Vol.3.Issue.3.2015 (Jul-Sept)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

A COMMON RANDOM FIXED POINT THEOREM IN HILBERT SPACE

NEERAJ MALVIYA¹, GEETA AGRAWAL²

¹NRI Institute of Information Science and Technology, Bhopal, India maths.neeraj@gmail.com

²Department of Mathematics, Govt. Motilal Vigyan Mahavidyalaya, Bhopal (M.P.) agrawalgeeta1961@gmail.com

NEERAJ MALVIYA

GEETA AGRAWAL

ABSTRACT

The object of this paper is to obtain a common random fixed point theorems for a pair of non –commuting continuous random operators defined on a non empty closed subset of a separable Hilbert space.

Keywords: Separable Hilbert space, random operators, common random fixed point.

Mathematics Subject classification: 47H10, 54H25

©KY PUBLICATIONS

1. INTRODUCTION

The study of random fixed points have attracted much attention, some of the recent literatures in random fixed point may be noted in [1 to 9]. In this paper we construct a sequence of measurable functions and consider its convergence to the common random fixed point of a pair of non –commuting continuous random operators defined on a non empty closed subset of a separable Hilbert space. For the purpose of obtaining the random fixed point of the random operators we have used a inequality [Theorem 2.1 from 11] and the parallelogram law.

Throughout this paper, (Ω, Σ) denotes a measurable space consisting of a set Ω and sigma algebra Σ of subsets of Ω , H stands for a separable Hilbert space, and C is a nonempty closed subset of H.

2. Preliminaries

Definition 2.1: A function $f:\Omega \to C$ is said to be measurable if $f^{-1}(B \cap C) \in \Sigma$ for every Borel subset B of H.

Definition 2.2: A function $F: \Omega \times C \to C$ is said to be a random operator if $F(.,x): \Omega \to C$ is measurable for every $x \in C$.

Definition 2.3: A measurable function $g:\Omega \to C$ is said to be a random fixed point

of the random operator $F: \Omega \times C \rightarrow C$ if F(t,g(t)) = g(t) for all $t \in \Omega$

Definition 2.4: A random operator $F: \Omega \times C \to C$ is said to be continuous if for fixed $t \in \Omega$, $F(t,.): C \to C$ is continuous.

Condition (A)—Two mappings $S,T:C\to C$ where C is a non-empty subset of a Hilbert space H is said to satisfy condition A if

$$||STx - TSy||^{2} \le a \max\{||x - y||^{2}, ||x - STx||^{2}, ||y - TSy||^{2}, \frac{[||x - TSy||^{2} + ||y - STx||^{2}]}{2}\}$$

$$+ b \max\{||x - STx||^{2}, ||y - TSy||^{2}\} + c[||x - TSy||^{2} + ||y - STx||^{2}]$$

for each $x, y \in C$ Where $a,b,c \ge 0$ and $a+b+c < \frac{1}{4}$

3 Main Result:

Theorem 3. 1—Let C be a closed non empty subset of a separable Hilbert space H. Let S and T be two non commuting continuous random operators defined on C such that for $t \in \Omega$, $S(t,.), T(t,.): C \to C$ satisfy condition A. Then ST and TS have a common unique random fixed point in C.

Proof-- We construct a sequence of functions $\{g_n\}$ as $g_0:\Omega\to C$ is arbitrary measurable function. For $t\in\Omega$, and n=0,1,2,3-----

$$g_{2n+1}(t) = ST(t, g_{2n}(t)), \quad g_{2n+2}(t) = TS(t, g_{2n+1}(t)) - - - - (3.1)$$

If $g_{2n}(t) = g_{2n+1}(t) = g_{2n+2}(t)$ for $t \in \Omega$, for some n then we see that $g_{2n}(t)$ is a random fixed point of ST and TS. Therefore we suppose that no two consecutive terms of sequence $\{g_n\}$ are equal.-----(3.2) Now consider for $t \in \Omega$.

$$\begin{split} \left\| g_{2n+1}(t) - g_{2n+2}(t) \right\|^2 &= \left\| ST(t, g_{2n}(t)) - TS(t, g_{2n+1}(t)) \right\|^2 \\ &\leq a \max\{ \left\| g_{2n}(t) - g_{2n+1}(t) \right\|^2, \left\| g_{2n}(t) - ST(t, g_{2n}(t)) \right\|^2, \left\| g_{2n+1}(t) - TS(t, g_{2n+1}(t)) \right\|^2 \\ &, \underbrace{\left[\left\| g_{2n}(t) - TS(t, g_{2n+1}(t)) \right\|^2 + \left\| g_{2n+1}(t) - ST(t, g_{2n}(t)) \right\|^2 \right]}_2 \} \end{split}$$

+
$$b \max\{\|g_{2n}(t) - ST(t, g_{2n}(t))\|^2, \|g_{2n+1}(t) - TS(t, g_{2n+1}(t))\|^2\}$$

+
$$c[\|g_{2n}(t) - TS(t, g_{2n+1}(t))\|^2 + \|g_{2n+1}(t) - ST(t, g_{2n}(t))\|^2]$$

$$= a \max\{\|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g_{2n+1}(t) - g_{2n+2}(t)\|^2\}$$

$$, \frac{\left[\left\|g_{2n}(t) - g_{2n+2}(t)\right\|^{2} + \left\|g_{2n+1}(t) - g_{2n+1}(t)\right\|^{2}\right]}{2}\right\}$$

+
$$b \max\{\|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g_{2n+1}(t) - g_{2n+2}(t)\|^2\}$$

+
$$c[\|g_{2n}(t) - g_{2n+2}(t)\|^2 + \|g_{2n+1}(t) - g_{2n+1}(t)\|^2]$$

$$= a \max\{\|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g_{2n+1}(t) - g_{2n+2}(t)\|^2, \frac{[\|g_{2n}(t) - g_{2n+2}(t)\|^2]}{2}\}$$

+
$$b \max\{\|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g_{2n+1}(t) - g_{2n+2}(t)\|^2\} + c[\|g_{2n}(t) - g_{2n+2}(t)\|^2]$$

$$\leq (a+b+c) \max \{ \|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g_{2n+1}(t) - g_{2n+2}(t)\|^2, \|g_{2n}(t) - g_{2n+2}(t)\|^2 \}$$

Case I

$$\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t)\|^{2} \le (a+b+c) \|g_{2n}(t) - g_{2n+1}(t)\|^{2}$$

$$\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t)\| \le (a+b+c)^{\frac{1}{2}} \|g_{2n}(t) - g_{2n+1}(t)\|$$

$$\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t)\| \le k \|g_{2n}(t) - g_{2n+1}(t)\| \text{ where } k = (a+b+c)^{\frac{1}{2}} < \frac{1}{4} < 1$$

$$\Rightarrow \|g_{n}(t) - g_{n+1}(t)\| \le k \|g_{n-1}(t) - g_{n}(t)\|$$

$$\Rightarrow ||g_n(t) - g_{n+1}(t)|| \le k ||g_{n-1}(t) - g_n(t)||$$

$$\Rightarrow \|g_n(t) - g_{n+1}(t)\| \le k^n \|g_0(t) - g_1(t)\| \text{ for all } t \in \Omega....(3.3)$$

$$\Rightarrow \left\| g_{2n+1}(t) - g_{2n+2}(t) \right\|^2 \le (a+b+c) \left\| g_{2n+1}(t) - g_{2n+2}(t) \right\|^2$$

$$\Rightarrow (1-a-b-c) \|g_{2n+1}(t) - g_{2n+2}(t)\|^2 \le 0$$

$$\Rightarrow ||g_{2n+1}(t) - g_{2n+2}(t)||^2 = 0 [as (a+b+c) < \frac{1}{4} < 1]$$

$$\Rightarrow g_{2n+1}(t) = g_{2n+2}(t)$$

In general

$$g_n(t) = g_{n+1}(t)$$
 for all $t \in \Omega$

Which Contradicts the fact (3.8) and in this case $g_{2n}(t)$ is the fixed point of ST and TS.

Case III

$$\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t)\|^{2} \le (a+b+c) \|g_{2n}(t) - g_{2n+2}(t)\|^{2}$$

$$\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t)\|^{2} \le (a+b+c) [2 \|g_{2n}(t) - g_{2n+1}(t)\|^{2} + 2 \|g_{2n+1}(t) - g_{2n+2}(t)\|^{2}]$$
(by parallelogram law $\|x + y\|^{2} \le 2 \|x\|^{2} + 2 \|y\|^{2}$)

$$\Rightarrow [1 - 2(a+b+c)] \|g_{2n+1}(t) - g_{2n+2}(t)\|^2 \le 2(a+b+c) \|g_{2n}(t) - g_{2n+1}(t)\|^2$$

$$\Rightarrow \|g_{2n+1}(t) - g_{2n+2}(t)\|^2 \le \frac{2(a+b+c)}{[1 - 2(a+b+c)]} \|g_{2n}(t) - g_{2n+1}(t)\|^2$$

In general

$$\Rightarrow ||g_n(t) - g_{n+1}(t)|| \le k ||g_{n-1}(t) - g_n(t)||$$

where
$$k = \left[\frac{2(a+b+c)}{1-2(a+b+c)} \right]^{\frac{1}{2}} < 1 \ (as \ 4(a+b+c) < 1)$$

$$\Rightarrow \|g_n(t) - g_{n+1}(t)\| \le k^n \|g_0(t) - g_1(t)\| \text{ for all } t \in \Omega - - - - - - - (3.4)$$

Now we shall prove that for $t\in\Omega$, $\left\{g_{n}(t)\right\}$ is a Cauchy sequence for the Case I. and Case III

For this for every positive integer p we have, for $t \in \Omega$

$$\begin{aligned} \|g_{n}(t) - g_{n+p}(t)\| &= \|g_{n}(t) - g_{n+1}(t) + g_{n+1}(t) - \dots + g_{n+p-1}(t) - g_{n+p}(t)\| \\ &\leq \|g_{n}(t) - g_{n+1}(t)\| + \|g_{n+1}(t) - g_{n+2}(t)\| + \dots + \|g_{n+p-1}(t) - g_{n+p}(t)\| \\ &\leq (k^{n} + k^{n+1} + k^{n+2} + \dots + k^{n+p-1}) \|g_{0}(t) - g_{1}(t)\| (by \ 3.2) \\ &= k^{n} (1 + k + k^{2} + \dots + k^{p-1}) \|g_{0}(t) - g_{1}(t)\| \\ &\leq \frac{k^{n}}{1 - k} \|g_{0}(t) - g_{1}(t)\| \text{ for all } t \in \Omega \end{aligned}$$

as $n \to \infty$, $\|g_n(t) - g_{n+p}(t)\| \to 0$, it follows that for $t \in \Omega$, $\{g_n(t)\}$ is a Cauchy sequence and hence is convergent in Hilbert space H.

For
$$t \in \Omega$$
, let $\{g_n(t)\} \rightarrow g(t)$ as $n \rightarrow \infty$,----(3.5)

Since C is closed, g is a function from C to C.

Existence of random fixed point. For $t \in \Omega$,

$$\begin{aligned} \left\| g(t) - TS(t, g(t)) \right\|^2 &= \left\| g(t) - g_{2n+1}(t) + g_{2n+1}(t) - TS(t, g(t)) \right\|^2 \\ &\leq 2 \left\| g(t) - g_{2n+1}(t) \right\|^2 + 2 \left\| g_{2n+1}(t) - TS(t, g(t)) \right\|^2 \end{aligned}$$

[by paralle log ram
$$||x + y||^2 \le 2||x||^2 + 2||y||^2$$
]

$$=2\|g(t)-g_{2n+1}(t)\|^2+2\|ST(t,g_{2n}(t))-TS(t,g(t))\|^2$$

$$\leq 2 \|g(t) - g_{2n+1}(t)\|^2 + 2a \max\{\|g_{2n}(t) - g(t)\|^2, \|g_{2n}(t) - ST(t, g_{2n}(t))\|^2\}$$

$$, \|g(t) - TS(t, g(t))\|^{2}, \frac{[\|g_{2n}(t) - TS(t, g(t))\|^{2} + \|g(t) - ST(t, g_{2n}(t))\|^{2}]}{2} \}$$

+
$$2b \max\{\|g_{2n}(t) - ST(t, g_{2n}(t))\|^2, \|g(t) - TS(t, g(t))\|^2\}$$

$$+ \ 2c[\left\|g_{2n}(t) - TS(t,g(t))\right\|^2 + \left\|g(t) - ST(t,g_{2n}(t))\right\|^2]$$

$$= 2\|g(t) - g_{2n+1}(t)\|^{2} + 2a \max\{\|g_{2n}(t) - g(t)\|^{2}, \|g_{2n}(t) - g_{2n+1}(t)\|^{2}\}$$

$$, \|g(t) - TS(t, g(t))\|^{2}, \frac{\left[\|g_{2n}(t) - TS(t, g(t))\|^{2} + \|g(t) - g_{2n+1}(t)\|^{2}\right]}{2}$$

+
$$2b \max\{\|g_{2n}(t) - g_{2n+1}(t)\|^2, \|g(t) - TS(t, g(t))\|^2\}$$

+
$$2c[\|g_{2n}(t) - TS(t, g(t))\|^2 + \|g(t) - g_{2n+1}(t)\|^2]$$

As
$$\{g_{2n}(t)\}$$
, $\{g_{2n+1}(t)\}$ are subsequences of $\{g_n(t)\}$,

as
$$n \to \infty$$
, $\{g_{2n}(t)\} \to g(t)$, $\{g_{2n+1}(t)\} \to g(t)$ for all $t \in \Omega$,

Therefore

$$\|g(t) - TS(t, g(t))\|^2 \le 2\|g(t) - g(t)\|^2 + 2a \max\{\|g(t) - g(t)\|^2, \|g(t) - g(t)\|^2\}$$

$$\|g(t) - TS(t, g(t))\|^{2}, \frac{\|g(t) - TS(t, g(t))\|^{2} + \|g(t) - g(t)\|^{2}}{2}$$

$$+2b \max\{\|g(t) - g(t)\|^{2}, \|g(t) - TS(t, g(t))\|^{2}\} + 2c[\|g(t) - TS(t, g(t))\|^{2} + \|g(t) - g(t)\|^{2}]$$

$$\Rightarrow ||g(t) - TS(t, g(t))||^{2} \le 2(a+b+c)||g(t) - TS(t, g(t))||^{2}$$

$$\Rightarrow [1-2(a+b+c)] ||g(t)-TS(t,g(t))||^2 \le 0$$

$$\Rightarrow ||g(t) - TS(t, g(t))||^2 = 0 [as (a+b+c) < \frac{1}{4}]$$

$$\Rightarrow TS(t, g(t)) = g(t) \quad \forall t \in \Omega ---- (3.6)$$

In an exactly similar way we can prove that for all $t\in\Omega$, STig(t,gig(t)ig)=gig(tig)-----(3.7ig)

Again if $A: \Omega \times C \to C$ is a continuous random operator on a non-empty subset C of a separable Hilbert space H, then for any measurable function $f: \Omega \to C$, the function h(t) = A(t, f(t)) is also measurable[10]-----(3.8)

It follows from the construction of $\{g_n\}$ by (3.1) and the above consideration that $\{g_n\}$ is a sequence of measurable functions. From (3.8) it follows that g is also a measurable function. This fact along with (3.6 & 3.7) shows that $g:\Omega\to C$ is a common random fixed point of *ST &TS*.

Uniqueness—

Let $h:\Omega \to C$ be another random fixed point common to ST & TS, that is for $t\in \Omega$,

$$ST(t,h(t)) = h(t)$$

 $TS(t,h(t)) = h(t)$

Then For $t \in \Omega$

$$||g(t) - h(t)||^{2} = ||ST(t,g(t)) - TS(t,h(t))||^{2}$$

$$\leq a \max\{||g(t) - h(t)||^{2}, ||g(t) - ST(t,g(t))||^{2}$$

$$, ||h(t) - TS(t,h(t))||^{2}, \frac{[||g(t) - TS(t,h(t))||^{2} + ||h(t) - ST(t,g(t))||^{2}]}{2}\}$$

$$+ b \max\{||g(t) - ST(t,g(t))||^{2}, ||h(t) - TS(t,h(t))||^{2}\}$$

$$+ c[||g(t) - TS(t,h(t))||^{2} + ||h(t) - ST(t,g(t))||^{2}]$$

$$= a \max\{||g(t) - h(t)||^{2}, ||g(t) - g(t)||^{2}, ||h(t) - h(t)||^{2}, \frac{[||g(t) - h(t)||^{2} + ||h(t) - g(t)||^{2}]}{2}\}$$

$$+ b \max\{||g(t) - g(t)||^{2}, ||h(t) - h(t)||^{2}\} + c[||g(t) - h(t)||^{2} + ||h(t) - g(t)||^{2}]\}$$

$$\Rightarrow (1-a-2c) \|g(t)-h(t)\|^2 \le 0$$

$$\Rightarrow \|g(t)-h(t)\|^2 = 0 \text{ (as } a+b+c < \frac{1}{4} \text{ and hence } a+2c < 1)$$

$$\Rightarrow g(t)=h(t) \text{ for all } t \in \Omega$$

This completes the proof of the theorem 3.1

ACKNOWLEDGEMENT

The authors are thankful to Prof. S. S. Pagey [Institute for Excellence in Higher Education, Bhopal] for providing us necessary literature based on fixed point theory.

REFERENCES

- [1]. I. Beg and N.Shahzad, Random Fixed point of random multivalued operators on Polish Spaces, Nonlinear Anal.20 (1993), no.7,835-847.
- [2]. B.S. Choudhary, Convergence of a random iteration scheme to a random fixed point, J. Appl.Math. Stochastic Anal.8(1995), no.2, 139-142.
- [3]. B.S. Choudhary and M.Ray, Convergence of an iteration leading to a solution of a random operator equation, J. Appl.Math. Stochastic Anal.12(1999), no.2, 161-168.
- [4]. B.S. Choudhary and A.Upadhyay, An iteration leading to random solutions and fixed points of operators Soochow J. Math.25(1999), no.4, 395-400.
- [5]. B.S. Choudhary, A common unique fixed point theorem for two Random operators in Hilbert space.IJMMS 32:3(2002)177-182

- [6]. N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc.Amer Math. Soc.97 (1986),no.3,507-514.
- [7]. V.M. Sehgal and C.Waters, Some random Fixed point theorems for condensing operators, Proc.Amer Math. Soc.90 (1984),no.3,425-429.
- [8]. H.K.Xu, Some random fixed point theorems for condensing and Non expansive operators, Proc.Amer Math. Soc.110 (1990),no.2,395-400.
- [9]. Rhoades,B.E., Iteration to obtain Random solutions and fixed points of operators in uniformely convex Banach spaces .Soochow Journal of Mathematics volume 27 no.4 ,pp.401-404. October 2001.
- [10]. Himmelberg C.J. Measurable relations, Fund math,87 (1975) 53-72.
- [11]. Lj. B. Ciric, On Some nonexpansive type mappings and fixed points, Indian J. Pour Appl. Math.24(1993), 145-149.