

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

http://www.bomsr.com

RESEARCH ARTICLE

A Peer Reviewed International Research Journal

BIPOLAR INTERVAL VALUED FUZZY SUBGROUPS OF A GROUP

A.BALASUBRAMANIAN¹, K.L.MURUGANANTHA PRASAD², K.ARJUNAN²

¹Department of Mathematics, Alagappa Government Arts College, Karaikudi, Tamilnadu, India ²Department of Mathematics, H.H.The Rajahs College, Pudukkottai, Tamilnadu, India

ABSTRACT

In this paper, we study some of the properties of bipolar interval valued fuzzy subgroup of a group and prove some results on these.

KEY WORDS: Bipolar valued fuzzy set, bipolar interval valued fuzzy set, bipolar interval valued fuzzy subgroup.

©KY PUBLICATIONS

INTRODUCTION

In 1965, Zadeh [14] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc [6]. Lee [8] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [8, 9]. Somasundara Moorthy.M.G & K.Arjunan [12] introduced the interval valued fuzzy subrings of a ring under homomorphism. In this paper we introduce the concept of bipolar interval valued fuzzy subgroup and established some results.

1.PRELIMINARIES

1.1 Definition: A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form $A = \{ < x, A^{+}(x), A^{-}(x) > / x \in X \}$, where $A^{+} : X \rightarrow [0, 1]$ and $A^{-} : X \rightarrow [-1, 0]$. The positive membership degree $A^{+}(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued

fuzzy set A and the negative membership degree $A^{-}(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A. If $A^{+}(x) \neq 0$ and $A^{-}(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for A and if $A^{+}(x) = 0$ and $A^{-}(x) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $A^{+}(x) \neq 0$ and $A^{-}(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X.

1.2 Example: A = { < a, 0.5, -0.3 >, < b, 0.1, -0.7 >, < c, 0.5, -0.4 >} is a bipolar valued fuzzy subset of X= {a, b, c }.

1.3 Definition: A bipolar interval valued fuzzy set (BIVFS) [A] in X is defined as an object of the form $[A] = \{ \langle x, [A]^+(x), [A]^-(x) \rangle / x \in X \}$, where $[A]^+ : X \rightarrow D[0, 1]$ and $[A]^- : X \rightarrow D[-1, 0]$. The positive membership degree $[A]^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar interval valued fuzzy set [A] and the negative membership degree $[A]^-(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar interval valued fuzzy set [A] and the negative membership degree $[A]^-(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar interval valued fuzzy set [A]. If $[A]^+(x) \neq [0, 0]$ and $[A]^-(x) = [0, 0]$, it is the situation that x is regarded as having only positive satisfaction for [A] and if $[A]^+(x) = [0, 0]$ and $[A]^-(x) \neq [0, 0]$, it is the situation that x does not satisfy the property of [A], but somewhat satisfies the counter property of [A]. It is possible for an element x to be such that $[A]^+(x) \neq [0, 0]$ and $[A]^-(x) \neq [0, 0]$ when the membership function of the property overlaps that of its counter property over some portion of X.

1.4 Example: [A] = { < a, [0.5, 0.6], [-0.6, -0.4] >, < b, [0.1, 0.4], [-0.7, -0.5] >, < c, [0.5, 0.6], [-0.6, -0.4] >} is a bipolar interval valued fuzzy subset of X = {a, b, c}.

1.5 Definition: Let G be a group. A bipolar interval valued fuzzy subset [A] of G is said to be a bipolar interval valued fuzzy subgroup of G if the following conditions are satisfied

(i) $[A]^{+}(xy) \ge rmin \{ [A]^{+}(x), [A]^{+}(y) \}$

(ii) $[A]^{+}(x^{-1}) \ge [A]^{+}(x)$

(iii) $[A]^{-}(xy) \le \operatorname{rmax} \{ [A]^{-}(x), [A]^{-}(y) \}$

(iv) $[A]^{-}(x^{-1}) \leq [A]^{-}(x)$ for all x and y in G.

1.6 Example: Let $G = \{ 1, -1, i, -i \}$ be a group with respect to the ordinary multiplication. Then $[A] = \{ < 1, [0.5, 0.5], [-0.6, -0.6] >, < -1, [0.4, 0.4], [-0.5, -0.5] >, < i, [0.2, 0.2], [-0.4, -0.4] >, < -i, [0.2, 0.2], [-0.4, -0.4] > \}$ is a bipolar interval valued fuzzy subgroup of G.

1.7 Definition: Let G be a group. A bipolar interval valued fuzzy subgroup [A] of G is said to be a bipolar interval valued fuzzy normal subgroup of G if

(i) $[A]^+(xy) = [A]^+(yx)$

(ii) $[A]^{-}(xy) = [A]^{-}(yx)$ for all x and y in G.

1.8 Definition: Let [A] be a bipolar interval valued fuzzy subgroup of a group G. For any $a \in G$, a[A] defined by $(a[A]^+)(x) = [A]^+(a^{-1}x)$ and $(a[A]^-)(x) = [A]^-(a^{-1}x)$, for every $x \in G$ is called the bipolar interval valued fuzzy coset of the group G.

1.9 Definition: Let [A] be a bipolar interval valued fuzzy subgroup of a group G and $H = \{x \in G | (A)^+(x) = [A]^+(x) = [A]^-(x) = [A]^-(e) \}$, then o([A]), order of [A] is defined as o([A]) = o(H).

1.10 Definition: Let [A] and [B] be two bipolar interval valued fuzzy subgroups of a group G. Then [A] and [B] are said to be conjugate bipolar interval valued fuzzy subgroup of G if for some $g \in G$, $[A]^+(x) = [B]^+(g^{-1}xg)$ and $[A]^-(x) = [B]^-(g^{-1}xg)$, for every $x \in G$.

1.11 Definition: Let [A] be a bipolar interval valued fuzzy subgroup of a group G. Then for any a and b in G, a bipolar interval valued fuzzy middle coset a[A]b of G is defined by $(a[A]^+b)(x) = [A]^+(a^{-1}xb^{-1})$ and $(a[A]^-b)(x) = [A]^-(a^{-1}xb^{-1})$ for every $x \in G$.

2. PROPERTIES:

2.1 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G. If $[A]^+(x) < [A]^+(y)$ and $[A]^-(x) > [A]^-(y)$ for some x and y in G, then $[A]^+(xy) = [A]^+(x) = [A]^+(yx)$ and $[A]^-(xy) = [A]^-(x) = [A]^-(yx)$.

Proof: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G. Let $[A]^+(x) < [A]^+(y)$ and $[A]^-(x) > [A]^-(y)$ for some x and y in G. Now $[A]^+(xy) \ge rmin \{[A]^+(x), [A]^+(y)\} = [A]^+(x)$; and $[A]^+(x) = [A]^+(xyy^{-1}) \ge rmin\{ [A]^+(xy), [A]^+(y)\} = [A]^+(xy)$. Also $[A]^+(yx) \ge rmin\{ [A]^+(y), [A]^+(x)\} = [A]^+(x)$; and $[A]^+(x) = [A]^+(y^{-1}yx) \ge rmin\{ [A]^+(y), [A]^+(y)\} = [A]^+(yx)$. Therefore $[A]^+(xy) = [A]^+(x) = [A]^+(yx)$. Now $[A]^-(xy) \le rmax\{ [A]^-(x), [A]^-(y)\} = [A]^-(x)$; and $[A]^-(x) = [A]^-(y^{-1}yx) \le rmax\{ [A]^-(y), [A]^-(y)\} = [A]^-(x)$; and $[A]^-(x) = [A]^-(y^{-1}yx) \le rmax\{ [A]^-(y), [A]^-(y)\} = [A]^-(yx)$.

2.2 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G. If $[A]^+(x) < [A]^+(y)$ and $[A]^-(x) < [A]^-(y)$ for some x and y in G, then $[A]^+(xy) = [A]^+(x) = [A]^+(yx)$ and $[A]^-(xy) = [A]^-(y) = [A]^-(yx)$.

Proof: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G. Let $[A]^+(x) < [A]^+(y)$ and $[A]^-(x) < [A]^-(y)$ for some x and y in G. Now $[A]^+(xy) \ge rmin \{ [A]^+(x), [A]^+(y) \} = [A]^+(x)$; and $[A]^+(x) = [A]^+(xyy^{-1}) \ge rmin\{ [A]^+(xy), [A]^+(y) \} = [A]^+(xy)$. And $[A]^+(yx) \ge rmin\{ [A]^+(y), [A]^+(x) \} = [A]^+(x)$; and $[A]^+(x) = [A]^+(y^{-1}yx) \ge rmin\{ [A]^+(y), [A]^+(y) \} = [A]^+(yx)$. Therefore $[A]^+(xy) = [A]^+(x) = [A]^+(yx)$. Now $[A]^-(xy) \le rmax \{ [A]^-(x), [A]^-(y) \} = [A]^-(y)$; and $[A]^-(x^{-1}xy) \le rmax \{ [A]^-(x), [A]^-(xy) \} = [A]^-(x)$; And $[A]^-(yx) \le rmax \{ [A]^-(y), [A]^-(x) \} = [A]^-(y)$; and

 $[A]^{-}(y) = [A]^{-}(yxx^{-1}) \le rmax \{ [A]^{-}(yx), [A]^{-}(x) \} = [A]^{-}(yx).$ Therefore $[A]^{-}(xy) = [A]^{-}(y) = [A]^{-}(yx).$

2.3 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G. If $[A]^+(x) > [A]^+(y)$ and $[A]^-(x) > [A]^-(y)$ for some x and y in G, then $[A]^+(xy) = [A]^+(y) = [A]^+(yx)$ and $[A]^-(xy) = [A]^-(x) = [A]^-(yx)$.

Proof: It is trivial.

2.4 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G. If $[A]^+(x) > [A]^+(y)$ and $[A]^-(x) < [A]^-(y)$ for some x and y in G, then $[A]^+(xy) = [A]^+(y) = [A]^+(yx)$ and $[A]^-(xy) = [A]^-(y) = [A]^-(yx)$.

Proof: It is trivial.

2.5 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a finite group G, then o([A]) divides o(G).

Proof: Let [A] be a bipolar interval valued fuzzy subgroup of a finite group G with e as its identity element. Clearly H = { $x \in G / [A]^+(x) = [A]^+(e)$ and $[A]^-(x) = [A]^-(e)$ } is a subgroup of the group G. By Lagranges theorem o(H) | o(G).

Hence by the definition of the order of the bipolar interval valued fuzzy subgroup of the group G, we have $o([A]) \mid o(G)$.

2.6 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ and $[B] = \langle [B]^+, [B]^- \rangle$ be two bipolar interval valued fuzzy subsets of a abelian group G. Then A and B are conjugate bipolar interval valued fuzzy subsets of the group G if and only if A = B.

Proof: Let A and B be conjugate bipolar interval valued fuzzy subsets of group G, then for some $y \in G$, we have $[A]^{+}(x) = [B]^{+}(y^{-1}xy) = [B]^{+}(y^{-1}yx) = [B]^{+}(ex) = [B]^{+}(x)$. Therefore $[A]^{+}(x) = [B]^{+}(x)$. And $[A]^{-}(x) = [B]^{-}(y^{-1}xy) = [B]^{-}(y^{-1}yx) = [B]^{-}(ex) = [B]^{-}(x)$. Therefore $[A]^{-}(x) = [B]^{-}(x)$. Hence [A] = [B]. Conversely if [A] = [B] then for the identity element e of group G, we have $[A]^{+}(x) = [B]^{+}(e^{-1}xe)$ and $[A]^{-}(x) = [B]^{-}(e^{-1}xe)$ for every $x \in G$. Hence [A] and [B] are conjugate bipolar interval valued fuzzy subsets of the group G.

2.7 Theorem: If $[A] = \langle [A]^+, [A]^- \rangle$ and $[B] = \langle [B]^+, [B]^- \rangle$ are conjugate bipolar interval valued fuzzy subgroups of the group G, then o([A]) = o([B]).

Proof: Let [A] and [B] are conjugate bipolar interval valued fuzzy subgroups of the group G.

Now o([A]) = order of { $x \in G / [A]^+(x) = [A]^+(e)$ and $[A]^-(x) = [A]^-(e)$ } = order of { $x \in G / [B]^+(y^{-1}xy) = [B]^+(y^{-1}ey)$ and $[B]^-(y^{-1}xy) = [B]^-(y^{-1}ey)$ } = order of { $x \in G / [B]^+(x) = [B]^+(e)$ and $[B]^-(x) = [B]^-(e)$ }

= o([B]).

Hence o([A]) = o([B]).

2.8 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy normal subgroup of a group G. Then for any y in G we have $[A]^+(yxy^{-1}) = [A]^+(y^{-1}xy)$ and $[A]^-(yxy^{-1}) = [A]^-(y^{-1}xy)$ for every $x \in G$.

Proof: Let [A] be a bipolar interval valued fuzzy normal subgroup of a group G.

For any y in G. Then we have $[A]^+(yxy^{-1}) = [A]^+(x) = [A]^+(xyy^{-1}) = [A]^+(y^{-1}xy)$.

Therefore $[A]^+(yxy^{-1}) = [A]^+(y^{-1}xy)$.

And $[A]^{-}(yxy^{-1}) = [A]^{-}(x) = [A]^{-}(xyy^{-1}) = [A]^{-}(y^{-1}xy)$.

Therefore $[A]^{-}(yxy^{-1}) = [A]^{-}(y^{-1}xy)$.

2.9 Theorem: A bipolar interval valued fuzzy subgroup $[A] = \langle [A]^+, [A]^- \rangle$ of a group G is normalized if and only if $[A]^+(e) = [1, 1]$ and $[A]^-(e) = [0, 0]$ where e is the identity element of the group G.

Proof: If [A] is normalized then there exists $x \in G$ such that $[A]^+(x) = [1, 1]$ and $[A]^-(x) = [0, 0]$, but by properties of a bipolar interval valued fuzzy subgroup [A] of the group G, $[A]^+(x) \leq [A]^+(e)$ and $[A]^-(x) \geq [A]^-(e)$ for every $x \in G$.

since $[A]^+(x) = [1, 1]$ and $[A]^-(x) = [0, 0]$ and $[A]^+(x) \le [A]^+(e)$ and $[A]^-(x) \ge [A]^-(e)$.

Therefore $[1, 1] \le [A]^+(e)$ and $[0, 0] \ge [A]^-(e)$. But $[1, 1] \ge [A]^+(e)$ and $[0, 0] \le [A]^-(e)$.

Hence $[A]^{+}(e) = [1, 1]$ and $[A]^{-}(e) = [0, 0]$.

Conversely if $[A]^+(e) = [1, 1]$ and $[A]^-(e) = [0, 0]$, then by the definition of normalized bipolar interval valued fuzzy subset [A] is normalized.

2.10 Theorem: If $[A] = \langle [A]^+$, $[A]^- \rangle$ is a bipolar interval valued fuzzy subgroup of a group G, then for any a in G the bipolar interval valued fuzzy middle coset $a[A]a^{-1}$ of G is also a bipolar interval valued fuzzy subgroup of a group G.

Proof: Let [A] is a bipolar interval valued fuzzy subgroup of a group G and a in G. To prove $a[A]a^{-1} = (x, a[A]^+a^{-1}, a[A]^-a^{-1})$ is a bipolar interval valued fuzzy subgroup of G. Let x and y in G.

Then (a $[A]^+a^{-1}$)(xy⁻¹) = $[A]^+(a^{-1}xy^{-1}a)$

 $= [A]^{+}(a^{-1}xaa^{-1}y^{-1}a)$ $= [A]^{+}(a^{-1}xa(a^{-1}ya)^{-1})$ $\geq rmin \{ [A]^{+}(a^{-1}xa), [A]^{+}(a^{-1}ya) \}$ $= rmin \{ (a [A]^{+}a^{-1})(x), (a [A]^{+}a^{-1})(y) \}.$ Therefore (a [A]^{+}a^{-1})(xy^{-1}) \geq rmin \{ (a [A]^{+}a^{-1})(x), (a [A]^{+}a^{-1})(y) \}.
And (a [A]^{-}a^{-1})(xy^{-1}) = [A]^{-}(a^{-1}xy^{-1}a) $= [A]^{-}(a^{-1}xaa^{-1}y^{-1}a)$ $= [A]^{-}(a^{-1}xa(a^{-1}ya)^{-1})$ $\leq rmax \{ [A]^{-}(a^{-1}xa), [A]^{-}(a^{-1}ya) \}$ $= rmax \{ (a [A]^{-}a^{-1})(x), (a [A]^{-}a^{-1})(y) \}.$

Therefore (a $[A]^{-}a^{-1})(xy^{-1}) \le rmax \{ (a <math>[A]^{-}a^{-1})(x), (a [A]^{-}a^{-1})(y) \}$. Hence $a[A]a^{-1}$ is a bipolar interval valued fuzzy subgroup of a group G. **2.11 Theorem:** Let $[A] = \langle [A]^+$, $[A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G and $a[A]a^{-1}$ be a bipolar interval valued fuzzy middle coset of the group G, then $o(a[A]a^{-1}) = o([A])$ for any $a \in G$.

Proof: Let [A] be a bipolar interval valued fuzzy subgroup of a group G and $a \in G$. By Theorem 2.10, the bipolar interval valued fuzzy middle coset $a[A]a^{-1}$ is a bipolar interval valued fuzzy subgroup of a group G. Further by the definition of a bipolar interval valued fuzzy middle coset of the group G we have $(a[A]^+a^{-1})(x) = [A]^+(a^{-1}xa)$ and $(a[A]^-a^{-1})(x) = [A]^-(a^{-1}xa)$ for every x in G.

Hence for any a in G, [A] and $a[A]a^{-1}$ are conjugate bipolar interval valued fuzzy subgroup of the group G as there exists $a \in G$ such that $(a [A]^*a^{-1})(x) = [A]^*(a^{-1}xa)$ and $(a [A]^-a^{-1})(x) = [A]^-(a^{-1}xa)$ for every x in G. By Theorem 2.6, $o(a[A]a^{-1}) = o([A])$ for any a in G.

2.12 Theorem: Let $[A] = \langle [A]^+, [A]^- \rangle$ be a bipolar interval valued fuzzy subgroup of a group G and $[B] = \langle [B]^+, [B]^- \rangle$ be a bipolar interval valued fuzzy subset of a group G. If [A] and [B] are conjugate bipolar interval valued fuzzy subsets of the group G then [B] is a bipolar interval valued fuzzy subgroup of a group G.

Proof: Let [A] be a bipolar interval valued fuzzy subgroup of a group G and [B] be a bipolar interval valued fuzzy subset of a group G. And let [A] and [B] are conjugate bipolar interval valued fuzzy subsets of the group G. To prove [B] is a bipolar interval valued fuzzy subgroup of the group G. Let x and y in G. Then xy^{-1} in G.

Now, $[B]^{+}(xy^{-1}) = [A]^{+}(g^{-1}xy^{-1}g) = [A]^{+}(g^{-1}xgg^{-1}y^{-1}g) = [A]^{+}(g^{-1}xg(g^{-1}yg)^{-1}) \ge rmin \{[A]^{+}(g^{-1}xg), [A]^{+}(g^{-1}yg) \} = rmin \{[B]^{+}(x), [B]^{+}(x), [B]^{+}(y) \}$. Therefore $[B]^{+}(xy^{-1}) \ge rmin \{[B]^{+}(x), [B]^{+}(y) \}$. And $[B]^{-}(xy^{-1}) = [A]^{-}(g^{-1}xy^{-1}g) = [A]^{-}(g^{-1}xgg^{-1}yg)^{-1}) \le rmax \{ [A]^{-}(g^{-1}xg), [A]^{-}(g^{-1}yg) \} = rmax \{ [B]^{-}(x), [B]^{-}(y) \}$. Therefore $[B]^{-}(xy^{-1}) \le rmax \{ [A]^{-}(g^{-1}xg), [A]^{-}(g^{-1}yg) \} = rmax \{ [B]^{-}(x), [B]^{-}(y) \}$.

Hence [B] is a bipolar interval valued fuzzy subgroup of the group G.

2.13 Theorem: Let a bipolar interval valued fuzzy subgroup $[A] = \langle [A]^+, [A]^- \rangle$ of a group G be conjugate to a bipolar interval valued fuzzy subgroup $[M] = \langle [M]^+, [M]^- \rangle$ of G and a bipolar interval valued fuzzy subgroup $[B] = \langle [B]^+, [B]^- \rangle$ of a group H be conjugate to a bipolar interval valued fuzzy subgroup $[N] = \langle [N]^+, [N]^- \rangle$ of H. Then a bipolar interval valued fuzzy subgroup $[A] \times [B] = \langle ([A] \times [B])^+, ([A] \times [B])^- \rangle$ of a group G × H is conjugate to a bipolar interval valued fuzzy subgroup $[M] \times [N] = \langle ([M] \times [N])^+, ([M] \times [N])^- \rangle$ of G × H.

Proof: Let [A] and [B] be bipolar interval valued fuzzy subgroups of the groups G and H. Let x, x^{-1} and f be in G and y, y^{-1} and g be in H. Then (x, y), (x^{-1} , y^{-1}) and (f, g) are in G×H. Now, ([A]×[B])⁺ (f, g) = rmin {[A]⁺(f), [B]⁺(g) }= rmin{[M]⁺(xfx^{-1}), [N]⁺(ygy^{-1}) }

 $=([M]\times[N])^{+}(xfx^{-1}, ygy^{-1})=([M]\times[N])^{+}[(x,y)(f, g)(x^{-1}, y^{-1})]=([M]\times[N])^{+}[(x,y)(f,g)(x,y)^{-1}].$

Therefore $([A]\times[B])^{+}(f, g) = ([M]\times[N])^{+}[(x, y)(f, g)(x, y)^{-1}]$. And $([A]\times[B])^{-}(f, g) = rmax \{ [A]^{-}(f), [B]^{-}(g) \} = rmax \{ [M]^{-}(xf x^{-1}), [N]^{-}(yg y^{-1}) \} = ([M]\times[N])^{-} (xf x^{-1}, yg y^{-1}) = ([M]\times[N])^{-}[(x, y)(f, g)(x^{-1}, y^{-1})] = ([M]\times[N])^{-}[(x, y)(f, g)(x, y)^{-1}]$. Therefore $([A]\times[B])^{-}(f, g) = ([M]\times[N])^{-}[(x, y)(f, g)(x, y)^{-1}]$. Hence a bipolar interval valued fuzzy subgroup $[A]\times[B]$ of a group G×H is conjugate to a bipolar interval valued fuzzy subgroup $[M]\times[N]$ of G×H.

REFERENCES

- Anitha.M.S, K.L.Muruganantha Prasad & K.Arjunan, Notes on Bipolar valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2, No. 3, 52-59, 2013.
- [2]. Anthony.J.M. and Sherwood.H(1979), Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124 -130.

- [3]. Arsham Borumand Saeid(2009), bipolar interval valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11): 1404-1411.
- [4]. Azriel Rosenfeld(1971), Fuzzy groups, Journal of mathematical analysis and applications 35, 512-517.
- [5]. Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S.,(1988) A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131, 537 -553.
- [6]. Gau, W.L. and D.J. Buehrer(1993), Vague sets, IEEE Transactons on Systems, Man and Cybernetics, 23: 610-614.
- [7]. Kyoung Ja Lee(2009), bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras,
 Bull. Malays.Math. Sci. Soc. (2) 32(3), 361–373.
- [8]. Lee, K.M.(2000), Bipolar interval valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, pp: 307-312.
- [9]. Lee, K.M.(2004), Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. J. Fuzzy Logic Intelligent Systems, 14 (2): 125-129.
- [10]. Mustafa Akgul(1988), some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93 -100.
- [11]. Samit Kumar Majumder(2012), Bipolar Valued Fuzzy Sets in Γ-Semigroups, Mathematica Aeterna, Vol. 2, no. 3, 203 213.
- [12]. Somasundara Moorthy.M.G & K.Arjunan, Interval valued fuzzy subrings of a ring under homomorphism, International Journal of Scientific Research, Vol. 3, Iss. 4, 292-296 (2014).
- [13]. Young Bae Jun and Seok Zun Song(2008), Subalgebras and closed ideals of BCH-algebras based on bipolar interval valued fuzzy sets, Scientiae Mathematicae Japonicae Online, 427-437.
- [14]. Zadeh, L.A.(1965), Fuzzy sets, Inform. And Control, 8: 338-353.