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INTRODUCTION 

 In 1965, the fuzzy subset was introduced by L.A.Zadeh [9], after that several researchers 

explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups was 

introduced by Azriel Rosenfeld [2]. Interval-valued fuzzy sets were introduced independently by 

Zadeh [10], Grattan-Guiness [3], Jahn [4], in the seventies, in the same year. An interval valued fuzzy 

set (IVF) is defined by an interval-valued membership function. Jun.Y.B and Kin.K.H [5] defined an 

interval valued fuzzy R-subgroups of nearrings. M.G.Somasundra Moorthy & K.Arjunan [7, 8] defined 

interval valued fuzzy subrings of a ring. In this paper, we introduce the some theorems in anti 

interval valued fuzzy (denoted as anti I-fuzzy) subbigroup of a bigroup. 

1.PRELIRMINARIES: 

1.1 Definition: A set (G, + ,  ) with two binary operations +  and   is called a bigroup if there exist 

two proper subsets G1 and G2 of G such that (i) G = G1G2 (ii) (G1 , + ) is a group (iii) (G2 ,  ) is a group. 

1.2 Definition: Let X be a non–empty set. A fuzzy subset A of X is a function  A: X→ *0, 1+.  

1.3 Definition: Let G = (G1G2 , + ,  ) be a bigroup. Then a fuzzy set A of G is said to be a fuzzy 

subbigroup of G if there exist two fuzzy subsets A1 of G1 and A2 of G2 such that (i) A = A1A2 (ii) A1 is a 

fuzzy subgroup of (G1 , +) (iii) A2 is a fuzzy subgroup  of (G2 ,  ). 

1.4 Definition: Let X be any nonempty set. A mapping [M] : X  D[0, 1] is called an interval valued 

fuzzy subset (I-fuzzy subset) of X, where D[0,1] denotes the family of all closed subintervals of [0,1] 

and [M](x) = [M(x), M+(x)], for all x in X, where M and M+ are fuzzy subsets of X such that M(x) ≤ 
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M+(x), for all x in X. Thus M(x) is an interval (a closed subset of [0,1] ) and not a number from the 

interval [0,1] as in the case of fuzzy subset.  

1.5 Definition: Let [M] = { x, [M(x), M+(x)]  / xX }, [N] = { x, [N(x), N+(x)]  / xX} be any two 

interval valued fuzzy subsets of X. We define the following relations and operations: 

(i)    [M]  [N] if and only if M(x) ≤ N(x) and M+(x) ≤ N+(x), for all x in X. 

(ii)   [M] = [N] if and only if M(x) = N(x) and M+(x) = N+(x), for all x in X. 

 (iii) [M]  [N] = {  x, [ min { M(x), N(x)}, min { M+(x), N+(x)} ]  / xX }. 

(iv) [M]  [N] = {  x, [ max { M(x), N(x)}, max { M+(x), N+(x)} ]  / xX }. 

(v)  [M] C = [1, 1]  [M] = {  x, [ 1 M+(x), 1- M(x)]  / xX }. 

1.6 Definition: Let G = (G1G2, + ,  ) be a bigroup. The I-fuzzy subset [A]: GD[0, 1] of G is said to 

be a I-fuzzy subbigroup of G if there exist two I-fuzzy subsets [A1]: G1D[0, 1] of G1 and [A2]: 

G2D[0, 1] of G2 such that (i) [A] = [A1][A2]                        

(ii) [A1] is a I-fuzzy subgroup of (G1, +)   

(iii) [A2] is a I-fuzzy subgroup of (G2 ,  ). 

1.7 Definition: Let G = (G1G2, + ,  ) be a bigroup. The I-fuzzy subset [A]: GD[0, 1] of G is said to 

be an anti I-fuzzy subbigroup of G if there exist two I-fuzzy subsets 

 [A1]: G1D[0, 1] of G1 and [A2]: G2D[0, 1] of G2 such that (i) [A] = [A1][A2]                        

(ii) [A1] is an anti I-fuzzy subgroup of (G1, +)   

(iii) [A2] is an anti I-fuzzy subgroup of (G2 ,  ). 

2. PROPERTIES: 

2.1 Theorem: If [A] = [M][N] is an anti I-fuzzy subbigroup of a bigroup G = EF, then [M](x) = 

[M](x), [M](x)  [M](e), [N](x
1) = [N](x), [N](x)  [N](e') for all x, e in E and x, e' in F.  

Proof: Let x, e in E and x, e' in F. Now [M](x) = [M]( ((x)))  [M](x)  [M](x). Therefore [M](x) = 

[M](x) for all x in E. And [M](e) = [M]( xx)  rmax { [M](x), [M](x) }= [M](x). Therefore [M](e)  

[M](x) for all x, e in E. Also [N](x) = [N]((x
1)1)  [N](x

1)  [N](x). Therefore [N](x
1) = [N](x) for all x 

in F. And [N](e') = [N](xx1)  rmax{ [N](x), [N](x
1) }= [N](x). Therefore [N](e')  [N](x) for all x, e' in 

F. 

2.2 Theorem: If [A] = [M][N] is an anti I-fuzzy subbigroup of a bigroup G = EF, then (i) [M](xy) = 

[M](e) gives [M](x) = [M](y) for all x, y and e in E 

(ii) [N](xy1) = [N](e') gives [N](x) = [N](y) for all x, y and e' in F. 

Proof: (i) Let x, y and e in E. Then [M](x) = [M](xy+y)  rmax { [M](xy), [M](y) } = rmax { [M](e), 

[M](y) }= [M](y) = [M](yx+x)  rmax { [M](yx), [M](x) }= rmax {[M](e), [M](x) }= [M](x). Therefore 

[M](x) = [M](y) for all x and y in E.  

(ii) Let x, y and e' in F. Then [N](x) = [N](xy1y)  rmax { [N](xy1), [N](y) } = rmax { [N](e'), [N](y) }= 

[N](y) = [N](yx1x)  rmax { [N](yx1), [N](x) }= rmax { [N](e'), [N](x) }= [N](x). Therefore [N](x) = 

[N](y) for all x and y in F. 

2.3 Theorem: If [A] = [M][N] is an anti I-fuzzy subbigroup of a bigroup G = EF, 

then (i) H1= { x / xE and [M](x) = [0, 0] } is either empty or a subgroup of E. 

(ii) H2 = { x / xF and [N](x) = [0, 0] } is either empty or a subgroup of F. 

(iii) K = H1  H2 is either empty or a subbigroup of G. 

Proof: If no element satisfies this condition, then H1 and H2 are empty. Also K = H1H2 is empty. (i) If 

x and y in H1, then [M]( xy)  rmax { [M](x), [M](y) } rmax { [0, 0],  [0, 0] } = [0, 0]. Therefore [M]( 

xy) = [0, 0]. We get xy in H1. Hence H1 is a subgroup of G1. (ii) If x and y in H2, then [N](xy1)  rmax 
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{ [N](x), [N](y)} = rmax {[0, 0],  [0, 0]} = [0, 0]. Therefore [N](xy1) = [0, 0]. We get xy1 in H2. Hence H2 

is a subgroup of G2. (iii) From (i) and (ii) we get K = H1H2 is a subbigroup of G. 

2.4 Theorem: If [A] = [M][N] is an anti I-fuzzy subbigroup of a bigroup G = EF, then (i) H1= { x / 

xE and [M](x) = [M](e) } is a subgroup of E 

(ii) H2 = { x / xF and [N](x) = [N](e') } is a subgroup of F 

(iii) K = H1H2 is a subbigroup of G. 

Proof: (i) Clearly e in H1 so H1 is a non empty. Let x and y be in H1. Then [M]( x–y)  rmax { [M](x), 

[M](y) }= rmax { [M](e), [M](e) }= [M](e). Therefore [M](x–y)  [M](e) for all x and y in H1. We get 

[M]( x–y) = [M](e) for all x and y in H1. Therefore x–y in H1. Hence H1 is a subgroup of E.  

(ii) Clearly e' in H2 so H2 is a non empty. Let x and y be in H2. Then [N](xy1)  rmax { [N](x), [N](y) }= 

rmax {[N](e'), [N](e') } = [N](e'). Therefore [N](xy1)  [N](e') for all x and y in H2. We get [N](xy1) = 

[N](e') for all x and y in H2. Therefore xy1 in H2. Hence H2 is a subgroup of F.  

(iii) From (i) and (ii) we get K = H1  H2 is a subbigroup of G. 

2.5 Theorem: Let [A]= [M][N] be an anti I-fuzzy subbigroup of a bigroup G = EF. 

(i) If [M](x–y) = [0, 0], then [M](x) = [M](y) for all x and y in E. 

(ii) If [N](xy1) = [0, 0], then [N](x) = [N](y) for all x and y in F. 

Proof: (i) Let x and y belongs to E. Then [M](x) = [M](x–y+y)  rmax {[M](x–y), [M](y) } = rmax { [0, 0], 

[M](y) } = [M](y) = [M](–y) = [M](–x+x–y)  rmax { [M](–x), [M](x–y) } = rmax { [M](–x), [0, 0] } = 

[M](–x) = [M](x). Therefore [M](x) = [M](y) for all x and y in E.  

(ii) Let x and y belongs to F. Then [N](x) = [N](xy-1y)  rmax {[N](xy-1), [N](y) } = rmax{ [0, 0], [N](y) } = 

[N](y) = [N](y
-1) = [N](x

-1xy-1)  rmax {[N](x
-1), [N](xy-1)} = rmax { [N](x

-1), [0, 0]} = [N](x
-1) = [N](x). 

Therefore [N](x) = [N](y) for all x and y in F. 

2.6 Theorem: If [A] = [M][N] is an anti I-fuzzy subbigroup of a bigroup G = EF, then (i) [M](x+y) = 

rmax{ [M](x), [M](y) } for each x and y in E with [M](x)  [M](y)                   

(ii) [N](xy) = rmax{ [N](x), [N](y) } for each x and y in F with [N](x)  [N](y). 

Proof: (i) Let x and y belongs to E. Assume that [M](x)  [M](y), then [M](y) = [M](x+x+y)  rmax{ 

[M](x), [M](x+y) }  rmax{ [M](x), [M](x+y)} = [M](x+y)  rmax{ [M](x), [M](y)}= [M](y). Therefore 

[M](x+y) = [M](y) = rmax{ [M](x), [M](y) } for x and y in E.  

(ii) Let x and y belongs to F. Assume that [N](x)  [N](y), then [N](y) = [N](x
-1xy)  rmax{ [N](x

-1), 

[N](xy) }  rmax{ [N](x), [N](xy) } = [N](xy)  rmax {[N](x), [N](y) }= [N ] = y).  

Therefore [N](xy) = [N](y) = rmax{ [N](x), [N](y) } for x and y in F. 

2.7 Theorem: If [A] = [M][N] and [B] = [O][P] are two anti I-fuzzy subbigroups of a bigroup G = 

EF, then their union [A][B] is an anti I-fuzzy subbigroup of G. 

Proof: Let [A] = [M][N] = {  x, [A](x)  / xG } where [M] = {  x, [M](x)  / xE } and [N] = {  x, 

[N](x)  / xF } and [B] = [O][P] = {  x, [B](x)  / xG } where  [O] = {  x, [O](x)  / xE } and [P] = {  

x, [P](x)  / xF }. Let [C] = [A][B] = [R][S] where [C] = {  x, C](x)  / xG }, [R] = [M] [O] = {  x, 

R](x)  / xE } and [S] = [N][P] = {  x, [S](x)  / xF }. Let x and y belong to E. Then [R](xy) = 

rmax{[M](xy), [O](xy) } rmax{rmax{ [M](x), [M](y) }, rmax { [O](x), [O](y) }}  rmaxn { rmax { 

[M](x), [O](x) }, rmax { [M](y), [O](y) }} = rmax { [R](x), [R](y) }. Therefore [R](xy)  rmax{ [R](x), 

[R](y) } for all x and y in E. Let x and y belong to F. Then [S](xy-1) = rmax{ [N](xy-1), [P](xy-1) } 

rmax{rmax{[N](x), [N](y)}, rmax{[P](x), [P](y)}} rmax{ rmax{ [N](x), [P](x)}, rmax{ [N](y), [P](y) }} = 

rmax [S](x), [S](y)}. Therefore [S](xy-1)  rmax{ [S](x), [S](y) } for all x and y in F. Hence [A][B] is an 

anti I-fuzzy subbigroup of G. 

2.8 Theorem: The union of a family of anti I-fuzzy subbigroups of a bigroup G is an anti                     
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 I-fuzzy subbigroup of G. 

Proof: It is trivial. 

2.9 Theorem: If [A] = [M][N] is an anti I-fuzzy subbigroup of a bigroup G = EF, then (i) [M](x+y) = 

[M](y+x) if and only if [M](x) = [M](y+x+y) for all x and y in E                   

(ii) [N](xy) = [N](yx) if and only if [N](x) = [N](y
-1xy) for all x and y in F. 

Proof: (i) Let x and y be in E. Assume that [M](x+y) = [M](y+x), then [M](y+x+y) = [M](y+y+x) = 

[M](e1+x) = [M](x). Therefore [M](x) = [M](y+x+y) for all x and y in E. Conversely, assume that 

[M](x) = [M](y+x+y), then [M](x+y) = [M]( x+yx+x) = [M](y+x). Therefore [M](x+y) = [M](y+x) for all 

x and y in E.  

(ii) Let x and y be in F. Assume that [N](x+y) = [N](y+x), then [N](y
-1xy) = [N](y

-1yx) = [N](e2x) = 

[N](x). Therefore [N](x) = [N](y
-1xy) for all x and y in F. Conversely, assume that [N](x) = [N](y

-1xy), 

then [N](xy) = [N](xyxx-1) = [N](yx). Therefore [N](xy) = [N](yx) for all x and y in F. 
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