Vol.3.Issue.3.2015 (Jul-Sept)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

DUAL SPACES OF GENERALIZED RIESZ SEQUENCE SPACE AND RELATED MATRIX MAPPING

MD. FAZLUR RAHMAN¹, A B M REZAUL KARIM^{*2}

^{1,2}Department of Mathematics, Eden University College, Dhaka, Bangladesh

ABSTRACT

In this paper we define the Riesz sequence spaces $r^{q}(u, p)$ and determine its Kothe-Toeplitz duals. We also establish necessary and sufficient conditions for a matrix A to map $r^{q}(u, p)$ to l_{∞} and $r^{q}(u, p)$ to c, where l_{∞} is the space of all bounded sequences and c is the space of all convergent sequences.

Keywords: Sequence space, Kothe-Toeplitz dual, Matrix transformation.

2000 Mathematics Subject Classification: 46A45; 40C05.

©KY PUBLICATIONS

1. INTRODUCTION

Let ω be the space of all sequences real or complex and l_{∞} , c and c_0 are respectively the space of all bounded sequences, convergent sequences and null sequences.

The main purpose of this paper is to define and investigate the Riesz sequence space $r^{q}(u, p)$ and prove that it is a complete paranormed space. Later we determine the β -dual (Kothe-Toeplitz dual) of $r^{q}(u, p)$ and characterize the class of matrices ($r^{q}(u, p), l_{w}$) and ($r^{q}(u, p), c$).

If (q_n) is a positive sequence of real numbers then for $p = (p_r)$ with $\inf_r p_r > 0$, we define the Riesz sequence space $r^q(u, p)$ by

$$r^{q}(u,p) = \left\{ x = (x_{k}) \epsilon \omega : \sum_{r=0}^{\infty} \left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} x_{k} \right|^{p_{r}} < \infty \right\}$$

where $\sum_{r} denotes$ a sum over the ranges $2^{r} \leq k < 2^{r+1}$ and

$$Q_{2^r} = \sum_r q_k = q_{2^r} + q_{2^{r+1}} \dots \dots \dots + q_{2^{r+1}-1}.$$

With regard to notation, the dual space of $r^{q}(u,p)$, that is, the space of all continuous linear functional on $r^{q}(u,p)$ will be denoted by $[r^{q}(u,p)]^{*}$.

(1)

In their paper Sheikh and Ganie [10] defined $r^{q}(u, p)$ in a different norm with the help of [2, 3, 4] and studied completeness and consider some matrix mapping. If $(u_{k}) = e = (1, 1, 1, ..., ...)$ then the sequence space $r^{q}(u, p)$ of [10] reduces to $r^{q}(p)$ which introduced by Atlay and Basar [1].

Throughout the paper the following well known inequality (see[7] or [8]) will be frequently used. For any integer E > 1 and two complex numbers a and b we have

 $|ab| \leq E(|a|^t E^{-t} + |b|^p)$

where
$$p > 1$$
 and $\frac{1}{p} + \frac{1}{t} = 1$

To begin with, we show that the space $r^{q}(u, p)$ is a paranorm space paranormed by

$$g(x) = \left(\sum_{r=0}^{\infty} \left| \frac{1}{Q_{2r}} \sum_{r} u_k q_k x_k \right|^{p_r} \right)^{1/M}$$
(2)

provided $H = \sup_r p_r < \infty$ and $M = \max \{1, H\}$. Clearly

$$g(\theta) = 0$$
 and $g(x) = g(-x)$, where $\theta = (0, 0, 0, \dots, \dots, \dots, \dots)$.

Since $p_r \leq M$, for any $x, y \in r^q(u, p)$ we have

$$\begin{split} &\sum_{r=0}^{\infty} \left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} (x_{k} + y_{k}) \right|^{p_{r}} \\ &= \sum_{r=0}^{\infty} \left(\left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} x_{k} + \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} y_{k} \right|^{p_{r/M}} \right)^{M} \\ &\leq \sum_{r=0}^{\infty} \left(\left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} x_{k} \right|^{p_{r/M}} + \left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} y_{k} \right|^{p_{r/M}} \right)^{M} \end{split}$$

and since $M \ge 1$, we see by Minkowski's inequality that g is subadditive.

Finally we have to check the continuity of scalar multiplication. From the definition of $r^q(u, p)$ we have $\inf p_r > 0$. So we may assume that $\inf p_r \equiv \rho > 0$. Now for any complex λ with $\|\lambda\| < 1$, we have

$$g(\lambda x) = \sum_{r=0}^{\infty} \left(\left| \frac{1}{Q_{2^r}} \sum_r u_k q_k \lambda x_k \right|^{p_r} \right)^{1/M}$$
$$\leq \sup_{\infty}^{sup} \|\lambda\|_{M}^{\frac{p_r}{M}} g(x)$$

 $\leq \|\lambda\|^{\frac{p}{M}} g(x) \to 0 \text{ as } \lambda \to 0.$

It is quite routine to show that $r^{q}(u, p)$ is a metric space with the metric d(x, y) = g(x - y) provided that $x, y \in r^{q}(u, p)$, where g is defined by (2); And using a similar method to that in [5] one can show that $r^{q}(u, p)$ is complete under the metric mentioned above.

2. Duals

If X is a sequence space, then X^+ will denote the generalized Kothe-Toeplitz $(\beta - dual)$ of X. $X^{\beta} = X^+ = \{a = (a_k): \sum_{k=1}^{\infty} a_k x_k \text{ converge for all } x \in X\}.$

Now we are giving the following theorem by which the generalized Kothe-Toeplitz dual will be determined.

Theorem 2.1. If
$$1 < p_r \le sup_r p_r < \infty$$
 and $p_r^{-1} + t_r^{-1} = 1$, $r = 0, 1, 2, ..., ...$, then
 $[r^q(u, p)]^{\beta} = \left\{ a = (a_k): \sum_{r=0}^{\infty} \left| Q_{2^r} \max_r (u_k^{-1} q_k^{-1} a_k) \right|^{t_r} E^{-t_r} < \infty \text{ for some integer } E > 1 \right\}$
Proof. Let $1 < p_r \le sup_r p_r < \infty$ and $p_r^{-1} + t_r^{-1} = 1$, $r = 0, 1, 2, ..., ...$

Define

$$\mu(t) = \left\{ a = (a_k) : \sum_{r=0}^{\infty} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} a_k) \right|^{t_r} E^{-t_r} < \infty \text{ for some integer } E > 1 \right\}$$
(3)
We want to show that $[r^q(u, p)]^\beta = \mu(t).$

Let $x \in r^q(u, p)$ and $a \in \mu(t)$. Then using inequality (1), we get

$$\sum_{k=1}^{\infty} a_k x_k = \sum_{r=0}^{\infty} \sum_r (u_k^{-1} q_k^{-1} a_k) (u_k q_k x_k)$$

$$\leq \sum_{r=0}^{\infty} \max_r (u_k^{-1} q_k^{-1} a_k) \sum_r (u_k q_k x_k)$$

$$\leq \sum_{r=0}^{\infty} \left| Q_{2^{r}} \frac{max}{r} (u_{k}^{-1} q_{k}^{-1} a_{k}) \frac{1}{Q_{2^{r}}} \sum_{r} (u_{k} q_{k} x_{k}) \right|$$

$$\leq E \left(\sum_{r=0}^{\infty} \left| Q_{2^{r}} \frac{max}{r} (u_{k}^{-1} q_{k}^{-1} a_{k}) \right|^{t_{r}} E^{-t_{r}} + \sum_{r=0}^{\infty} \left| \frac{1}{Q_{2^{r}}} \sum_{r} (u_{k} q_{k} x_{k}) \right|^{p_{r}} \right)$$

which implies that the series $\sum_{k=1}^{\infty} a_k x_k$ is convergent. Therefore,

 $a \in [r^q(u,p)]^{\beta}$, that is, $[r^q(u,p)]^{\beta} \supset \mu(t)$

Conversely, suppose that $\sum_{k=1}^{\infty} a_k x_k$ is convergent for all $x \in r^q(u, p)$, but $a \notin \mu(t)$. Then $\sum_{k=1}^{\infty} \left| Q_{2^r} \max_{x} \left(u_k^{-1} q_k^{-1} a_k \right) \right|^{t_r} E^{-t_r} = \infty$

$$\sum_{r=0}^{\infty} \left| Q_{2^r} \frac{max}{r} \left(u_k^{-1} q_k^{-1} a_k \right) \right|^{r} E^{-t_r} = \infty$$

<

for every integer E > 1.

So, we can define a sequence $0 = n(0) < n(1) < n(2) < \cdots \dots ,$ such that

$$\begin{split} \gamma &= 0, 1, 2, \dots, \dots, \dots, \text{we have} \\ M_{\gamma} &= \sum_{r=n(\gamma)}^{n(\gamma+1)-1} \left| Q_{2^r} \frac{max}{r} \left(u_k^{-1} q_k^{-1} a_k \right) \right|^{t_r} (\gamma+2)^{-t_r/p_r} > 1. \end{split}$$

Now we define a sequence (see [5], [6], [9]) $x = (x_k)$ in the following way:

$$\begin{aligned} x_{N(r)} &= Q_{2^r} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} a_k) \right|^{t_r - 1} sgn \ a_{N(r)} (r + 2)^{-t_r} M_{\gamma}^{-1} \\ \text{for } n(\gamma) &\leq r \leq n(\gamma + 1) - 1, \gamma = 0, 1, 2, \dots, and \ x_k = 0 \ for \ k \neq N(r), \\ \text{where } N(r) \text{ is such that } a_{N(r)} &= \frac{max}{r} (u_k^{-1} q_k^{-1} a_k), \text{ the maximum is taken with respect to } k \end{aligned}$$

in $[2^r, 2^{r+1})$.

$$\sum_{\substack{r=2^{n}(\gamma)\\n(\gamma+1)-1\\r=2^{n}(\gamma)}}^{2^{n}(\gamma+1)-1} a_{k}x_{k} = \sum_{\substack{r=n(\gamma)\\r=n(\gamma)}}^{n(\gamma+1)-1} a_{N(r)}Q_{2^{r}} \left|Q_{2^{r}} \frac{max}{r} (u_{k}^{-1}q_{k}^{-1}a_{k})\right|^{t_{r}-1} (\gamma+2)^{-t_{r}}M_{\gamma}^{-1}$$

$$= \sum_{\substack{r=n(\gamma)\\r=n(\gamma)}}^{n(\gamma+1)-1} a_{N(r)}Q_{2^{r}} \left|Q_{2^{r}} a_{N(r)}\right|^{t_{r}-1} (\gamma+2)^{-t_{r}}M_{\gamma}^{-1}$$

$$= M_{\gamma}^{-1}(\gamma+2)^{-1} \sum_{\substack{r=n(\gamma)\\r=n(\gamma)}}^{n(\gamma+1)-1} \left|Q_{2^{r}} \frac{max}{r} (u_{k}^{-1}q_{k}^{-1}a_{k})\right|^{t_{r}} (\gamma+2)^{-t_{r}/p_{r}}$$

$$= M_{\gamma}^{-1}(\gamma+2)^{-1} M_{\gamma}$$

$$= (\gamma+2)^{-1}$$
diverges. Moreover

$$\begin{split} &\sum_{r=n(\gamma)}^{n(\gamma+1)-1} \left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} x_{k} \right|_{r}^{p_{r}} = \sum_{r=n(\gamma)}^{n(\gamma+1)-1} \left| \frac{1}{Q_{2^{r}}} Q_{2^{r}} \left| Q_{2^{r}} \frac{max}{r} \left(u_{k}^{-1} q_{k}^{-1} a_{k} \right) \right|_{r}^{t-1} \left(\gamma+2 \right)^{-t_{r}} M_{\gamma}^{-t_{r}} \\ &= \sum_{\substack{r=n(\gamma)\\n(\gamma+1)-1}}^{n(\gamma+1)-1} \left| Q_{2^{r}} a_{N(r)} \right|_{r}^{t_{r}} \left(\gamma+2 \right)^{-p_{r}t_{r}} M_{\gamma}^{-p_{r}} \\ &= M_{\gamma}^{-1} (\gamma+2)^{-2} \sum_{\substack{r=n(\gamma)\\r=n(\gamma)}}^{n(\gamma+1)-1} \left| Q_{2^{r}} a_{N(r)} \right|_{r}^{t_{r}} \left(\gamma+2 \right)^{-p_{r}-t_{r}} M_{\gamma}^{-p_{r}} \\ &= M_{\gamma}^{-1} (\gamma+2)^{-2} \sum_{\substack{r=n(\gamma)\\r=n(\gamma)}}^{n(\gamma+1)-1} \left| Q_{2^{r}} a_{N(r)} \right|_{r}^{t_{r}} \left(\gamma+2 \right)^{2-p_{r}-t_{r}} M_{\gamma}^{1-p_{r}} \\ &= M_{\gamma}^{-1} (\gamma+2)^{-2} \sum_{\substack{r=n(\gamma)\\r=n(\gamma)}}^{n(\gamma+1)-1} \left| Q_{2^{r}} a_{N(r)} \right|_{r}^{t_{r}} \left(\gamma+2 \right)^{-t_{r}/p_{r}} M_{\gamma}^{1-p_{r}} (\gamma+2)^{2-p_{r}-t_{r}+t_{r}/p_{r}} \\ &= M_{\gamma}^{-1} (\gamma+2)^{-2} M_{\gamma}^{1-p_{r}} (\gamma+2)^{2-p_{r}-t_{r}+t_{r}/p_{r}} \\ &= (\gamma+2)^{-2} M_{\gamma}^{1-p_{r}} (\gamma+2)^{-1-p_{r}} \\ &= (\gamma+2)^{-2} M_{\gamma}^{1-p_{r}} (\gamma+2)^{-1-p_{r}} \\ &= (\gamma+2)^{-2} M_{\gamma}^{1-p_{r}} (\gamma+2)^{-p_{r}t_{r}} \\ &= \frac{(\gamma+2)^{-2}}{M_{\gamma}^{1-p_{r}}} (\gamma+2)^{-p_{r}t_{r}} \\ &= (\gamma+2)^{-2} M_{\gamma}^{1-p_{r}t_{r}} (\gamma+2)^{-2} < \infty \end{split}$$

That is, $x \in r^q(u, p)$, which is a contradiction.

Hence $a \in \mu(t)$, that is, $\mu(t) \supset [r^q(u, p)]^{\beta}$. Then combining the above two results we get $[r^q(u, p)]^{\beta} = \mu(t)$.

Theorem 2.2. Let $1 < p_r \le sup_r p_r < \infty$. Then $[r^q(u, p)]^*$ is isomorphic to $\mu(t)$ which is defined by (3). **Proof.** It is easy to check that each $x \in r^q(u, p)$ can be written in the form

$$x = \sum_{k=1}^{n} x_k e_k, where e_k = (0, 0, \dots, 0, 1, 0, \dots, \dots),$$

and the 1 appears at the k-th place. Then for any $f \in [r^q(u, p)]^*$ we have

$$f(x) = \sum_{k=1}^{\infty} x_k f(e_k) = \sum_{k=1}^{\infty} x_k a_k$$
(4)

where $f(e_k) = a_k$. By Theorem 2.1, the convergence of $\sum_{k=1}^{\infty} x_k a_k$ for every x in $r^q(u, p)$ implies that $a \in \mu(t)$.

If $x \in r^q(u, p)$ and if we take $a \in \mu(t)$, then by theorem 2.1, $\sum_{k=1}^{\infty} x_k a_k$ converges and clearly defines a linear functional on $r^q(u, p)$. Using the same kind of argument as in theorem 2.1, it is easy to check that

$$\sum_{k=1}^{\infty} x_k a_k \le \sum_{k=1}^{\infty} |x_k a_k| \le E \left(\sum_{r=0}^{\infty} \left| Q_{2^r} \max_r (u_k^{-1} q_k^{-1} a_k) \right|^{t_r} E^{-t_r} + 1 \right) g(x)$$

when $g(x) \le 1$, where g(x) is defined by (2). Hence $\sum_{k=1}^{\infty} x_k a_k$ defines an element of $[r^q(u, p)]^*$. Furthermore, it is easy to see that representation (4) is unique. Hence we can define a mapping $T: [r^q(u, p)]^* \to \mu(t)$.

By $T(f) = (a_1, a_2, \dots, \dots,)$, where a_k appears in representation (4). It is evident that T is linear and bijective. Hence $[r^q(u, p)]^*$ is isomorphic to $\mu(t)$.

3. Matrix Transformations

Let $A = (a_{nk})$ be an infinite matrix of complex numbers $(a_{nk})_{n,k=1,2,\dots,m}$ and U, V be two subsets of the spaces of complex sequences. We say that the matrix A defines a matrix transformation from U into V and denote it by $A \in (U, V)$, if for every sequence $x = (x_k) \in U$ the sequence $A(x) = A_n(x)$ is in V, where

$$A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k \tag{5}$$

provided the series on the right is convergent.

In this section we characterize the class of matrices $(r^q(u, p), l_{\infty})$ and $(r^q(u, p), c)$, where

 l_{∞} and *c* are respectively the Banach spaces of all bounded and convergent sequence $x = (x_k)$ endowed with the norm $||x|| = \sup_k |x_k|$.

Theorem 3.1. Let $1 < p_r \le sup_r p_r < \infty$. Then $A \in (r^q(u, p), l_{\infty})$ if and only if there exists an integer E > 1 such that

$$U(E) = \frac{\sup}{n} \sum_{r=0}^{\infty} \left| Q_{2^r} \frac{\max}{r} \left(u_k^{-1} q_k^{-1} a_k \right) \right|^{t_r} E^{-t_r} < \infty$$

and $p_r^{-1} + t_r^{-1} = 1, r = 0, 1, 2, 3, \dots, \dots, \dots, \dots$

Proof. Sufficiency. Suppose there exists an integer E > 1 such that $U(E) < \infty$. Then by inequality (1), we have

$$\begin{split} &\sum_{k=1}^{\infty} a_{nk} x_{k} = \sum_{r=0}^{\infty} \sum_{r} a_{nk} x_{k} \\ &= \sum_{r=0}^{\infty} \sum_{r} u_{k}^{-1} q_{k}^{-1} a_{nk} u_{k} q_{k} x_{k} \\ &\leq \sum_{r=0}^{\infty} \max_{r} (u_{k}^{-1} q_{k}^{-1} a_{nk}) \sum_{r} u_{k} q_{k} x_{k} \\ &\leq \sum_{r=0}^{\infty} \left| Q_{2^{r}} \max_{r} (u_{k}^{-1} q_{k}^{-1} a_{nk}) \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} x_{k} \right| \\ &\leq E \left(\sum_{r=0}^{\infty} \left| Q_{2^{r}} \max_{r} (u_{k}^{-1} q_{k}^{-1} a_{nk}) \right|^{t_{r}} E^{-t_{r}} + \sum_{r=0}^{\infty} \left| \frac{1}{Q_{2^{r}}} \sum_{r} u_{k} q_{k} x_{k} \right| \\ &< 0. \end{split}$$

Therefore, $A \in (r^q(u, p), l_{\infty})$.

Necessity. Suppose that $A \in (r^q(u, p), l_{\infty})$, but

$$\sup_{n} \sum_{r=0}^{\infty} \left| Q_{2^{r}} \max_{r} \left(u_{k}^{-1} q_{k}^{-1} a_{nk} \right) \right|^{t_{r}} E^{-t_{r}} = \infty$$

for every integer E > 1. Then $\sum_{k=1}^{\infty} a_{nk} x_k$ converges for every *n* and $x \in r^q(u, p)$, whence

$$(a_{nk})_{n,k=1,2,...} \in [r^q(u,p)]^{\beta}$$

for every n.

By theorem 2.1, it follows that each A_n defined by

$$A_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k$$

is an element of $[r^q(u,p)]^*$. Since $r^q(u,p)$ is complete and since $\frac{\sup}{n} |A_n(x)| < \infty$ on $r^q(u,p)$, by the uniform boundedness principle there exists a number L independent of n and x, and a number $\delta < 1$, such that

$$|A_n(x)| \le L \tag{6}$$

For every *n* and $x \in S[\theta, \delta]$, where $S[\theta, \delta]$ is the closed sphere in $r^q(u, p)$ with center at the origin θ and radius δ .

Now choose an integer G > 1, such that

 $G\delta^M > L$

Since

$$\sup_{n} \sum_{r=0}^{\infty} \left| Q_{2^{r}} \max_{r} \left(u_{k}^{-1} q_{k}^{-1} a_{nk} \right) \right|^{t_{r}} G^{-t_{r}} = \infty,$$

there exists an integer $m_0 > 1$ such that

$$R = \sum_{r=0}^{\infty} \left| Q_{2^r} \frac{max}{r} \left(u_k^{-1} q_k^{-1} a_{nk} \right) \right|^{t_r} G^{-t_r} > 1.$$
(7)

Define a sequence $x = (x_k)$ as follows:

$$x_k = 0 \ if \ k \ge 2^{m_0 + 1}$$

$$x_{N(r)} = Q_{2^r} \,\delta^{M/p_r} \, sgn \, a_{nN(r)} \left| Q_{2^r} \, a_{nN(r)} \right|^{t_r - 1} R^{-1} \, G^{-t_r/p_r}$$

$$x_k = 0$$
 if $k \ge 2^{m_0 + 1}$

$$x_k = 0$$
 if $k \neq N(r)$ for $o \leq r \leq m_0$,

where N(r) is the smallest integer such that

$$a_{nN(r)} = \frac{max}{r} (u_k^{-1} q_k^{-1} a_{nk}).$$

Then one can easily show that,

 $g(x) \le \delta$ but $|A_n(x)| > L$, which contradicts (6). This complete the proof of the theorem. **Theorem 3.2.** Let $1 < p_r \le sup_r p_r < \infty$. Then $A \in (r^q(u, p), c)$ if and only if

(i) there exists an integer E > 1, such that $U(E) = \frac{\sup_{n} \sum_{r=0}^{\infty} \left| Q_{2^{r}} \max_{r} (u_{k}^{-1} q_{k}^{-1} a_{nk}) \right|^{t_{r}} E^{-t_{r}} < \infty,$

(ii) $a_{nk} \rightarrow \alpha_k \ (n \rightarrow \infty, \ k \text{ is fixed}).$

Proof. Necessity. Suppose $A \in (r^q(u, p), c)$. Then $A_n(x)$ exists for each $n \ge 1$, and $\lim_{n \to \infty} A_n(x)$ exists for every $x \in r^q(u, p)$. Therefore, by an argument similar to that in theorem 2.1, we have condition (i). Condition (ii) is obtained by taking $x = e_k \in r^q(u, p)$, where e_k is a sequence with 1 at the k-th place and zeros elsewhere.

Sufficiency. The condition of the theorem imply that

$$\sum_{r=0}^{\infty} \left| Q_{2^r} \frac{max}{r} \left(u_k^{-1} q_k^{-1} a_k \right) \right|^{t_r} E^{-t_r} \le U(E) < \infty$$
(8)

By (8), it is easy to check that $\sum_{k=1}^{\infty} a_k x_k$ is absolutely convergent for each $x \in r^q(u, p)$. For each $x \in r^q(u, p)$ and $\epsilon > 0$, we can choose an integer $m_0 \ge 1$ such that

$$g_{m_0}(x) = \sum_{r=m_0}^{\infty} \left| \frac{1}{Q_{2^r}} \sum_r u_k q_k x_k \right|^{p_r} < \epsilon^M.$$

Then by the proof of theorem 2.1 and by inequality (1) we have

$$\begin{split} \sum_{k=2^{m_0}}^{\infty} (a_{nk} - \alpha_k) \, x_k / (g_{m_0}(x))^{1/M} &= \sum_{r=m_0}^{\infty} \sum_r (a_{nk} - \alpha_k) x_k / (g_{m_0}(x))^{1/M} \\ &= \sum_{r=m_0}^{\infty} \sum_r \, u_k^{-1} \, q_k^{-1} (a_{nk} - \alpha_k) \, u_k q_k x_k / (g_{m_0}(x))^{1/M} \\ &\leq \sum_{r=m_0}^{\infty} \frac{max}{r} \, (u_k^{-1} \, q_k^{-1} (a_{nk} - \alpha_k)) \sum_r \, u_k q_k x_k / (g_{m_0}(x))^{1/M} \end{split}$$

$$\begin{split} &= \sum_{r=m_0} Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \frac{1}{Q_{2^r}} \sum_r u_k q_k x_k / (g_{m_0}(x))^{1/M} \\ &\leq \sum_{r=m_0}^{\infty} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \frac{1}{Q_{2^r}} \sum_r u_k q_k x_k / (g_{m_0}(x))^{1/M} \right| \\ &\leq \sum_{r=m_0}^{\infty} E \left[\left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \right|^{t_r} E^{-t_r} + \left| \frac{1}{Q_{2^r}} \sum_r u_k q_k x_k / (g_{m_0}(x))^{1/M} \right|^{p_r} \right] \\ &= E \left[\sum_{r=m_0}^{\infty} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \right|^{t_r} E^{-t_r} + \sum_{r=m_0}^{\infty} \left| \frac{1}{Q_{2^r}} \sum_r u_k q_k x_k \right|^{p_r} / (g_{m_0}(x))^{p_r/M} \right] \\ &= E \left[\sum_{r=m_0}^{\infty} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \right|^{t_r} E^{-t_r} + g_{m_0}(x) / (g_{m_0}(x))^{p_r/M} \right] \end{split}$$

$$\leq E \left[\sum_{r=m_0}^{\infty} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \right|^{t_r} E^{-t_r} + 1 \right] \\ < E (2U(E) + 1)$$

That is .

$$\sum_{k=2^{m_0}}^{\infty} (a_{nk} - \alpha_k) x_k < E(2U(E) + 1) \left(g_{m_0}(x) \right)^{\frac{1}{M}} = E(2U(E) + 1)\epsilon$$

Where

$$\sum_{r=m_0}^{\infty} \left| Q_{2^r} \frac{max}{r} (u_k^{-1} q_k^{-1} (a_{nk} - \alpha_k)) \right|^{t_r} E^{-t_r} \leq 2U(E) < \infty.$$

It follows immediately that

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} x_k = \sum_{k=1}^{\infty} a_k x_k$$

This shows that $A \in (r^q(u, p), c)$, which proves the theorem.

Corollary 3.3. Let $1 < p_r \le sup_r \ p_r < \infty$ and $p_r^{-1} + t_r^{-1} = 1$, $r = 0, 1, 2, 3, \dots, \dots$ Then $A \in (r^q \ (u, p), c_0)$ if and only if

(i) there exists an integer E > 1, such that

$$U(E) = \frac{\sup_{n} \sum_{r=0}^{\infty} \left| Q_{2^{r}} \frac{\max_{r}}{r} \left(u_{k}^{-1} q_{k}^{-1} a_{nk} \right) \right|^{t_{r}} E^{-t_{r}} < \infty,$$

and

 $(ii)a_{nk} \rightarrow 0. (n \rightarrow \infty, k \text{ is fixed})$

where c_0 is the space of all null sequences.

4. REFERENCES

- [1]. Atley, B. and Basar, F., 2003, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull.Math., 26/5, 701-715.
- [2]. Basar, F., 1999, Infinite matrices and Cesaro sequence spaces of non-absolute type, Math. J. Ibaraki Univ., 31, 1-12.
- [3]. Basar, F. and Atley, B., 2002, Matrix mappings on the space bs(p) and its α^- , β^- and γ^- duals, Aligarh Bull. Math. 21/1. 79-91.
- [4]. Choudhury, B. and Mishra, S. K., 1993, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24/5, 291-301.
- [5]. Khan, F. Rahman, M. F.,1997, Infinite matrices and Cesaro sequence spaces, Analysis Mathematica, 23, 3-11.

[6].	Lim, K. P., 1974, Matrix transformation in the Cesaro sequence spaces, Kyungpook Math. J.
	vol.14, No.2, 221-227.
[7].	Maddox, I. J., 1988, Elements of functional analysis, (2 nd ed.), Cambridge University Press,
	Cambridge.
[8].	Maddox, I. J., 1969, Continuous and Kothe-Toeplitz dual of certain sequence spaces, Proc.
	Camb. Phil. Soc., 65, 431-435.
[9].	Maddox, I. J., 1967, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser.,
	2/18, 355-435.
[10].	Sheikh, Neyaz Ahmed and Ganie, Ab Hamid, 2012, A new paranormed sequence space and
	some matrix transformation, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis,
	28, 47-58.