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ABSTRACT

The object of this paper is to obtain a common random fixed point theorems
for a pair of non —commuting continuous random operators defined on a non
empty closed subset of a separable Hilbert space.
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1. INTRODUCTION

The study of random fixed points have attracted much attention, some of the recent literatures in
random fixed point may be noted in [1 to 9]. In this paper we construct a sequence of measurable functions
and consider its convergence to the common random fixed point of a pair of non —commuting continuous
random operators defined on a non empty closed subset of a separable Hilbert space. For the purpose of
obtaining the random fixed point of the random operators we have used a inequality [Theorem 2.1 from 11]
and the parallelogram law.

Throughout this paper, (Q, Z) denotes a measurable space consisting of a set €2 and sigma algebra

Y of subsets of €2, H stands for a separable Hilbert space, and Cis a nonempty closed subset of H.

2. Preliminaries

Definition 2.1: A function f :Q — C is said to be measurable if f*(B[1C) X for every Borel subset B
of H.
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Definition 2.2: A function F : QQxC — Cis said to be a random operator if F(.,X):Q — C is measurable
forevery XeC..

Definition 2.3: A measurable function g : €2 — C is said to be a random fixed point

of the random operator F : QQxC — Cif F(t,g(t)) =g(t) for all t e Q

Definition 2.4: A random operator F:QxC —>Cis said to be continuous if for fixed
teQ, F(t,.):C — Ciscontinuous.

Condition (A)—Two mappings S,T :C > C whereCisa non-empty subset of a Hilbert space H is said to
satisfy condition A if

x—TSy| +|y - STx|*
fsx-Tsy|" <amaxgyf* x-Sty Tyt LT ST,

+bmax{|x - STx||2 Jy —TSy||2}+ c[||x —TSy||2 +[y- STx||2]

for each x,y € C Where a,b,c>0 and a+b+c<%

3 Main Result:
Theorem 3. 1—Let C be a closed non empty subset of a separable Hilbert space H .Let S and T be two non

commuting continuous random operators defined on C such that for t& Q,S(t,.),T (t,.) C—>C
satisfy condition A. Then ST and TS have a common unique random fixed point in C.

Proof-- We construct a sequence of functions {gn } as g - €2 — C is arbitrary measurable function. For

te Q, andn=0,1,2,3-------

92n+1(t):ST (t’gm (t))’ an+2 (t):TS (t!g2n+1(t)) _____ (31)
If J,, ('[) =0onu (t) =05n.0 (t) for t€ €2, for some n then we see that Jon (t) is a random fixed point

of ST and TS. Therefore we suppose that no two consecutive terms of sequence {0, } are equal.—----— (3.2)
Now consider for t € (2,

19201 (1) = G2 O =[ST (1,90 (1) =TS (1, G0 )]

<amax{|g,, (t) = Gpa O |90 (1) = STt oo O | 9200 ®) ~ TSt s )]

[||92n<t)—TS(t,gm(t»||2+||gm(t>—ST(t,gM(t»nZ]}
’ 2

+ bmax{|g,n (1) = ST (t Gon O] | Gona (O TSt G [}
+ |95 (©) =TS, Gy )] + 9202 (1) = ST (6, 0, ()]
= amaX{"an (t) - g2n+1(t)||2 ’||92n (t) - an+1(t)||2 7||92n+1(t) - an+2 (t)"2

["gzn (t) - an+2 (t)"2 + ||gzn+1(t) - gzn+1(t)||2]}
’ 2

+b maX{"an (t) - an+1(t)||2 i||92n+1(t) - g2n+2 (t)||2}
+ C[”QZn (t) - 92n+2 (t)"2 + ||gzn+1(t) - gzn+1(t)||2]

= amaX{"an (t) - an-¢-1(t)||2 ’||an+1(t) - an+2 (t)" ’

+ bmax{]|gz0 (6) ~ Gona O [ Gne (€)= Gonsa O 3+ € G (8) = G2 ©)] ]
< (a+b+cymaxq|g;, (1) — Gana O [ 9ona®) = Gonra O 1920 () — G0 O3

2 ["an (t) _292n+2 (t)" ]}
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Case |

= [G202®) = Gan O < @+ +€) g0 (1) ~ G s O

= G20 ()~ o o] < @+ b+ €2 50 () = G s O]

= 9200 (t) = Uz (V)] < K]|9 (1) = Gppa (t)|| Where k = (a+b + c)}/2 < % <1

= ”gn(t) - gn+l(t)|| < k”gn—l(t) - gn(t)”

= [9,t) - 9,.. @) <k"[9,(t) — 9,t)| for all teQ............. (3.3
Case Il

=204 ®) = Gone O < @+D+0) 00,5 (0) = Gono O

= (L=a=b=0)]Gz0s(t) = Gon, (O] <0

= [0204(t) = 9o O =0 [3s (@+b+0)< 1 <1]

= an+1(t) = Oons2 (t)

In general

g,(t)=g,, (@) forall teQ

Which Contradicts the fact (3.8) and in this case g,,(t) is the fixed point of ST and TS.

Case Il

= ||92n+1(t) ~ Oons2 (t)nz < (a +b+ C) "92n (t) — O2ni2 (t)”2

= Gan.s (1) = Gana O < @+D+0)[2] 30 (0) = G O + 20|20 1) = G2 O]
(by parallelogram law ||x + y||2 < 2||x||2 + 2||y||2)

= [1_ 2(3. +b+ C)]||gzn+1(t) — Oonez (t)”2 < 2(61 +b+ c)”gzn (t) - gzn+1(t)||2

M”gm(t) ~ GO

= 9o (t) - an+2()|| [l-2(a+b+

In general
= "gn(t) - gn+1(t)|| < k”gn—l(t) - gn(t)"

%
where k = {M} <l(as4(a+b+c)<l)
1-2(a+b+c)
=[9,® - 9,.®] < k"9, (®) - g, @) for all te Q- ———————— (3.4)

Now we shall prove that for t € (2, { g, (t)} is a Cauchy sequence for the Case |. and Case llI

For this for every positive integer p we have, for teQ

( ) gn+p gn+l( )+gn+l(t)_ """"" +gn+p 1 gn+p t)"
S"gn _gn+1 ||+ gn+1(t)_gn+2(t)"+ """"" gn+p l(t) gn+p(t)||
<(K"+ K™ K™ 4, +Kk™P) g, () - 9, (1) (oy 3.2)

=K"(L+ K+ K+ k)| go () - 0, ()]

kn
< n"go(t) —g,(t)|for all te

hence is convergent in Hilbert space H.

n(t)—gn+p (t)”—>0,it follows that for teQ,{gn (t)}is a Cauchy sequence and
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For te Q let {g, (t)} > g(t) as N —> 00 rrreeeeeee (3.5)

Since Cis closed, g is a function from C to C.

Existence of random fixed point. For t € QQ,
la@®) =TSt g )] =]9(t) = 90a (V) + s () - TS, 9|
<2|9(t) = Gana O + 2920, - TS 9O
[by parallelogram law|x + y||2 < 2||x||2 + 2||y||2]
=2]g(t) — Gapa O] + 2[ST (1. 9,, (1) - TSt g (V)]
<2||g(t) - 9, O + 2amax{|g,, ®) — 9O 9 (1) — ST (t. 8, )]

,||g(t)—TS(t,g(t))”2’[”gm(t)_TS(t’g(t))” ;”g(t)—ST(t,an(t))” 1

+ 2bmax{]|g,, (t) = ST (t, 9,, ()], ]9 (1) - TS (t, 9 ®)[ 3
+2¢[]|,, (t) =TS (t, g )| + 9 (®) — ST (t, 9, ®)| ]
=2]g(t) ~ Gy O] + 2amax{]|g,, (t) = 9O .| 920 (8) = Gz O]

? 2n _ S ! i T Yonil ’
la®-Ts(t g fo.,®-Ts( g(t))yllg(t) Gana (O] N

+ 2bmax{|g,, (1) — 9, ]9 (©) - TS (L. 9 (0]}
+ 2¢[| 9, ®) - TSt g @) +]9 ) - 90 O] 1
As {gzn (t)} ’{an+l (t)} are subsequences of {gn (t)},
as N—00,{g, (1)} > g(t),{G,.(t)} > (t) forall t e,

Therefore

la® TSt g®)| <2|lg®) - g®)| + 2amax{|g(t) - g®)[.|g® - a®)[

2 —TS(t, 2 B 2
Jo®-Tst,9®)| To -Tsc g(t))2|| +lo®-9OI']y

+2bmax{]g(®) — g @) [ a(t) =TS (t, g )| 3 +2¢[|a ) TSt a )| +[at) - g ®)[ ]

}

= g® -TS(t,g®)[* <2(a+b+c)|g®) -TS(t, g®)[
=[1-2(a+b+0)]|gt) TSt g®)| <0

=[g®-TSg@®) =0[as (a+b+c) < ]

=TSt g(t)=g(t) VteQ-————— (3.6)
In an exactly  similar  way we  can prove  that for  all teQ,
ST(Lg(1)=g(t)-—-—-—---- (37)
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Again if A:QxC —C is a continuous random operator on a non-empty subset C of a separable Hilbert
space H, then for any measurable function f :Q)—> C ,the function h(t): A(t, f (t))is also

measurable[10] (3.8)

It follows from the construction of {gn} by (3.1) and the above consideration that {gn} is a sequence of

measurable functions. From (3.8) it follows that g is also a measurable function. This fact along with (3.6 & 3.7)
shows that ( . €2 — C is a common random fixed point of ST &TS.

Uniqueness—
Let h:Q — C be another random fixed point common to ST & TS, that is for
teQ,

ST (t,h(t))=h(t)
TS(t,h(t))=h(t)
Then Fort € Q2
lo(t)-h()] =[sT (t.a(t)-Ts(th(t))[
< amax{|g(t)-h(t) ||2,||g(t)—ST (t, g(t))”2

. o) -Ts(Lh(t)] +|r(t)-ST (t.a(t ||]
2
+bmax{]|g(t) ST(tg(t || I Inct) Tsaht)nz}

[n(t)-Ts(t.h(t))

- amaxﬂ|g<t>—h<t>|r,ngm—gmn%nh(t)

+bmax{lg(t) - 9@ (1)~ h(O 3+ clla® -h(t)] +[n(t) -9 (0]

= (1-a-20)|g(t)-h(t) < 0
:>||g(t)—h(t)||2 = 0 (as a+b+c<% and hence a+2c <1)

= g(t)=h(t) forall teQ

This completes the proof of the theorem 3.1
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