Vol.3.Issue.3.2015 (Jul-Sept)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

HOMOMORPHISM AND ANTI-HOMOMORPHISM OF BIPOLAR-VALUED MULTI FUZZY SUBSEMIRINGS OF A SEMIRING

B.YASODARA¹, K E.SATHAPPAN²

Department of Mathematics, Alagappa Govt. Arts College, Karaikudi, Tamilnadu, India Email: ¹chindiakkssg1974@gmail.com; ²kesathappan@gmail.com

ABSTRACT

In this paper, we made an attempt to study the algebraic nature of bipolarvalued multi fuzzy subsemirings under homomorphism and antihomomorphism and prove some results on these.

KEY WORDS: Bipolar-valued fuzzy set, bipolar-valued multi fuzzy set, bipolar-valued multi fuzzy subsemiring, bipolar-valued multi fuzzy normal subsemiring.

©KY PUBLICATIONS

INTRODUCTION

In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc [6]. Lee [8] introduced the notion of bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar-valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy the implicit counter property. Bipolar-valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [8, 9]. Anitha.M.S., Muruganantha Prasad & K.Arjunan[1] defined as Bipolar-valued fuzzy subgroups of a group. We introduce the concept of bipolar-valued multi fuzzy subsemiring under homomorphism, antihomomorphism and established some results.

1.PRELIMINARIES:

1.1 Definition: A bipolar-valued fuzzy set (BVFS) A in X is defined as an object of the form A = { < x, A⁺(x), A⁻(x) >/ x \in X}, where A⁺ : X → [0, 1] and A⁻ : X → [-1, 0]. The positive membership degree A⁺(x)

denotes the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set A and the negative membership degree $A^{-}(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar-valued fuzzy set A. If $A^{+}(x) \neq 0$ and $A^{-}(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for A and if $A^{+}(x) = 0$ and $A^{-}(x) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $A^{+}(x) \neq 0$ and $A^{-}(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X.

1.2 Example: A = { < a, 0.5, -0.3 >, < b, 0.1, -0.7 >, < c, 0.5, -0.4 >} is a bipolar-valued fuzzy subset of X= {a, b, c }.

1.3 Definition: A bipolar-valued multi fuzzy set (BVMFS) A in X is defined as an object of the form A = $\{<x, A_i^+(x), A_i^-(x) > / x \in X\}$, where $A_i^+: X \rightarrow [0, 1]$ and $A_i^-: X \rightarrow [-1, 0]$. The positive membership degrees $A_i^+(x)$ denote the satisfaction degree of an element x to the property corresponding to a bipolar-valued multi fuzzy set A and the negative membership degrees $A_i^-(x)$ denote the satisfaction degree of an element x to the property corresponding to a bipolar-valued multi fuzzy set A and the negative membership degrees $A_i^-(x)$ denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar-valued multi fuzzy set A. If $A_i^+(x) \neq 0$ and $A_i^-(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for A and if $A_i^+(x) = 0$ and $A_i^-(x) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $A_i^+(x) \neq 0$ and $A_i^-(x) \neq 0$ when the membership function of the property overlaps that of its counter property overlaps that of its counter property over some portion of X, where i = 1 to n.

1.4 Example: A = { < a, 0.5, 0,6, 0.3, -0.3, -0.6, -0.5 >, < b, 0.1, 0.4, 0.7, -0.7, -0.3, -0.6 >, < c, 0.5, 0.3, 0.8, -0.4, -0.5, -0.3 >} is a bipolar-valued multi fuzzy subset of X = { a, b, c }.

1.5 Definition: Let R be a semiring. A bipolar-valued multi fuzzy subset A of R is said to be a bipolar-valued multi fuzzy subsemiring of R (BVMFSSR) if the following conditions are satisfied,

(i) $A_i^+(x+y) \ge \min\{A_i^+(x), A_i^+(y)\}$

(ii) $A_i^+(xy) \ge \min\{A_i^+(x), A_i^+(y)\}$

(iii) $A_i^-(x+y) \le \max\{A_i^-(x), A_i^-(y)\}$

(iv) $A_i^-(xy) \le \max\{A_i^-(x), A_i^-(y)\}$ for all x and y in R.

1.6 Example: Let $R = Z_3 = \{0, 1, 2\}$ be a semiring with respect to the ordinary addition and multiplication. Then $A = \{< 0, 0.5, 0.8, 0.6, -0.6, -0.5, -0.7>, <1, 0.4, 0.7, 0.5, -0.5, -0.4, -0.6>, <2, 0.4, 0.7, 0.5, -0.5, -0.4, -0.6>\}$ is a bipolar-valued multi fuzzy subsemiring of R.

1.7 Definition: Let R be a semiring. A bipolar-valued multi fuzzy subsemiring A of R is said to be a bipolar-valued multi fuzzy normal subsemiring of R if $A_i^+(x+y) = A_i^+(y+x)$, $A_i^+(xy) = A_i^+(yx)$, $A_i^-(x+y) = A_i^-(y+x)$ and $A_i^-(xy) = A_i^-(yx)$ for all x and y in R.

1.8 Definition: Let R and R¹ be any two semirings. Then the function f: $R \rightarrow R^1$ is said to be an antihomomorphism if f(x+y) = f(y)+f(x) and f(xy) = f(y)f(x) for all x and y in R.

1.9 Definition: Let X and Xⁱ be any two sets. Let $f : X \rightarrow X^i$ be any function and let A be a bipolar-valued multi fuzzy subset in X, V be a bipolar-valued multi fuzzy subset in $f(X) = X^i$, defined by $V_i^+(y) = X^i$

 $\sup_{x \in f^{-1}(y)} A_i^+(x) \text{ and } V_i^-(y) = \inf_{x \in f^{-1}(y)} A_i^-(x), \text{ for all } x \text{ in } X \text{ and } y \text{ in } X^{l}. A \text{ is called a preimage of } V \text{ under } f$

and is denoted by $f^{-1}(V)$.

2. SOME PROPERTIES:

2.1 Theorem: Let R and R^I be any two semirings. The homomorphic image of a bipolar-valued multi fuzzy subsemiring of R is a bipolar-valued multi fuzzy subsemiring of R^I.

Proof: Let $f : R \rightarrow R^{l}$ be a homomorphism. Let V = f(A) where A is a bipolar-valued multi fuzzy subsemiring of R. We have to prove that V is a bipolar-valued multi fuzzy subsemiring of R^l. Now for f(x), f(y) in R^l, $V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(x+y)) \ge A_{i}^{+}(x+y) \ge \min\{A_{i}^{+}(x), A_{i}^{+}(y)\} = \min\{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$ which implies that $V_{i}^{+}(f(x)+f(y)) \ge \min\{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$. And $V_{i}^{+}(f(x)f(y)) = V_{i}^{+}(f(xy)) \ge A_{i}^{+}(xy) \ge \min\{A_{i}^{+}(x), A_{i}^{+}(y)\} = \min\{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$ which implies that $V_{i}^{+}(f(x)f(y)) \ge V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$. Also $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x+y)) \le A_{i}^{-}(x+y) \le \max\{A_{i}^{-}(x), A_{i}^{-}(y)\} = \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$ which implies that $V_{i}^{-}(f(x)f(y)) \ge A_{i}^{-}(xy) \le \max\{A_{i}^{-}(x), A_{i}^{-}(y)\} = \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$ which implies that $V_{i}^{-}(f(x)f(y)) \ge A_{i}^{-}(xy) \le \max\{A_{i}^{-}(x), A_{i}^{-}(y)\} = \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$ which implies that $V_{i}^{-}(f(x)f(y)) \ge \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$ which implies that $V_{i}^{-}(f(x)f(y)) \ge \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$. Hence V is a bipolar-valued multi fuzzy subsemiring of R^l.

2.2 Theorem: Let R and Rⁱ be any two semirings. The homomorphic preimage of a bipolar-valued multi fuzzy subsemiring of Rⁱ is a bipolar-valued multi fuzzy subsemiring of R.

Proof: Let $f : R \to R^{i}$ be a homomorphism. Let V = f(A) where V is a bipolar-valued multi fuzzy subsemiring of R^{i} . We have to prove that A is a bipolar-valued multi fuzzy subsemiring of R. Let x and y in R. Now $A_{i}^{+}(x+y) = V_{i}^{+}(f(x+y)) = V_{i}^{+}(f(x)+f(y)) \ge \min\{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\} = \min\{A_{i}^{+}(x), A_{i}^{+}(y)\}$ which implies that $A_{i}^{+}(x+y) \ge \min\{A_{i}^{+}(x), A_{i}^{+}(y)\}$. And $A_{i}^{+}(xy) = V_{i}^{+}(f(xy)) = V_{i}^{+}(f(x)f(y)) \ge \min\{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\} = \min\{A_{i}^{+}(x), A_{i}^{+}(y)\}$ which implies that $A_{i}^{+}(x), A_{i}^{+}(y)\}$ which implies that $A_{i}^{+}(xy) \ge \min\{A_{i}^{+}(x), A_{i}^{+}(y)\}$. Also $A_{i}^{-}(x+y) = V_{i}^{-}(f(x+y)) = V_{i}^{-}(f(x)+f(y)) \le \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\} = \max\{A_{i}^{-}(x), A_{i}^{-}(y)\}$ which implies that $A_{i}^{-}(x), A_{i}^{-}(y)\}$. Hence A is a bipolar-valued multi fuzzy subsemiring of R.

2.3 Theorem: Let R and Rⁱ be any two semirings. The antihomomorphic image of a bipolar valued multi fuzzy subsemiring of R is a bipolar-valued multi fuzzy subsemiring of Rⁱ.

Proof: Let $f : R \to R^{i}$ be an antihomomorphism. Let V = f(A) where A is a bipolar-valued multi fuzzy subsemiring of R. We have to prove that V is a bipolar-valued multi fuzzy subsemiring of R¹. Now for f(x), f(y) in R¹, $V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(y+x)) \ge A_{i}^{+}(y+x) \ge \min \{A_{i}^{+}(x), A_{i}^{+}(y)\} = \min \{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$ which implies that $V_{i}^{+}(f(x)+f(y)) \ge \min \{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$. And $V_{i}^{+}(f(x)f(y)) = V_{i}^{+}(f(x)x) \ge A_{i}^{+}(yx) \ge \min \{A_{i}^{+}(x), A_{i}^{+}(y)\} = \min \{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\}$ which implies that $V_{i}^{+}(f(x)f(y)) \ge V_{i}^{-}(f(x)), V_{i}^{+}(f(y))\}$. Also $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y+x)) \le A_{i}^{-}(y+x) \le \max\{A_{i}^{-}(x), A_{i}^{-}(y)\} = \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$ which implies that $V_{i}^{-}(f(x)+f(y)) \le \max\{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\}$. Hence V is a bipolar-valued multi fuzzy subsemiring of R¹.

2.4 Theorem: Let R and Rⁱ be any two semirings. The antihomomorphic preimage of a bipolar-valued multi fuzzy subsemiring of Rⁱ is a bipolar-valued multi fuzzy subsemiring of R.

Proof: Let $f : R \rightarrow R^{i}$ be an antihomomorphism. Let V = f(A) where V is a bipolar-valued multi fuzzy subsemiring of R^{i} . We have to prove that A is a bipolar-valued multi fuzzy subsemiring of R. Let x and y in R. Now $A_{i}^{+}(x+y) = V_{i}^{+}(f(x+y)) = V_{i}^{+}(f(y)+f(x)) \ge \min \{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\} = \min \{A_{i}^{+}(x), A_{i}^{+}(y)\}$ which implies that $A_{i}^{+}(x+y) \ge \min \{A_{i}^{+}(x), A_{i}^{+}(y)\}$. And $A_{i}^{+}(xy) = V_{i}^{+}(f(xy)) = V_{i}^{+}(f(y)f(x)) \ge \min \{V_{i}^{+}(f(x)), V_{i}^{+}(f(y))\} = \min \{A_{i}^{+}(x), A_{i}^{+}(y)\}$ which implies that $A_{i}^{+}(x) \ge \min \{A_{i}^{+}(x), A_{i}^{+}(y)\}$ which implies that $A_{i}^{+}(x) \ge \min \{A_{i}^{+}(x), A_{i}^{+}(y)\}$. Also $A_{i}^{-}(x+y) = V_{i}^{-}(f(x+y)) = V_{i}^{-}(f(y)+f(x)) \le \max \{V_{i}^{-}(f(x)), V_{i}^{-}(f(y))\} = \max \{A_{i}^{-}(x), A_{i}^{-}(y)\}$ which implies that $A_{i}^{-}(x) \ge \max \{A_{i}^{-}(x), A_{i}^{-}(y)\}$.

2.5 Theorem: Let R and Rⁱ be any two semirings. The homomorphic image of a bipolar-valued multi fuzzy normal subsemiring of R is a bipolar-valued multi fuzzy normal subsemiring of Rⁱ.

Proof: Let $f : R \to R^{I}$ be a homomorphism. Let V = f(A) where A is a bipolar-valued multi fuzzy normal subsemiring of R. We have to prove that V is a bipolar-valued multi fuzzy normal subsemiring of R^{I} .

Now for f(x), f(y) in R¹, V_i⁺(f(x)+f(y)) = V_i⁺(f(x+y)) $\geq A_i^+(x+y) = A_i^+(y+x) \leq V_i^+(f(y+x)) = V_i^+(f(y)+f(x))$ which implies that $V_i^+(f(x)+f(y)) = V_i^+(f(y)+f(x))$. And $V_i^+(f(x)f(y)) = V_i^+(f(xy)) \geq A_i^+(xy) = A_i^+(yx) \leq V_i^+(f(y)f(x))$ f(yx)) = $V_i^+(f(y)f(x))$ which implies that $V_i^+(f(x)f(y)) = V_i^+(f(y)f(x))$. Also $V_i^-(f(x)+f(y)) = V_i^-(f(x+y)) \geq A_i^-(x+y) = A_i^-(y+x) \leq V_i^-(f(y+x)) = V_i^-(f(y)+f(x))$ which implies that $V_i^-(f(x)+f(y)) = V_i^-(f(y)+f(x))$. And $V_i^-(f(x)f(y)) = V_i^-(f(xy)) \geq A_i^-(xy) = A_i^-(yx) \leq V_i^-(f(yx)) = V_i^-(f(y)f(x))$ which implies that $V_i^-(f(x)f(y)) = V_i^-(f(x)+f(y)) =$

2.6 Theorem: Let R and R^{I} be any two semirings. The homomorphic preimage of a bipolar-valued multi fuzzy normal subsemiring of R^{I} is a bipolar-valued multi fuzzy normal subsemiring of R.

Proof: Let $f : R \rightarrow R^{i}$ be a homomorphism. Let V = f(A) where V is a bipolar-valued multi fuzzy normal subsemiring of R^{i} . We have to prove that A is a bipolar-valued multi fuzzy normal subsemiring of R. Let x and y in R. Now $A_{i}^{+}(x+y) = V_{i}^{+}(f(x+y)) = V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(y)+f(x)) = V_{i}^{+}(f(y+x)) = A_{i}^{+}(y+x)$ which implies that $A_{i}^{+}(x+y) = A_{i}^{+}(y+x)$. And $A_{i}^{+}(xy) = V_{i}^{+}(f(xy)) = V_{i}^{+}(f(x)f(y)) = V_{i}^{+}(f(y)f(x)) = V_{i}^{+}(f(yx)) = A_{i}^{+}(yx)$ which implies that $A_{i}^{+}(xy) = A_{i}^{+}(yx)$. Also $A_{i}^{-}(x+y) = V_{i}^{-}(f(x+y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y)+f(x)) = V_{i}^{-}(f(y+x))$ $= A_{i}^{-}(y+x)$ which implies that $A_{i}^{-}(x+y) = A_{i}^{-}(y+x)$. And $A_{i}^{-}(xy) = V_{i}^{-}(f(xy)) = V_{i}^{-}(f(x)f(y)) = V_{i}^{-}(f(y)f(x)) = V_{i}^{-}(f$

2.7 Theorem: Let R and Rⁱ be any two semirings. The antihomomorphic image of a bipolar-valued multi fuzzy normal subsemiring of R is a bipolar-valued multi fuzzy normal subsemiring of Rⁱ.

Proof: Let $f : R \to R^{i}$ be an antihomomorphism. Let V = f(A) where A is a bipolar-valued multi fuzzy normal subsemiring of R. We have to prove that V is a bipolar-valued multi fuzzy normal subsemiring of R^{i} . Now for f(x), f(y) in G^{i} , $V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(y+x)) \ge A_{i}^{+}(y+x) = A_{i}^{+}(x+y) \le V_{i}^{+}(f(x+y)) = V_{i}^{+}(f(y)+f(x))$ which implies that $V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(y)+f(x))$. And $V_{i}^{+}(f(x)f(y)) = V_{i}^{+}(f(yx)) \ge A_{i}^{+}(yx) = A_{i}^{+}(yx) = A_{i}^{+}(xy) \le V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(y)+f(x))$. And $V_{i}^{+}(f(x)f(y)) = V_{i}^{+}(f(x)+f(y)) = V_{i}^{-}(f(y+x)) \le A_{i}^{-}(y+x) = A_{i}^{-}(x+y) \ge V_{i}^{-}(f(x+y)) = V_{i}^{-}(f(y)+f(x))$ which implies that $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y)+f(x))$. And $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y)+f(x))$. And $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y)+f(x)) \le A_{i}^{-}(yx) = A_{i}^{-}(xy) \ge V_{i}^{-}(f(xy)) = V_{i}^{-}(f(y)+f(x))$ which implies that $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y)+f(x))$. And $V_{i}^{-}(f(y)+f(x))$. Hence V is a bipolar-valued multi fuzzy normal subsemiring of R^{i} .

2.8 Theorem: Let R and R^1 be any two semirings. The antihomomorphic preimage of a bipolar-valued multi fuzzy normal subsemiring of R^1 is a bipolar-valued multi fuzzy normal subsemiring of R.

Proof: Let $f : R \to R^{i}$ be an antihomomorphism. Let V = f(A) where V is a bipolar-valued multi fuzzy normal subsemiring of R^{i} . We have to prove that A is a bipolar-valued multi fuzzy normal subsemiring of R. Let x and y in R. Now $A_{i}^{+}(x+y) = V_{i}^{+}(f(x+y)) = V_{i}^{+}(f(y)+f(x)) = V_{i}^{+}(f(x)+f(y)) = V_{i}^{+}(f(y+x))$ = $A_{i}^{+}(y+x)$ which implies that $A_{i}^{+}(x+y) = A_{i}^{+}(y+x)$. And $A_{i}^{+}(xy) = V_{i}^{+}(f(xy)) = V_{i}^{+}(f(y)f(x)) = V_{i}^{+}(f(x)f(y)) =$ $V_{i}^{+}(f(yx)) = A_{i}^{+}(yx)$ which implies that $A_{i}^{+}(xy) = A_{i}^{+}(yx)$. Also $A_{i}^{-}(x+y) = V^{-}(f(x+y)) = V_{i}^{-}(f(y)+f(x)) =$ $V_{i}^{-}(f(x)+f(y)) = V_{i}^{-}(f(y+x)) = A_{i}^{-}(y+x)$ which implies that $A_{i}^{-}(x+y) = A_{i}^{-}(y+x)$. And $A_{i}^{-}(xy) = V^{-}(f(xy)) =$ $V_{i}^{-}(f(y)f(x)) = V_{i}^{-}(f(x)f(y)) = V_{i}^{-}(f(yx)) = A_{i}^{-}(yx)$ which implies that $A_{i}^{-}(xy) = A_{i}^{-}(yx)$. Hence A is a bipolar-valued multi fuzzy normal subsemiring of R.

REFERENCES

- Anitha.M.S., Muruganantha Prasad & K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.
- [2]. Anthony.J.M and H.Sherwood, fuzzy groups Redefined, Journal of mathematical analysis and applications, 69(1979),124 -130.
- [3]. Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11) (2009), 1404-1411.

- [4]. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.
- [5]. F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131(1988), 537 -553.
- [6]. W.L.Gau and D.J. Buehrer, Vague sets, IEEE Transactons on Systems, Man and Cybernetics, 23(1993), 610-614.
- [7]. Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays.Math. Sci. Soc. (2) 32(3) (2009), 361–373.
- [8]. K.M.Lee, Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
- [9]. K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. J. fuzzy Logic Intelligent Systems, 14 (2) (2004), 125-129.
- [10]. Mustafa Akgul, some properties of fuzzy groups, Journal of mathematical analysis and applications, 133(1988), 93 -100.
- [11]. Samit Kumar Majumder, Bipolar Valued fuzzy Sets in Γ-Semigroups, Mathematica Aeterna, Vol. 2, no. 3(2012), 203 – 213.
- [12]. Young Bae Jun and Seok Zun Song, Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets, Scientiae Mathematicae Japonicae Online, (2008), 427-437.
- [13]. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.