y+x), \nu_B(y+x)\}} = \nu_C(y+x)$ for all x and y in R. Therefore $\mu_C(xy) = \mu_C(yx)$ for all x and y in R. Therefore $\nu_C(xy) = \mu_C(yx)$ for all x and y in R. Therefore $\nu_C(x+y) = \max{\{\nu_A(x+y), \nu_B(x+y)\}} = \max{\{\nu_A(y+x), \nu_B(y+x)\}} = \nu_C(y+x)$ for all x and y in R. Therefore $\nu_C(xy) = \mu_C(y+x)$ for all x and y in R. Therefore $\mu_C(xy) = \mu_C(y+x)$ for all x and y in R. Therefore $\mu_C(xy) = \mu_C(y+x)$ for all x and y in R. Therefore $\nu_C(x+y) = \nu_C(y+x)$ for all x and y in R. And $\nu_C(x+y) = \nu_C(y+x)$ for all x and y in R. Also $\nu_C(xy) = \max{\{\nu_A(xy), \nu_B(xy)\}} = \max{\{\nu_A(yx), \nu_B(yx)\}} = \nu_C(yx)$ for all x and y in R. Also $\nu_C(xy) = \max{\{\nu_A(xy), \nu_B(xy)\}} = \max{\{\nu_A(yx), \nu_B(yx)\}} = \nu_C(yx)$ for all x and y in R. Also $\nu_C(xy) = \nu_C(yx)$ for all x and y in R. Hence A herefore $\nu_C(xy)$ for all x and y in R. Therefore $\nu_C(xy) = \nu_C(yx)$ for all x and y in R. Hence A herefore B is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring R.

2.12 Theorem: Let (R, +, .) be a nearring. The intersection of a family of (T, S)-intuitionistic fuzzy normal subnearrings of R is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring R.

Proof: It is trivial.

2.13 Theorem: Let A and B be (T, S)-intuitionistic fuzzy subnearring of the nearrings G and H, respectively. If A and B are (T, S)-intuitionistic fuzzy normal subnearrings, then $A \times B$ is an (T, S)-intuitionistic fuzzy normal subnearring of $G \times H$.

Proof: Let A and B be (T, S)-intuitionistic fuzzy normal subnearrings of the nearrings G and H respectively. Clearly A×B is an (T, S)-intuitionistic fuzzy subnearring of G×H. Let x_1 and x_2 be in G, y_1 and y_2 be in H. Then (x_1, y_1) and (x_2, y_2) are in G×H. Now $\mu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \mu_{A\times B}(x_1+x_2, y_1+y_2) = min{<math>\mu_A(x_1+x_2)$, $\mu_B(y_1+y_2)$ }= min { $\mu_A(x_2+x_1)$, $\mu_B(y_2+y_1)$ }= $\mu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \mu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. Therefore $\mu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \mu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. And $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \mu_{A\times B}[(x_1, y_1)]$. Therefore $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] = min{{<math>\mu_{A\times B}[(x_2, y_2)+(x_1, y_1)]}$. And $\mu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \mu_{A\times B}[(x_1, y_1)]$. Therefore $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \mu_{A\times B}[(x_2, y_2)(x_1, y_1)]$. Therefore $\mu_{A\times B}[(x_1, y_1)(x_2, y_2)] = max{{<math>\nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]}}$. Also $\nu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. Therefore $\nu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = max{{<math>\nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]}}$. And $\nu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. Therefore $\nu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = max{{<math>\nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]}}$. And $\nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. Therefore $\nu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = max{{<math>\nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]}}$. And $\nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_1, y_1)+(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. And $\nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = max{{<math>\nu_{A\times B}[(x_1, y_2, y_2)]} = max{{<math>\nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]}}$. And $\nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)+(x_1, y_1)]$. And $\nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)(x_1, y_1)]$. And $\nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_1, y_1)(x_2, y_2)] = \nu_{A\times B}[(x_2, y_2)(x_1, y_1)]$. Hence A×B is an (T, S)-intuitionistic fuzzy normal subne

2.14 Theorem: Let A be an intuitionistic fuzzy subset in a nearring R and V be the strongest intuitionistic fuzzy relation on R. Then A is an (T, S)-intuitionistic fuzzy normal subnearring of R if and only if V is an (T, S)-intuitionistic fuzzy normal subnearring of R×R.

Proof: Suppose that A is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R. Then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in R×R. Clearly V is an (T, S)-intuitionistic fuzzy subnearring

of a nearring R. We have $\mu_v(x+y) = \mu_v[(x_1, x_2)+(y_1, y_2)] = \mu_v(x_1+y_1, x_2+y_2) = \min \{\mu_A(x_1+y_1), x_2+y_2\}$ $\mu_A(x_2+y_2) = \min \{\mu_A(y_1+x_1), \mu_A(y_2+x_2)\} = \mu_V(y_1+x_1, y_2+x_2) = \mu_V[(y_1, y_2)+(x_1, x_2)] = \mu_V(y+x).$ Therefore $\mu_{v}(x+y) = \mu_{v}(y+x)$ for all x and y in R×R. And $\mu_{v}(xy) = \mu_{v}[(x_{1}, x_{2})(y_{1}, y_{2})] = \mu_{v}(x_{1}y_{1}, x_{2}y_{2}) = \min$ $\{\mu_A(x_1y_1), \mu_A(x_2y_2)\} = \min \{\mu_A(y_1x_1), \mu_A(y_2x_2)\} = \mu_V(y_1x_1, y_2x_2) = \mu_V[(y_1, y_2)(x_1, x_2)] = \mu_V(y_1)$ Therefore $\mu_{v}(xy) = \mu_{v}(yx)$ for all x and y in R×R. Also $\nu_{v}(x+y) = \nu_{v}[(x_{1}, x_{2})+(y_{1}, y_{2})] = \nu_{v}(x_{1}+y_{1}, y_{2})$ x_2+y_2 = max { $v_A(x_1+y_1), v_A(x_2+y_2)$ }= max { $v_A(y_1+x_1), v_A(y_2+x_2)$ }= $v_V(y_1+x_1, y_2+x_2) = v_V[(y_1, y_2) + (x_1, y_2+x_2)]$ $(x_2) = v_v(y+x)$. Therefore $v_v(x+y) = v_v(y+x)$ for all x and y in R×R. And $v_v(xy) = v_v[(x_1, x_2)(y_1, y_2)] = v_v(y+x)$. $v_{v}(x_{1}y_{1}, x_{2}y_{2}) = \max \{v_{A}(x_{1}y_{1}), v_{A}(x_{2}y_{2})\} = \max \{v_{A}(y_{1}x_{1}), v_{A}(y_{2}x_{2})\} = v_{v}(y_{1}x_{1}, y_{2}x_{2}) = v_{v}[(y_{1}, y_{2})(x_{1}, x_{2})]$ = $v_v(yx)$. Therefore $v_v(xy) = v_v(yx)$ for all x and y in R×R. This proves that V is an (T, S)intuitionistic fuzzy normal subnearring of $R \times R$. Conversely assume that V is an (T, S)intuitionistic fuzzy normal subnearring of R×R, then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in R×R, we know that A is an (T, S)-intuitionistic fuzzy subnearring of R, then $\mu_A(x_1+y_1) = \min\{\mu_A(x_1+y_1), \dots, \mu_A(x_1+y_1)\}$ $\mu_{A}(x_{2}+y_{2}) = \mu_{V}(x_{1}+y_{1}, x_{2}+y_{2}) = \mu_{V}[(x_{1}, x_{2})+(y_{1}, y_{2})] = \mu_{V}(x+y) = \mu_{V}(y+x) = \mu_{V}[(y_{1}, y_{2})+(x_{1}, x_{2})] = \mu_{V}(x+y) =$ $\mu_{V}(y_{1}+x_{1}, y_{2}+x_{2}) = \min\{\mu_{A}(y_{1}+x_{1}), \mu_{A}(y_{2}+x_{2})\} = \mu_{A}(y_{1}+x_{1}).$ If $x_{2}=0, y_{2}=0$, we get $\mu_{A}(x_{1}+y_{1}) = \mu_{A}(y_{1}+x_{1})$ for all x_1 and y_1 in R. And $\mu_A(x_1y_1) = \min\{\mu_A(x_1y_1), \mu_A(x_2y_2)\} = \mu_V(x_1y_1, x_2y_2) = \mu_V[(x_1, x_2)(y_1, y_2)] =$ $\mu_{V}(xy) = \mu_{V}(yx) = \mu_{V}[(y_{1}, y_{2})(x_{1}, x_{2})] = \mu_{V}(y_{1}x_{1}, y_{2}x_{2}) = \min\{\mu_{A}(y_{1}x_{1}), \mu_{A}(y_{2}x_{2})\} = \mu_{A}(y_{1}x_{1}).$ If $x_{2} = 0, y_{2} = 0$ 0, we get $\mu_A(x_1y_1) = \mu_A(y_1x_1)$ for all x_1 and y_1 in R. Also $\nu_A(x_1+y_1) = \max\{\nu_A(x_1+y_1), \nu_A(x_2+y_2)\}=$ $v_{V}(x_{1}+y_{1}, x_{2}+y_{2}) = v_{V}[(x_{1}, x_{2})+(y_{1}, y_{2})] = v_{V}(x+y) = v_{V}(y+x) = v_{V}[(y_{1}, y_{2})+(x_{1}, x_{2})] = v_{V}(y_{1}+x_{1}, y_{2}+x_{2}) = v_{V}(x+y) =$ max{ $v_A(y_1+x_1)$, $v_A(y_2+x_2)$ }= $v_A(y_1+x_1)$. If $x_2 = 0$, $y_2 = 0$, we get $v_A(x_1+y_1) = v_A(y_1+x_1)$ for all x_1 and y_1 in R. And $v_A(x_1y_1) = \max\{v_A(x_1y_1), v_A(x_2y_2)\} = v_V(x_1y_1, x_2y_2) = v_V[(x_1, x_2)(y_1, y_2)] = v_V(xy) = v_V(yx) =$ $v_{v}[(y_{1}, y_{2})(x_{1}, x_{2})] = v_{v}(y_{1}x_{1}, y_{2}x_{2}) = max\{v_{A}(y_{1}x_{1}), v_{A}(y_{2}x_{2})\} = v_{A}(y_{1}x_{1}).$ If $x_{2} = 0, y_{2} = 0$, we get $v_A(x_1y_1) = v_A(y_1x_1)$ for all x_1 and y_1 in R. Therefore A is an (T, S)-intuitionistic fuzzy normal subnearring of R.

2.15 Theorem: Let (R, +, .) and (R', +, .) be any two nearrings. The homomorphic image of an (T, S)-intuitionistic fuzzy normal subnearring of R is an (T, S)-intuitionistic fuzzy normal subnearring of R¹.

Proof: Let $f : R \to R^{1}$ be a homomorphism. Let V = f(A) where A is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R. We have to prove that V is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R¹. Now for f(x), f(y) in R¹, clearly V is an (T, S)-intuitionistic fuzzy subnearring of a nearring R¹, since A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Now $\mu_{v}(f(x)+f(y)) = \mu_{v}(f(x+y)) \ge \mu_{A}(x+y) = \mu_{A}(y+x) \le \mu_{v}(f(y+x)) = \mu_{v}(f(y)+f(x))$ which implies that $\mu_{v}(f(x)+f(y)) = \mu_{v}(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\mu_{v}(f(x)f(y)) = \mu_{v}(f(xy)) \ge$ $\mu_{A}(xy) = \mu_{A}(yx) \le \mu_{v}(f(yx)) = \mu_{v}(f(y)f(x))$ which implies that $\mu_{v}(f(x)f(y)) = \mu_{v}(f(y)+f(x))$ for all f(x) and f(y) in R¹. Also $v_{v}(f(x)+f(y)) = v_{v}(f(x+y)) \le v_{A}(x+y) = v_{A}(y+x) \ge v_{v}(f(y+x)) = v_{v}(f(y)+f(x))$ which implies that $v_{v}(f(x)+f(y)) = v_{v}(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $v_{v}(f(x)f(y)) = v_{v}(f(y)+f(x))$ which implies that $v_{v}(f(x)+f(y)) = v_{v}(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $v_{v}(f(x)f(y)) = v_{v}(f(x+y)) \le v_{A}(xy)$ $= v_{A}(yx) \ge v_{v}(f(yx)) = v_{v}(f(y)f(x))$ which implies that $v_{v}(f(x)f(y)) = v_{v}(f(y)f(x))$ for all f(x) and f(y) in R¹. Hence V is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring R¹.

2.16 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two nearrings. The homomorphic preimage of an (T, S)-intuitionistic fuzzy normal subnearring of R^{I} is an (T, S)-intuitionistic fuzzy normal subnearring of R.

Proof: Let $f : R \rightarrow R^{I}$ be a homomorphism. Let V = f(A) where V is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R^{I} . We have to prove that A is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R. Let x and y in R. Then clearly A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R, since V is an (T, S)-intuitionistic fuzzy subnearring of a

nearring R¹. Now $\mu_A(x+y) = \mu_v(f(x+y)) = \mu_v(f(x)+f(y)) = \mu_v(f(y)+f(x)) = \mu_v(f(y+x)) = \mu_A(y+x)$ which implies that $\mu_A(x+y) = \mu_A(y+x)$ for all x and y in R. And $\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(x)f(y)) = \mu_v(f(y)f(x))$ $= \mu_v(f(yx)) = \mu_A(yx)$ which implies that $\mu_A(xy) = \mu_A(yx)$ for all x and y in R. Now $v_A(x+y) = v_v(f(x+y))$ $= v_v(f(x)+f(y)) = v_v(f(y)+f(x)) = v_v(f(y+x)) = v_A(y+x)$ which implies that $v_A(x+y) = v_A(y+x)$ for all x and y in R. And $v_A(xy) = v_v(f(xy)) = v_v(f(x)f(y)) = v_v(f(y)f(x)) = v_v(f(yx)) = v_A(yx)$ which implies that $v_A(xy) = v_A(yx)$ for all x and y in R. Hence A is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring R.

2.17 Theorem: Let (R, +, .) and (R', +, .) be any two nearrings. The anti-homomorphic image of an (T, S)-intuitionistic fuzzy normal subnearring of R is an (T, S)-intuitionistic fuzzy normal subnearring of R¹.

Proof: Let $f : R \to R^{1}$ be an anti-homomorphism. Then f(x+y) = f(y)+f(x) and f(xy) = f(y)f(x) for all x and y in R. Let V = f(A) where A is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R. We have to prove that V is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R¹. Now for f(x) and f(y) in R¹, clearly V is an (T, S)-intuitionistic fuzzy subnearring of the nearring R¹, since A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R¹, since A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Now $\mu_v(f(x)+f(y)) = \mu_v(f(y+x)) \ge \mu_A(y+x) = \mu_A(x+y) \le \mu_v(f(x+y)) = \mu_v(f(y)+f(x))$ which implies that $\mu_v(f(x)+f(y)) = \mu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\mu_v(f(x)f(y)) = \mu_v(f(y)+f(x))$ which implies that $\mu_v(f(x)f(y)) = \mu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\mu_v(f(x)f(y) = \nu_v(f(y)+f(x))$ which implies that $\nu_v(f(x)+f(y)) = \nu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x))$ which implies that $\nu_v(f(x)+f(y)) = \nu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x))$ which implies that $\nu_v(f(x)+f(y)) = \nu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x))$ which implies that $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x))$ so $\nu_A(yx) = \nu_A(xy) \ge \nu_v(f(xy)) = \nu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. And $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x)) \le \nu_A(yx) = \nu_A(xy) \ge \nu_v(f(x)) = \nu_v(f(y)+f(x))$ which implies that $\nu_v(f(x)f(y)) = \nu_v(f(y)+f(x))$ for all f(x) and f(y) in R¹. Hence V is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R¹.

2.18 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two nearrings. The anti-homomorphic preimage of an (T, S)-intuitionistic fuzzy normal subnearring of R^{I} is an (T, S)-intuitionistic fuzzy normal subnearring of R.

Proof: Let $f : R \to R^{!}$ be an anti-homomorphism. Let V = f(A) where V is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring $R^{!}$. We have to prove that A is an (T, S)-intuitionistic fuzzy normal subnearring of a nearring R. Let x and y in R. Then clearly A is an (T, S)-intuitionistic fuzzy subnearring of the nearring R, since V is an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Let x and y in R. Then clearly A is an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Now $\mu_A(x+y) = \mu_v(f(x+y)) = \mu_v(f(y)+f(x)) = \mu_v(f(x)+f(y)) = \mu_v(f(y+x)) = \mu_A(y+x)$ which implies that $\mu_A(x+y) = \mu_A(y+x)$ for all x and y in R. And $\mu_A(xy) = \mu_v(f(xy)) = \mu_v(f(y)f(x)) = \mu_v(f(x)f(y)) = \mu_v(f(y)+f(x)) = \nu_v(f(x)+f(y)) = \nu_v(f(y+x)) = \nu_v(f(x)+g(y)) = \mu_v(g(x)+g(x))$ for all x and y in R. Hence A is an (T, S)-intuitio

In the following Theorem \circ is the composition operation of functions:

2.19 Theorem: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring H and f is an isomorphism from a nearring R onto H. If A is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring H, then A \circ f is an (T, S)-intuitionistic fuzzy normal subnearring R.

Proof: Let x and y in R and A be an (T, S)-intuitionistic fuzzy normal subnearring of a nearring H. Then clearly A°f is an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Now $(\mu_A°f)(x+y) = \mu_A(f(x+y)) = \mu_A(f(x)+f(y)) = \mu_A(f(y)+f(x)) = \mu_A(f(y+x)) = (\mu_A°f)(y+x)$ which implies that $(\mu_A°f)(x+y) = (\mu_A°f)(y+x)$ for all x and y in R. And $(\mu_A°f)(xy) = \mu_A(f(xy)) = \mu_A(f(x)f(y)) = \mu_A(f(y)f(x)) = \mu_A(f(yx)) = \mu_A(f(y$ $(\mu_A \circ f)(yx)$ which implies that $(\mu_A \circ f)(xy) = (\mu_A \circ f)(yx)$ for all x and y in R. Also $(\nu_A \circ f)(x+y) = \nu_A(f(x+y))$ = $\nu_A(f(x)+f(y)) = \nu_A(f(y)+f(x)) = \nu_A(f(y+x)) = (\nu_A \circ f)(y+x)$ which implies that $(\nu_A \circ f)(x+y) = (\nu_A \circ f)(y+x)$ for all x and y in R. And $(\nu_A \circ f)(xy) = \nu_A(f(xy)) = \nu_A(f(x)f(y)) = \nu_A(f(y)f(x)) = \nu_A(f(yx)) = (\nu_A \circ f)(yx)$ which implies that $(\nu_A \circ f)(xy) = (\nu_A \circ f)(yx)$ for all x and y in R. Hence A of is an (T, S)-intuitionistic fuzzy normal subnearing of a nearing R.

2.20 Theorem: Let A be an (T, S)-intuitionistic fuzzy subnearring of a nearring H and f is an antiisomorphism from a nearring R onto H. If A is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring H, then A°f is an (T, S)-intuitionistic fuzzy normal subnearring of the nearring R. **Proof:** Let x and y in R and A be an (T, S)-intuitionistic fuzzy normal subnearring of a nearring H. Then clearly A°f is an (T, S)-intuitionistic fuzzy subnearring of a nearring R. Now $(\mu_A°f)(x+y) = \mu_A(f(x+y)) = \mu_A(f(y)+f(x)) = \mu_A(f(x)+f(y)) = \mu_A(f(y+x)) = (\mu_A°f)(y+x) which implies that <math>(\mu_A°f)(x+y) = (\mu_A°f)(y+x)$ for all x and y in R. And $(\mu_A°f)(xy) = \mu_A(f(xy)) = \mu_A(f(y)f(x)) = \mu_A(f(x)f(y)) = \mu_A(f(yx)) = (\mu_A°f)(yx) which implies that <math>(\mu_A°f)(xy) = (\mu_A°f)(yx)$ for all x and y in R. And $(\mu_A°f)(xy) = (\nu_A°f)(y+x)$ which implies that $(\nu_A°f)(x+y) = \nu_A(f(y)+f(x)) = \nu_A(f(x)+f(y)) = \nu_A(f(y+x)) = (\nu_A°f)(y+x)$ which implies that $(\nu_A°f)(x+y) = (\nu_A°f)(y+x)$ for all x and y in R. And $(\nu_A°f)(xy) = (\nu_A°f)(y+x)$ which implies that $(\nu_A°f)(x+y) = (\nu_A°f)(y+x)$ for all x and y in R. And $(\nu_A°f)(xy) = \nu_A(f(xy)) = \nu_A(f(y)f(x)) = \nu_A(f(x)f(y)) = \nu_A(f(yx)) = (\nu_A°f)(yx)$ which implies that $(\nu_A°f)(xy) = (\nu_A°f)(yx)$ for all x and y in R. Hence A°f is an (T, S)-intuitionistic fuzzy normal subnearring R.

REFERENCE

- [1]. Akram.M and Dar.K.H(2005), On fuzzy d-algebras, Punjab university journal of mathematics, 37, 61-76.
- [2]. Anthony.J.M. and Sherwood.H(1979), Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130.
- [3]. Asok Kumer Ray(1999), On product of fuzzy subgroups, Fuzzy sets and systems, 105, 181-183.
- [4]. Atanassov.K.T.,1986. Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1): 87-96.
- [5]. Atanassov.K.T., 1999. Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria.
- [6]. Azriel Rosenfeld(1971), Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517.
- [7]. Biswas.R(1990), Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124.
- [8]. Chitra.V and Arjunan.K (2013), A study on Q-fuzzy subnearring of a nearing, Journal of advances in Mathematics, Vol. 4, No. 1, 320-324.
- [9]. Goguen.J.A. (1967), L-fuzzy Sets, J. Math. Anal. Appl. 18 145-147.
- [10]. Kumbhojkar.H.V., and Bapat.M.S. (1991), Correspondence theorem for fuzzy ideals, Fuzzy sets and systems.
- [11]. Mohamed Asaad(1991), Groups and fuzzy subgroups, Fuzzy sets and systems, North-Holland.
- [12]. Mustafa Akgul(1988), Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100.
- [13]. Palaniappan. N & K. Arjunan,2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64.
- [14]. Palaniappan. N & K.Arjunan. 2007. Some properties of intuitionistic fuzzy subgroups , Acta Ciencia Indica , Vol.XXXIII (2) : 321-328.

- [15]. Vasantha kandasamy.W.B, 2003. Smarandache fuzzy algebra, American research press, Rehoboth.
- [16]. Zadeh.L.A(1965), Fuzzy sets, Information and control, Vol.8, 338-353.