Vol.3.Issue.3.2015 (Jul-Sept)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

A STUDY ON ANTI I-FUZZY SUBBIGROUP OF A BIGROUP

P. SARGUNADEVI¹, K.L.MURUGANANTHA PRASAD², K.ARJUNAN²

¹Department of mathematics, Alagappa University Evening College, Paramakudi, Tamilnadu, India. ²Department of Mathematics, H.H.The Rajahs College, Pudukkottai, Tamilnadu, India.

ABSTRACT

In this paper, we made an attempt to study the algebraic nature of anti I-fuzzy (interval valued fuzzy) subbigroup of a bigroup.

2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: Bigroup, fuzzy subset, I-fuzzy subset, fuzzy subbigroup, I-fuzzy subbigroup, anti I-fuzzy subbigroup.

©KY PUBLICATIONS

INTRODUCTION

In 1965, the fuzzy subset was introduced by L.A.Zadeh [9], after that several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups was introduced by Azriel Rosenfeld [2]. Interval-valued fuzzy sets were introduced independently by Zadeh [10], Grattan-Guiness [3], Jahn [4], in the seventies, in the same year. An interval valued fuzzy set (IVF) is defined by an interval-valued membership function. Jun.Y.B and Kin.K.H [5] defined an interval valued fuzzy R-subgroups of nearrings. M.G.Somasundra Moorthy & K.Arjunan [7, 8] defined interval valued fuzzy subrings of a ring. In this paper, we introduce the some theorems in anti interval valued fuzzy (denoted as anti I-fuzzy) subbigroup of a bigroup.

1.PRELIRMINARIES:

1.1 Definition: A set $(G, +, \bullet)$ with two binary operations + and \bullet is called a bigroup if there exist two proper subsets G_1 and G_2 of G such that (i) $G = G_1 \cup G_2$ (ii) $(G_1, +)$ is a group (iii) (G_2, \bullet) is a group. **1.2 Definition:** Let X be a non-empty set. A **fuzzy subset A** of X is a function A: $X \rightarrow [0, 1]$.

1.3 Definition: Let $G = (G_1 \cup G_2, +, \bullet)$ be a bigroup. Then a fuzzy set A of G is said to be a fuzzy subbigroup of G if there exist two fuzzy subsets A_1 of G_1 and A_2 of G_2 such that (i) $A = A_1 \cup A_2$ (ii) A_1 is a fuzzy subgroup of (G_1 , +) (iii) A_2 is a fuzzy subgroup of (G_2 , \bullet).

1.4 Definition: Let X be any nonempty set. A mapping $[M] : X \rightarrow D[0, 1]$ is called an interval valued fuzzy subset (I-fuzzy subset) of X, where D[0,1] denotes the family of all closed subintervals of [0,1] and $[M](x) = [M^{-}(x), M^{+}(x)]$, for all x in X, where M^{-} and M^{+} are fuzzy subsets of X such that $M^{-}(x) \leq M^{-}(x)$.

 $M^{+}(x)$, for all x in X. Thus $M^{-}(x)$ is an interval (a closed subset of [0,1]) and not a number from the interval [0,1] as in the case of fuzzy subset.

1.5 Definition: Let $[M] = \{\langle x, [M^{-}(x), M^{+}(x)] \rangle / x \in X \}$, $[N] = \{\langle x, [N^{-}(x), N^{+}(x)] \rangle / x \in X \}$ be any two interval valued fuzzy subsets of X. We define the following relations and operations:

(i) $[M] \subseteq [N]$ if and only if $M^{-}(x) \le N^{-}(x)$ and $M^{+}(x) \le N^{+}(x)$, for all x in X.

(ii) [M] = [N] if and only if $M^{-}(x) = N^{-}(x)$ and $M^{+}(x) = N^{+}(x)$, for all x in X.

(iii) $[M] \cap [N] = \{ \langle x, [\min \{ M^{-}(x), N^{-}(x) \}, \min \{ M^{+}(x), N^{+}(x) \}] \rangle / x \in X \}.$

(iv) $[M] \cup [N] = \{ \langle x, [max \{ M^{-}(x), N^{-}(x) \}, max \{ M^{+}(x), N^{+}(x) \}] \rangle / x \in X \}.$

(v) $[M]^{C} = [1, 1] - [M] = \{ \langle x, [1 - M^{+}(x), 1 - M^{-}(x)] \rangle / x \in X \}.$

1.6 Definition: Let $G = (G_1 \cup G_2, +, \bullet)$ be a bigroup. The I-fuzzy subset [A]: $G \rightarrow D[0, 1]$ of G is said to be a I-fuzzy subbigroup of G if there exist two I-fuzzy subsets [A₁]: $G_1 \rightarrow D[0, 1]$ of G_1 and [A₂]: $G_2 \rightarrow D[0, 1]$ of G_2 such that (i) [A] = [A₁] \cup [A₂]

(ii) $[A_1]$ is a I-fuzzy subgroup of $(G_1, +)$

(iii) $[A_2]$ is a I-fuzzy subgroup of (G_2, \bullet) .

1.7 Definition: Let $G = (G_1 \cup G_2, +, \bullet)$ be a bigroup. The I-fuzzy subset [A]: $G \rightarrow D[0, 1]$ of G is said to be an anti I-fuzzy subbigroup of G if there exist two I-fuzzy subsets

 $[A_1]: G_1 \rightarrow D[0, 1] \text{ of } G_1 \text{ and } [A_2]: G_2 \rightarrow D[0, 1] \text{ of } G_2 \text{ such that (i) } [A] = [A_1] \cup [A_2]$

(ii) $[A_1]$ is an anti I-fuzzy subgroup of $(G_1, +)$

(iii) $[A_2]$ is an anti I-fuzzy subgroup of (G_2, \bullet) .

2. PROPERTIES:

2.1 Theorem: If $[A] = [M] \cup [N]$ is an anti I-fuzzy subbigroup of a bigroup $G = E \cup F$, then $\mu_{[M]}(-x) = \mu_{[M]}(x)$, $\mu_{[M]}(x) \ge \mu_{[M]}(e)$, $\mu_{[M]}(x) \ge \mu_{[N]}(x) \ge \mu_{[N]}(e')$ for all x, e in E and x, e' in F.

Proof: Let x, e in E and x, e' in F. Now $\mu_{[M]}(x) = \mu_{[M]}((-(-x))) \le \mu_{[M]}(-x) \le \mu_{[M]}(x)$. Therefore $\mu_{[M]}(-x) = \mu_{[M]}(x)$ for all x in E. And $\mu_{[M]}(e) = \mu_{[M]}(x-x) \le \operatorname{rmax} \{ \mu_{[M]}(x), \mu_{[M]}(x) \} = \mu_{[M]}(x)$. Therefore $\mu_{[M]}(e) \le \mu_{[M]}(x)$ for all x, e in E. Also $\mu_{[N]}(x) = \mu_{[N]}((x^{-1})^{-1}) \le \mu_{[N]}(x^{-1}) \le \mu_{[N]}(x)$. Therefore $\mu_{[N]}(x^{-1}) = \mu_{[N]}(x)$ for all x in F. And $\mu_{[N]}(e') = \mu_{[N]}(xx^{-1}) \le \operatorname{rmax} \{ \mu_{[N]}(x), \mu_{[N]}(x^{-1}) \} = \mu_{[N]}(x)$. Therefore $\mu_{[N]}(e') \le \mu_{[N]}(x)$ for all x, e' in F. And $\mu_{[N]}(e') = \mu_{[N]}(xx^{-1}) \le \operatorname{rmax} \{ \mu_{[N]}(x), \mu_{[N]}(x^{-1}) \} = \mu_{[N]}(x)$. Therefore $\mu_{[N]}(e') \le \mu_{[N]}(x)$ for all x, e' in F.

2.2 Theorem: If $[A] = [M] \cup [N]$ is an anti I-fuzzy subbigroup of a bigroup $G = E \cup F$, then (i) $\mu_{[M]}(x-y) = \mu_{[M]}(e)$ gives $\mu_{[M]}(x) = \mu_{[M]}(y)$ for all x, y and e in E

(ii) $\mu_{[N]}(xy^{-1}) = \mu_{[N]}(e')$ gives $\mu_{[N](x)} = \mu_{[N](y)}$ for all x, y and e' in F.

Proof: (i) Let x, y and e in E. Then $\mu_{[M]}(x) = \mu_{[M]}(x-y+y) \le \operatorname{rmax} \{ \mu_{[M]}(x-y), \mu_{[M]}(y) \} = \operatorname{rmax} \{ \mu_{[M]}(e), \mu_{[M]}(y) \} = \mu_{[M]}(y) = \mu_{[M]}(y-x+x) \le \operatorname{rmax} \{ \mu_{[M]}(y-x), \mu_{[M]}(x) \} = \operatorname{rmax} \{ \mu_{[M]}(e), \mu_{[M]}(x) \} = \mu_{[M]}(x).$ Therefore $\mu_{[M]}(x) = \mu_{[M]}(y)$ for all x and y in E.

(ii) Let x, y and e' in F. Then $\mu_{[N]}(x) = \mu_{[N]}(xy^{-1}y) \le \operatorname{rmax} \{ \mu_{[N]}(xy^{-1}), \mu_{[N]}(y) \} = \operatorname{rmax} \{ \mu_{[N]}(e'), \mu_{[N]}(y) \} = \mu_{[N]}(yx^{-1}x) \le \operatorname{rmax} \{ \mu_{[N]}(yx^{-1}), \mu_{[N]}(x) \} = \operatorname{rmax} \{ \mu_{[N]}(e'), \mu_{[N]}(x) \} = \mu_{[N]}(x).$ Therefore $\mu_{[N]}(x) = \mu_{[N]}(y)$ for all x and y in F.

2.3 Theorem: If $[A] = [M] \cup [N]$ is an anti I-fuzzy subbigroup of a bigroup G = E \cup F,

then (i) $H_1 = \{x \mid x \in E \text{ and } \mu_{[M]}(x) = [0, 0] \}$ is either empty or a subgroup of E.

(ii) $H_2 = \{ x / x \in F \text{ and } \mu_{[N]}(x) = [0, 0] \}$ is either empty or a subgroup of F.

(iii) $K = H_1 \cup H_2$ is either empty or a subbigroup of G.

Proof: If no element satisfies this condition, then H_1 and H_2 are empty. Also $K = H_1 \cup H_2$ is empty. (i) If x and y in H_1 , then $\mu_{[M]}(x-y) \le \operatorname{rmax} \{ \mu_{[M]}(x), \mu_{[M]}(y) \} \le \operatorname{rmax} \{ [0, 0], [0, 0] \} = [0, 0]$. Therefore $\mu_{[M]}(x-y) = [0, 0]$. We get x-y in H_1 . Hence H_1 is a subgroup of G_1 . (ii) If x and y in H_2 , then $\mu_{[N]}(xy^{-1}) \le \operatorname{rmax} \{ u_{[M]}(x), u_{[M]}(y) \} \le \operatorname{rmax} \{ u_{[M]}(y) \} \ge \operatorname{rmax} \{ u_{[M]}(y) \} \ge$

{ $\mu_{[N]}(x)$, $\mu_{[N]}(y)$ } = rmax {[0, 0], [0, 0]} = [0, 0]. Therefore $\mu_{[N]}(xy^{-1})$ = [0, 0]. We get xy^{-1} in H₂. Hence H₂ is a subgroup of G₂. (iii) From (i) and (ii) we get K = H₁ \cup H₂ is a subbigroup of G. **2.4 Theorem:** If [A] = [M] \cup [N] is an anti I-fuzzy subbigroup of a bigroup G = E \cup F, then (i) H₁= { x / x \in E and $\mu_{[M]}(x) = \mu_{[M]}(e)$ } is a subgroup of E

(ii) $H_2 = \{ x \mid x \in F \text{ and } \mu_{[N]}(x) = \mu_{[N]}(e') \}$ is a subgroup of F

(iii) $K = H_1 \cup H_2$ is a subbigroup of G.

Proof: (i) Clearly e in H₁ so H₁ is a non empty. Let x and y be in H₁. Then $\mu_{[M]}(x-y) \le \operatorname{rmax} \{ \mu_{[M]}(x), \mu_{[M]}(y) \} = \operatorname{rmax} \{ \mu_{[M]}(e), \mu_{[M]}(e) \} = \mu_{[M]}(e)$. Therefore $\mu_{[M]}(x-y) \le \mu_{[M]}(e)$ for all x and y in H₁. We get $\mu_{[M]}(x-y) = \mu_{[M]}(e)$ for all x and y in H₁. Therefore x-y in H₁. Hence H₁ is a subgroup of E.

(ii) Clearly e' in H₂ so H₂ is a non empty. Let x and y be in H₂. Then $\mu_{[N]}(xy^{-1}) \leq \text{rmax} \{ \mu_{[N]}(x), \mu_{[N]}(y) \} = \text{rmax} \{ \mu_{[N]}(e'), \mu_{[N]}(e') \} = \mu_{[N]}(e')$. Therefore $\mu_{[N]}(xy^{-1}) \leq \mu_{[N]}(e')$ for all x and y in H₂. We get $\mu_{[N]}(xy^{-1}) = \mu_{[N]}(e')$ for all x and y in H₂. Therefore xy^{-1} in H₂. Hence H₂ is a subgroup of F.

(iii) From (i) and (ii) we get $K = H_1 \cup H_2$ is a subbigroup of G.

2.5 Theorem: Let $[A] = [M] \cup [N]$ be an anti I-fuzzy subbigroup of a bigroup G = E \cup F.

(i) If $\mu_{[M]}(x-y) = [0, 0]$, then $\mu_{[M]}(x) = \mu_{[M]}(y)$ for all x and y in E.

(ii) If $\mu_{[N]}(xy^{-1}) = [0, 0]$, then $\mu_{[N]}(x) = \mu_{[N]}(y)$ for all x and y in F.

Proof: (i) Let x and y belongs to E. Then $\mu_{[M]}(x) = \mu_{[M]}(x-y+y) \le \operatorname{rmax} \{\mu_{[M]}(x-y), \mu_{[M]}(y)\} = \operatorname{rmax} \{ [0, 0], \mu_{[M]}(y) \} = \mu_{[M]}(-y) = \mu_{[M]}(-x+x-y) \le \operatorname{rmax} \{ \mu_{[M]}(-x), \mu_{[M]}(x-y) \} = \operatorname{rmax} \{ \mu_{[M]}(-x), [0, 0] \} = \mu_{[M]}(-x) = \mu_{[M]}(x)$. Therefore $\mu_{[M]}(x) = \mu_{[M]}(y)$ for all x and y in E.

(ii) Let x and y belongs to F. Then $\mu_{[N]}(x) = \mu_{[N]}(xy^{-1}y) \le \operatorname{rmax} \{\mu_{[N]}(xy^{-1}), \mu_{[N]}(y)\} = \operatorname{rmax} \{[0, 0], \mu_{[N]}(y)\} = \mu_{[N]}(y^{-1}) = \mu_{[N]}(x^{-1}xy^{-1}) \le \operatorname{rmax} \{\mu_{[N]}(x^{-1}), \mu_{[N]}(xy^{-1})\} = \operatorname{rmax} \{\mu_{[N]}(x^{-1}), [0, 0]\} = \mu_{[N]}(x^{-1}) = \mu_{[N]}(x).$ Therefore $\mu_{[N]}(x) = \mu_{[N]}(y)$ for all x and y in F.

2.6 Theorem: If $[A] = [M] \cup [N]$ is an anti I-fuzzy subbigroup of a bigroup $G = E \cup F$, then (i) $\mu_{[M]}(x+y) =$ rmax{ $\mu_{[M]}(x), \mu_{[M]}(y)$ } for each x and y in E with $\mu_{[M]}(x) \neq \mu_{[M]}(y)$

(ii) $\mu_{[N]}(xy) = rmax\{ \mu_{[N]}(x), \mu_{[N]}(y) \}$ for each x and y in F with $\mu_{[N](x)} \neq \mu_{[N](y)}$.

Proof: (i) Let x and y belongs to E. Assume that $\mu_{[M]}(x) < \mu_{[M]}(y)$, then $\mu_{[M]}(y) = \mu_{[M]}(-x+x+y) \le rmax\{$ $\mu_{[M]}(-x), \ \mu_{[M]}(x+y) \} \le rmax\{ \ \mu_{[M]}(x), \ \mu_{[M]}(x+y)\} = \mu_{[M]}(x+y) \le rmax\{ \ \mu_{[M]}(x), \ \mu_{[M]}(y)\} = \mu_{[M]}(y)$. Therefore $\mu_{[M]}(x+y) = \mu_{[M]}(y) = rmax\{ \ \mu_{[M]}(x), \ \mu_{[M]}(y) \}$ for x and y in E.

(ii) Let x and y belongs to F. Assume that $\mu_{[N]}(x) < \mu_{[N]}(y)$, then $\mu_{[N]}(y) = \mu_{[N]}(x^{-1}xy) \le rmax\{ \mu_{[N]}(x^{-1}), \mu_{[N]}(xy) \} \le rmax\{ \mu_{[N]}(x), \mu_{[N]}(xy) \} = \mu_{[N]}(xy) \le rmax\{ \mu_{[N]}(x), \mu_{[N]}(y) \} = \mu_{[N]}(xy)$

Therefore $\mu_{[N]}(xy) = \mu_{[N]}(y) = rmax\{ \mu_{[N]}(x), \mu_{[N]}(y) \}$ for x and y in F.

2.7 Theorem: If $[A] = [M] \cup [N]$ and $[B] = [O] \cup [P]$ are two anti I-fuzzy subbigroups of a bigroup G = E \cup F, then their union $[A] \cup [B]$ is an anti I-fuzzy subbigroup of G.

Proof: Let $[A] = [M] \cup [N] = \{ \langle x, \mu_{[A]}(x) \rangle / x \in G \}$ where $[M] = \{ \langle x, \mu_{[M]}(x) \rangle / x \in E \}$ and $[N] = \{ \langle x, \mu_{[N]}(x) \rangle / x \in E \}$ and $[B] = [O] \cup [P] = \{ \langle x, \mu_{[B]}(x) \rangle / x \in G \}$ where $[O] = \{ \langle x, \mu_{[O]}(x) \rangle / x \in E \}$ and $[P] = \{ \langle x, \mu_{[P]}(x) \rangle / x \in F \}$. Let $[C] = [A] \cup [B] = [R] \cup [S]$ where $[C] = \{ \langle x, \mu_{C]}(x) \rangle / x \in G \}$, $[R] = [M] \cup [O] = \{ \langle x, \mu_{R]}(x) \rangle / x \in E \}$ and $[S] = [N] \cup [P] = \{ \langle x, \mu_{[S]}(x) \rangle / x \in F \}$. Let x and y belong to E. Then $\mu_{[R]}(x-y) = \max\{\mu_{[M]}(x-y), \mu_{[O]}(x-y)\} \le \max\{\max\{\mu_{[M]}(x), \mu_{[M]}(y)\}, \max\{\mu_{[M]}(x), \mu_{[O]}(x), \mu_{[O]}(y)\}\} \le \max\{\max\{\mu_{[R]}(x), \mu_{[R]}(y)\}$. Therefore $\mu_{[R]}(x-y) \le \max\{\mu_{[R]}(x), \mu_{[R]}(x)\}$ for all x and y in E. Let x and y belong to F. Then $\mu_{[S]}(xy^{-1}) = \max\{\mu_{[N]}(x), \mu_{[O]}(x)\}, \max\{\mu_{[R]}(x), \mu_{[P]}(y)\}\} \le \max\{\mu_{[R]}(x), \mu_{[N]}(x), \mu_{[N]}(x), \mu_{[N]}(x), \mu_{[N]}(y)\}$, rmax $\{\mu_{[N]}(x), \mu_{[P]}(y)\}\} = \max\{\mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x)\}$. Therefore $\mu_{[N]}(x), \mu_{[N]}(y), \mu_{[P]}(y)\}\} = \max\{\mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x)\}$. Therefore $\mu_{[N]}(x), \mu_{[N]}(y), \mu_{[P]}(y)\}\} = \max\{\mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x)\}$. Therefore $\mu_{[N]}(y), \mu_{[P]}(y)\}\} = \max\{\mu_{[S]}(x), \mu_{[S]}(y)\}$. Therefore $\mu_{[S]}(x), \mu_{[N]}(y), \mu_{[P]}(y)\}\} = \max\{\mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(x), \mu_{[S]}(y)\}$. Therefore $\mu_{[S]}(x), \mu_{[S]}(y)\}$. Therefore $\mu_{[S]}(x), \mu_{[P]}(y)\}\} = \max\{\mu_{[S]}(x), \mu_{[S]}(y)\}$. Therefore $\mu_{[S]}(x), \mu_{[N]}(y), \mu_{[P]}(y)\}$.

2.8 Theorem: The union of a family of anti I-fuzzy subbigroups of a bigroup G is an anti

I-fuzzy subbigroup of G.

Proof: It is trivial.

2.9 Theorem: If $[A] = [M] \cup [N]$ is an anti I-fuzzy subbigroup of a bigroup $G = E \cup F$, then (i) $\mu_{[M]}(x+y) = \mu_{[M]}(y+x)$ if and only if $\mu_{[M]}(x) = \mu_{[M]}(-y+x+y)$ for all x and y in E

(ii) $\mu_{[N]}(xy) = \mu_{[N]}(yx)$ if and only if $\mu_{[N]}(x) = \mu_{[N]}(y^{-1}xy)$ for all x and y in F.

Proof: (i) Let x and y be in E. Assume that $\mu_{[M]}(x+y) = \mu_{[M]}(y+x)$, then $\mu_{[M]}(-y+x+y) = \mu_{[M]}(-y+y+x) = \mu_{[M]}(-y+x+y) = \mu_{[M]}(x)$. Therefore $\mu_{[M]}(x) = \mu_{[M]}(-y+x+y)$ for all x and y in E. Conversely, assume that $\mu_{[M]}(x) = \mu_{[M]}(-y+x+y)$, then $\mu_{[M]}(x+y) = \mu_{[M]}(x+y-x+x) = \mu_{[M]}(y+x)$. Therefore $\mu_{[M]}(x+y) = \mu_{[M]}(y+x)$ for all x and y in E.

(ii) Let x and y be in F. Assume that $\mu_{[N]}(x+y) = \mu_{[N]}(y+x)$, then $\mu_{[N]}(y^{-1}xy) = \mu_{[N]}(y^{-1}yx) = \mu_{[N]}(e_2x) = \mu_{[N]}(x)$. Therefore $\mu_{[N]}(x) = \mu_{[N]}(y^{-1}xy)$ for all x and y in F. Conversely, assume that $\mu_{[N]}(x) = \mu_{[N]}(y^{-1}xy)$, then $\mu_{[N]}(xy) = \mu_{[N]}(xyxx^{-1}) = \mu_{[N]}(yx)$. Therefore $\mu_{[N]}(xy) = \mu_{[N]}(yx)$ for all x and y in F. **REFERENCE**

- [1]. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of Mathematical analysis and applications, 69,124 -130 (1979)
- [2]. Azriel Rosenfeld, Fuzzy Groups, Journal of Mathematical analysis and applications, 35, 512-517 (1971).
- [3]. Grattan-Guiness, Fuzzy membership mapped onto interval and many valued quantities, Z.Math.Logik. Grundladen Math. 22, 149-160(1975).
- [4]. Jahn.K.U., interval wertige mengen, Math Nach.68, 115-132(1975).
- [5]. Jun.Y.B and Kin.K.H, interval valued fuzzy R-subgroups of nearrings, Indian Journal of Pure and Applied Mathematics, 33(1), 71-80(2002).
- [6]. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
- [7]. M.G.Somasundara Moorthy & K.Arjunan, Interval valued fuzzy subrings of a ring under homomorphism, International Journal of Scientific Research, Vol. 3, Iss. 4, 292-296(2014).
- [8]. M.G.Somasundra Moorthy & K.Arjunan, Interval valued intuitionistic fuzzy subrings of a ring, International Journal of Engineering Research and development, Vol.10, Iss. 7, 61-66(2014).
- [9]. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).
- [10]. Zadeh.L.A, The concept of a linguistic variable and its application to approximation reasoning-1, Inform. Sci. 8, 199-249(1975).