Vol.3.Issue.3.2015 (Jul-Sept)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON SOME WEAKER CLASS OF ζ^- CONTINUOUS MAPPINGS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

SHARMILA. S, I. AROCKIARANI

Department of Mathematics, Nirmala College for women, Coimbatore, Tamilnadu, India Email: sharmi.skumar@gmail.com

ABSTRACT

In this paper we initiate the concepts of intuitionistic fuzzy almost ζ -continuous mappings and intuitionistic fuzzy slightly ζ -continuous mappings in intuitionistic fuzzy topological space. We also apply these notions of ζ -continuous mappings to analyse the covering properties and separation axioms in intuitionistic fuzzy spaces.

Mathematics Subject Classification: 54A40, 03E72.

Keywords: Intuitionistic fuzzy clopen, intuitionistic fuzzy almost ζ – continuous, intuitionistic fuzzy slightly ζ – continuous, intuitionistic fuzzy ζ – compact, intuitionistic fuzzy ζ – connected

©KY PUBLICATIONS

1. INTRODUCTION

Ever since the introduction of fuzzy sets by Zadeh [22], the fuzzy concept has invaded almost all branches of mathematics. Atanassov [2] generalised this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [5] introduced intuitionistic fuzzy topological spaces. Using the notion of intuitionistic fuzzy sets Joen [11] defined the concepts of intuitionistic fuzzy α -continuity. Many researchers Ilija Kovacevic [9], T.Noiri [20] have extended these notions to analyse different types of continuity. In this paper different classes of ζ – continuous functions are defined. Separation axioms and covering properties are also analysed using these ζ – continuous mappings.

2. PRELIMINARIES

Definition 2.1:[2] An intuitionistic fuzzy set (IFS, in short) A in X is an object having the form $A = \{x, \mu_A(x), \nu_A(x) | x \in X\}$ where the functions $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each

element $x \in X$ to the set A on a nonempty set X and $0 \le \mu_A(x) + \upsilon_A(x) \le 1$ for each $x \in X$. Obviously every fuzzy set A on a nonempty set X is an IFS's A and B be in the form $A = \{x, \mu_A(x), 1 - \mu_A(x) / x \in X\}$

Definition 2.2:[2] Let X be a nonempty set and the IFS's A and B be in the form $A = \{x, \mu_A(x), \upsilon_A(x) | x \in X\}$, $B = \{x, \mu_B(x), \upsilon_B(x) | x \in X\}$ and let $A = \{A_j : j \in J\}$ be an arbitrary family of IFS's in X. Then we define

- (i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- (ii) A=B if and only if $A \subseteq B$ and $B \subseteq A$.
- (iii) $\overline{A} = \{x, \upsilon_A(x), \mu_A(x) / x \in X\}.$
- (iv) $A \cap B = \{x, \mu_A(x) \cap \mu_B(x), \upsilon_A(x) \cup \upsilon_B(x) / x \in X\}.$
- (v) $A \cup B = \{x, \mu_A(x) \cup \mu_B(x), \upsilon_A(x) \cap \upsilon_B(x) / x \in X\}$
- (vi) $1_{\sim} = \{ \langle x, 1, 0 \rangle x \in X \}$ and $0_{\sim} = \{ \langle x, 0, 1 \rangle x \in X \}$.

Definition 2.3:[5]An intuitionistic fuzzy topology (IFT, in short) on a nonempty set X is a family τ of an intuitionistic fuzzy set (IFS, in short) in X satisfying the following axioms:

- (i) 0_{\sim} , $1_{\sim} \in \tau$.
- (ii) $A_1 \cap A_2 \in \tau$ for any $A_1, A_2 \in \tau$.
- (iii) $\bigcup A_i \in \tau$ for any $A_i : j \in J \subseteq \tau$.

In this paper we denote intuitionistic fuzzy topological space (IFTS, in short) by $(X, \tau), (Y, \kappa)$ or X,Y. Each IFS which belongs to τ is called *an intuitionistic fuzzy open set* (*IFOS*, in short) in X. The complement \overline{A} of an IFOS A in X is called an *intuitionistic fuzzy closed set* (*IFCS*, in short). An IFS X is called *intuitionistic fuzzy clopen* [19] (*IF clopen*)(*IFCO*, for short) iff it is both intutionistic fuzzy open and intuitionistic fuzzy closed.

Definition 2.4:[5] Let (X, τ) be an IFTS and $A = \{x, \mu_A(x), \upsilon_A(x)\}$ be an IFS in X. Then the fuzzy interior and closure of A are denoted by

- (i) $cl(A) = \bigcap \{ K: K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$
- (ii) $int(A) = \bigcup \{G: G \text{ is an IFOS in X and } G \subseteq A \}.$

Note that, for any IFS A in (X, τ) , we have $cl(\overline{A}) = int(\overline{A})$ and $int(\overline{A}) = cl(\overline{A})$. **Definition 2.5:**[7] Let A be an IFS in an IFTS (X, τ) , then A is

- (i) An intuitionistic fuzzy regular open set (IFROS) if A = int(cl(A)).
- (ii) An intuitionistic fuzzy semi open set (IFSOS) if $A \subseteq cl(int(A))$.
- (iii) An intuitionistic fuzzy preopen set (IFPOS) if $A \subseteq int(cl(A))$.
- (iv) An intuitionistic fuzzy d open set (IFdOS) if $A \subseteq scl(bint(A)) \cup cl(int(A))$.
- (v) An intuitionistic fuzzy α -open set (IF α OS) if $A \subseteq int(cl(int(A)))$.
- (vi) An intuitionistic fuzzy β -open set (IF β OS) if $A \subseteq cl(int(cl((A))))$.
- (vii) An intuitionistic fuzzy γ -open set (IF γ OS) if $A \subseteq cl(int(A)) \cup int(cl(A))$.

The complement of the above said sets are *intuitionistic fuzzy regular closed* set, *intuitionistic fuzzy semiclosed* set, *intuitionistic fuzzy preclosed* set, *intuitionistic fuzzy d closed* set, *intuitionistic fuzzy* α -closed set, *intuitionistic fuzzy* β -closed set, *intuitionistic fuzzy* γ -closed set, (IFRCS, IFSCS, IFPCS, IFdCS, IF α CS, IF β CS, IF γ CS respectively).

Definition 2.6:[12] An IFS $p(\alpha, \beta) = \langle x, C_{\alpha}, C_{1-\beta} \rangle$ where $\alpha \in (0,1]$, $\beta \in [0,1)$ and $\alpha + \beta \le 1$ is called an *intuitionistic fuzzy point* (IFP) in X.

Note that an IFP $p(\alpha, \beta)$ is said to belong to an IFS $A = \langle X, \mu_A, \upsilon_A \rangle$ of X denoted by $p(\alpha, \beta) \in A$ if $\alpha \leq \mu_A$ and $\beta \geq \upsilon_A$.

Definition 2.7:[12] Let $p(\alpha, \beta)$ be an IFP of an IFTS (X, τ) . An IFS A of X is called an *intuitionistic fuzzy neighbourhood* (IFN) of $p(\alpha, \beta)$ if there exists an IFOS B in X such that $p(\alpha, \beta) \in B \subseteq A$.

Definition 2.8: [16] An IFTS X is called CO-T₁ if and only if for each pair of distinct IFP $x_{(\alpha,\beta)}, y_{(\gamma,\delta)}$ in X there exists IFclopen sets U and V in X $x_{(\alpha,\beta)} \in U$, $x_{(\alpha,\beta)} \notin V$, $y_{(\gamma,\delta)} \notin U$, $y_{(\gamma,\delta)} \in V$.

Definition 2.9:[6]An IFTS X will be called regular if for each IFP $p(\alpha, \beta)$ and each IFCS such $p \cap C = 0_{\sim}$ there exists intuitionistic fuzzy open sets U and V such that $p \subseteq U, C \subseteq V$ and $U \cap V = 0$.

Definition 2.10:[6] An IFTS X will be called normal if for each IFCSs U and V such that $U \cap V = 0$ there exists IFOSs U₁ and V₁ such that $U \subseteq U_1$, $V \subseteq V_1$ and $U_1 \cap V_1 = 0_{\sim}$.

Definition 2.11:[14] An IFS A is said to be an intuitionistic fuzzy dense (IFD for short) in another IFS B in an IFTS (X, τ), if cl(A) = B.

Definition 2.12:[15] An IFTS X is called hyperconnected if every IF open set in X is dense.

Definition 2.13:[5] Let X and Y be two IFTSs. Let $A = \{\langle X, \mu_A(x), \upsilon_A(x) \rangle : x \in X\}$ and $B = \{\langle Y, \mu_B(y), \upsilon_B(y) \rangle y \in Y\}$ be IFSs of X and Y respectively. Then is an IFS $A \times B$ of $X \times Y$ defined by $A \times B(x, y) = \langle (X, Y), \min(\mu_A(x), \mu_B(y)), \max(\upsilon_A(x), \upsilon_B(y)) \rangle$.

Definition 2.14:[17] Let A be an IFTS (X, τ) . Then A is called an *intuitionistic fuzzy* ζ open set(IF ζOS , in short) in X if $A \subseteq bcl(int(A))$.

Definition 2.15:[17] Let A be an IFTS (X, τ) . Then A is called an *intuitionistic fuzzy* ζ *closed set* (IF ζ CS, in short) in X if $bint(cl(A)) \subseteq A$.

Definition 2.16:[18] An IFTS (X, τ) is said to be *intuitionistic fuzzy* $\zeta T_{1/2}$ space ($IF\zeta T_{1/2}$, in short) if every $IF\zeta OS$ in X is an IFOS in X.

Definition 2.17:[5] Let X and Y be two non-empty sets and $f: X \rightarrow Y$ be a function.

If $B = \{\langle y, \mu_B(y), \upsilon_B(y) \rangle / y \in Y\}$ is an IFS in Y, then the pre-image of B under f is denoted and defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B(x)), f^{-1}(\upsilon_B(x)) \rangle / x \in X\}$. Since $\mu_B(x), \upsilon_B(x)$ are fuzzy sets, we explain that $f^{-1}(\mu_B(x)) = \mu_B(x)(f(x)), f^{-1}(\upsilon_B(x)) = \upsilon_B(x)(f(x))$.

Definition 2.18: Let $f: X \rightarrow Y$ from an IFTS X into an IFTS Y. Then f is said to be an

- (i) Intuitionistic fuzzy ζ continuous $(IF\zeta \text{cont}, \text{ in short})[16]$ if $f^{-1}(B) \in IF\zeta OS(X)$ for every $B \in \kappa$.
- (ii) Intuitionistic fuzzy continuous [4] if $f^{-1}(B) \in IFO(X)$ for every $B \in \kappa$.
- (iii) Intuitionistic fuzzy semi-continuous [7] if $f^{-1}(B) \in IFSO(X)$ for every $B \in \kappa$.
- (iv) Intuitionistic fuzzy precontinuous [7] if $f^{-1}(B) \in IFPO(X)$ for every $B \in \kappa$.
- (v) Intuitionistic fuzzy d continuous [7] if $f^{-1}(B) \in IFdO(X)$ for every $B \in \kappa$.
- (vi) Intuitionistic fuzzy α -continuous [7] if $f^{-1}(B) \in IF \alpha O(X)$ for every $B \in \kappa$.

- (vii) Intuitionistic fuzzy β -continuous [7] if $f^{-1}(B) \in IF\beta O(X)$ for every $B \in \kappa$.
- (viii) Intuitionistic fuzzy γ -continuous [7] if $f^{-1}(B) \in IF\gamma O(X)$ for every $B \in \kappa$.
- (ix) Intuitionistic fuzzy clopen-continuous[19] if for each IFP $p(\alpha, \beta)$ of X and each open set V containing , $f(p(\alpha, \beta))$ there exists a clopen set U containing $p(\alpha, \beta)$, such that $f(u) \subseteq V$.
- (x) *intuitionistic fuzzy totally continuous*[13] if and only if $f^{-1}(B)$ is an IF clopen sets in X, for every $B \in \kappa$.

Definition 2.19:[17] Let f be a mapping from IFTS (X, τ) into an IFTS (Y, κ) . Then f is said to be *intuitionistic fuzzy* ζ -*irresolute* ($IF\zeta$ -*irresolute*, in short) if $f^{-1}(B) \in IF\zeta O(X)$ for every $IF\zeta OS$ B in Y.

Definition 2.20:[7] Let $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$. The product $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is defined by $f_1 \times f_2(x_1, x_2) = (f_1(x_1), f_2(x_2))$ for every $(X_1, X_2) \in X_1 \times X_2$.

3. INTUISTIONISTIC FUZZY ALMOST ζ – CONTINUOUS MAPPINGS

Definition 3.1 A mapping $f : X \to Y$ from an IFTS X into an IFTS Y is called an *intuitionistic fuzzy* almost ζ – continuous ($IFa\zeta$ – continuous, in short) mapping if $f^{-1}(B)$ is an IF ζ CS in X, for every IFRCS B in Y.

Example 3.2:

Let $X = \{a, b\}$, $Y = \{u, v\}$ $G_1 = \langle x, (0.2, 0.2, 0.1), (0.4, 0.4, 0.6) \rangle$,

 $G_2 = \langle x, (0.3, 0.2, 0.5), (0.2, 0.2, 0.4) \rangle$

 $H = \langle y, (0.3, 0.4, 0.3), (0.4, 0.5, 0.4) \rangle$

Then Then $\tau = \{0_{2}, 1_{2}, G_{1}, G_{2}\}$ and $\kappa = \{0_{2}, 1_{2}, H\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an IFa ζ continuous mapping.

Theorem 3.3: Every IF continuous mapping is $IFa\zeta$ – continuous but not conversely.

Proof: Let $f:(X,\tau) \to (Y,\kappa)$ be an IF continuous mapping and B be an IFRCS in Y. Since every IFRCS is an IFCS, B is an IFCS in Y. Then f⁻¹(B) is an IFCS in X, by hypothesis. Since every IFCS is an *IF \zeta CS*, f⁻¹(B) is an IF ζ CS in X. Hence *f* is an *IFa \zeta* – continuous mapping.

Example 3.4: Let
$$X = \{a, b\}, Y = \{u, v\}$$

 $G_1 = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle, G_2 = \langle y, (0.7, 0.8), (0.3, 0.2) \rangle$

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an $IFa\zeta$ – continuous mapping but not an IF continuous mapping.

Theorem 3.5: Every IF ζ continuous mapping is an $IFa\zeta$ – continuous but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \kappa)$ be an IF ζ continuous mapping and B be an IFRCS in Y. Then $f^{-1}(B)$ is IF ζ CS in X. Hence f is an $IFa\zeta$ – continuous mapping.

Example 3.6: Let $X = \{a, b\}, Y = \{u, v\}$

 $G_1 = \langle x, (0.7, 0.8), (0.3, 0.2) \rangle, G_2 = \langle y, (0.6, 0.7), (0.4, 0.3) \rangle$

Define a mapping $f:(X,\tau) \to (Y,\kappa)$ by f(a) = u and f(b) = v. Then f is an $IFa\zeta$ – continuous mapping but not an IF ζ – continuous mapping. **Theorem 3.7:** Every $IFa\zeta$ – continuous mapping is an IFS continuous, but not conversely. **Proof:** Let $f:(X,\tau) \to (Y,\kappa)$ be an $IFa\zeta$ – continuous mapping and B be an IFRCS in Y. By hypothesis f⁻¹(B) is an IF ζ CS in X. Since every IF ζ CS is an IFSCS, f⁻¹(B) is an IFSCS in X. Hence f is IFS continuous. **Example 3.8:** Let $X = \{a, b\}, Y = \{u, v\}$ $G_1 = \langle x, (0.5, 0.4), (0.5, 0.6) \rangle, G_2 = \langle y, (0.2, 0.3), (0.8, 0.7) \rangle$

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an IFS continuous mapping but not an $IFa\zeta$ – continuous mapping.

Theorem 3.9: Every $IFa\zeta$ – continuous mapping is an IFd continuous but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \kappa)$ be an *IFa* ζ – continuous mapping and B be an IFRCS in Y. Then f⁻¹(B) is an IF ζ CS in X. Since every IF ζ CS is an IFdCS, f⁻¹(B) is an IFdCS in X. Hence f is IFd continuous.

Example 3.10 : Let
$$X = \{a, b\}, Y = \{u, v\}$$

 $G_1 = \langle x, (0.1, 0.1), (0.6, 0.5) \rangle, G_2 = \langle y, (0.2, 0.2), (0.3, 0.5) \rangle$

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an IFd continuous mapping but not an $IFa\zeta$ – continuous mapping.

Theorem 3.11: Every $IFa\zeta$ – continuous mapping is an IF ζ – continuous but not conversely.

Proof: Let $f: (X, \tau) \to (Y, \kappa)$ be an $IFa\zeta$ – continuous mapping and B be an IFRCS in Y. Then f⁻¹(B) is an $IF\zeta CS$ in X. Hence f is IF ζ – continuous.

Example 3.12: Let $X = \{a, b, c\}, Y = \{u, v, w\}$

 $G_1 = \langle x, (0.3, 0.1, 0.4), (0.3, 0.3, 0.4) \rangle$, $G_2 = \langle y, (0.2, 0.1, 0.3), (0.4, 0.4, 0.4) \rangle$

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \to (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an IF ζ -continuous mapping but not an $IFa\zeta$ – continuous mapping.

Theorem 3.13: If $f: X \to Y$ is an IFc ζ continuous, then f is an $IFa\zeta$ – continuous mapping, but not conversely.

Proof: Let B be an IFRCS in Y. Since every IFRCS is an IF ζ CS, B is an IF ζ CS in Y. Since f is an IFc ζ continuous, $f^{-1}(B)$ is an IFRCS in X. Thus $f^{-1}(B)$ is an IF ζ CS in X. Hence f is an IFa ζ continuous mapping.

Example 3.14: Let $X = \{a, b\}, Y = \{u, v\}$

 $G_1 = \langle x, (0.5, 0.4), (0.5, 0.6) \rangle, G_2 = \langle y, (0.2, 0.3), (0.8, 0.7) \rangle$

Then $\tau = \{0_{\alpha}, 1_{\alpha}, G_1\}$ and $\kappa = \{0_{\alpha}, 1_{\alpha}, G_2\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an $IFa\zeta$ – continuous mapping but not an IFc ζ continuous mapping.

From the above theorems and examples we have the following implications.

Theorem 3.15: Let $f:(X,\tau) \to (Y,\kappa)$ be a mapping where $f^{-1}(B)$ is an IFRCS in X for every IFCS B in Y. Then f is an $IFa\zeta$ – continuous mapping but not conversely.

Proof: Let B be an IFRCS in Y. Since every IFRCS is an IFCS, B is an IFCS in Y. Then $f^{-1}(B)$ is an IFRCS in X. As every IFRCS is an IF ζ CS, $f^{-1}(B)$ is an IF ζ CS in X. Hence f is an $IFa\zeta$ – continuous mapping.

Example 3.16: Let $X = \{a, b\}, Y = \{u, v\}$

$$G_1 = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle, G_2 = \langle y, (0.5, 0.3), (0.5, 0.7) \rangle$$

Then $\tau = \{0_{\alpha}, 1_{\alpha}, G_1\}$ and $\kappa = \{0_{\alpha}, 1_{\alpha}, G_2\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an $IFa\zeta$ – continuous mapping but not a mapping as defined in theorem above.

Theorem 3.17: Let $f: X \rightarrow Y$ be a mapping. Then the following are equivalent:

- (i) f is an IFa ζ continuous mapping.
- (ii) $f^{-1}(B)$ is an IF ζ OS in X for every IFROS B in Y.

Proof: $(i) \Rightarrow (ii)$ Let B be an IFROS in Y. Then \overline{B} is an IFRCS in Y. By hypothesis, $f^{-1}(\overline{B})$ is an IF ζ CS in X. That is $\overline{f^{-1}(B)}$ is an IF ζ CS in X. Therefore $f^{-1}(B)$ is an $IF\zeta OS$ in X. $(ii) \Rightarrow (i)$ Let B be an IFRCS in Y. Then \overline{B} is an IFROS in Y. By hypothesis, $f^{-1}(\overline{B})$ is an IF ζ OS in X. That is $\overline{f^{-1}(B)}$ is an $IF\zeta OS$ in X. Therefore $f^{-1}(B)$ is an IF ζ CS in X. Then f is an IF ζOS in X. Therefore $f^{-1}(B)$ is an IF ζ CS in X. Then f is an IF ζOS in X. Therefore $f^{-1}(B)$ is an IF ζ CS in X. Then f is an IF $a\zeta$ – continuous mapping.

Theorem 3.18: Let $f: X \to Y$ be a mapping, if $f^{-1}(\zeta \operatorname{int}(B)) \subseteq \zeta \operatorname{int}(f^{-1}(B))$ for every IFS B in Y, then f is an $IFa\zeta$ – continuous mapping.

Proof: Let B be an IFROS in Y. By hypothesis $f^{-1}(\zeta \operatorname{int}(B)) \subseteq \zeta \operatorname{int}(f^{-1}(B))$. Since B is an IFROS, it is an *IF* ζOS in Y. Therefore $\zeta \operatorname{int}(B) = B$. Hence

 $f^{-1}(B) = f^{-1}(\zeta \operatorname{int}(B)) \subseteq \zeta \operatorname{int}(f^{-1}(B)) \subseteq f^{-1}(B)$. Therefore $f^{-1}(B) = \zeta \operatorname{int}(f^{-1}(B))$.

This implies $f^{-1}(B)$ is an $IF\zeta OS$ in X and thus f is an $IFa\zeta$ – continuous mapping.

Theorem 3.19: Let $f : X \to Y$ be a mapping, if $\zeta cl(f^{-1}(B)) \subseteq f^{-1}(\zeta cl(B))$ for every IFS B in Y, then f is an $IFa\zeta$ – continuous mapping.

Proof: Let B be an IFRCS in Y. By hypothesis $\zeta cl(f^{-1}(B)) \subseteq f^{-1}(\zeta cl(B))$. Since B is an IFRCS, it is an IF ζ CS in Y. Therefore $\zeta cl(B) = B$. Hence $f^{-1}(B) = f^{-1}(\zeta cl(B)) \supseteq \zeta cl(f^{-1}(B)) \supseteq f^{-1}(B)$. Therefore $f^{-1}(B) = \zeta cl(f^{-1}(B))$. This implies $f^{-1}(B)$ is an IF ζ CS in X and thus f is an IF $a\zeta$ – continuous mapping.

Remark 3.20: The converse of the above Theorem 3.21 is true if B is an IFRCS in Y and X is an IF $\zeta T_{1/2}$ space.

Proof: Let f is an $IFa\zeta$ – continuous mapping. Let B be an IFRCS in Y. Then $f^{-1}(B)$ is an IF ζ CS in X. Since X is an IF ζ T_{1/2} space, $f^{-1}(B)$ is an IFOS in X. This implies $\zeta cl(f^{-1}(B)) = f^{-1}(B)$. Now $f^{-1}(\zeta cl(B)) \supseteq f^{-1}(B) = \zeta cl(f^{-1}(B))$. Therefore $f^{-1}(\zeta cl(B)) \supseteq \zeta cl(f^{-1}(B))$.

Theorem 3.21: Let $f : X \to Y$ be a mapping and $g : X \to X \times Y$ be the graph of the mapping. If g is an $IFa\zeta$ – *continuous* mapping, then f is so.

Proof: Let B be an IFROS in Y. Then $f^{-1}(B) = f^{-1}(1_{\sim} \cap f^{-1}(B)) = g^{-1}(1_{\sim} \times B)$. Since $1_{\sim} \times B$ is an IFROS in $X \times Y$ and as g is an $IFa\zeta$ – continuous mapping, is an IF ζ OS in X. Hence $f^{-1}(B)$ is an $IF\zeta OS$ in X and so f is an $IFa\zeta$ – continuous mapping.

Theorem 3.22: Let $f: X \to Y$ and $g: Y \to Z$ be any two mappings. Then the following properties hold :

- (i) If f is an IF continuous mapping and g is an $IFa\zeta$ continuous mapping, then gof is an $IFa\zeta$ continuous mapping.
- (ii) If f is an IF ζ continuous mapping and g is an $IFa\zeta$ continuous mapping, then gof is an $IFa\zeta$ continuous mapping.

Proof: (i) Let B be an IFROS in Z. Since g is an $IFa\zeta$ – continuous mapping, $g^{-1}(B)$ is an IFOS in Y. Since f is an IF continuous mapping, $f^{-1}(g^{-1}(B))$ is an IFOS in X. This implies $f^{-1}(g^{-1}(B))$ is an $IF\zeta OS$ in X, since IFOS is an $IF\zeta OS$. But $f^{-1}(g^{-1}(B)) = (gof)^{-1}(B)$. This implies gof $IFa\zeta$ – continuous mapping.

(ii) Let B be an IFROS in Z. Since g is an $IFa\zeta$ – continuous mapping, $g^{-1}(B)$ is an IFOS in Y. Since f is an IF ζ continuous mapping, $f^{-1}(g^{-1}(B))$ is an IFOS in X. Since $f^{-1}(g^{-1}(B)) = (gof)^{-1}(B)$, gof $IFa\zeta$ – continuous mapping.

4. INTUISTIONISTIC FUZZY SLIGHTLY ζ – CONTINUOUS MAPPINGS

Definiton 4.1: A mapping $f : X \to Y$ from an IFTS X into an IFTS Y is called an *intuitionistic fuzzy* slightly ζ – continuous if for each intuitionistic fuzzy point $p(\alpha, \beta) \in X$ and each intuitionistic fuzzy clopen set B in Y containing $f(p(\alpha, \beta))$, there exists a fuzzy intuitionistic fuzzy ζ open set A in X such that $f(A) \subseteq B$.

Theorem 4.2: For a function $f: X \rightarrow Y$, the following statements are equivalent:

- (i) f is intuitionistic fuzzy slightly ζ continuous;
- (ii) for every intuitionistic fuzzy clopen set B in Y, $f^{-1}(B)$ is intuitionistic fuzzy ζ -open;
- (iii) for every intuitionistic fuzzy clopen set B in Y, $f^{-1}(B)$ is intuitionistic fuzzy ζ closed;
- (iv) for every intuitionistic fuzzy clopen set B in Y, $f^{-1}(B)$ is intuitionistic fuzzy ζ -clopen.

Proof: $(i) \Rightarrow (ii)$ Let B be IF clopen set in Y and let $p_{(\alpha,\beta)} \in f^{-1}(B)$. Since $f(p_{(\alpha,\beta)}) \in B$, by (i) there exists a IF ζ OS $A_{p(\alpha,\beta)}$ in X containing $p(\alpha,\beta)$ such that $A_{p(\alpha,\beta)} \subseteq f^{-1}(B)$. We obtain that

$$f^{-1}(B) = \bigcup_{p(\alpha,\beta)\in f^{-1}(B)} A_{p(\alpha,\beta)}$$
. Thus $f^{-1}(B)$ is IF ζ -open.

 $(ii) \Rightarrow (iii)$ Let B be IF clopen set in Y. Then \overline{B} is IF clopen. By (ii), $f^{-1}(\overline{B}) = f^{-1}(B)$ is IF ζ -open. Thus $f^{-1}(B)$ is intuitionistic fuzzy ζ -closed.

 $(iii) \Rightarrow (iv)$ Let B be IF clopen set in Y. Then by (iii) $f^{-1}(B)$ is intuitionistic fuzzy ζ -closed. Also \overline{B} is IF clopen and (iii) implies $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$ is IF ζ -closed. Hence $f^{-1}(B)$ is intuitionistic fuzzy ζ - open. Thus $f^{-1}(B)$ is intuitionistic fuzzy ζ -clopen.

 $(iv) \Rightarrow (i)$ Let B be IF clopen set in Y containing $f(p_{(\alpha,\beta)})$. By (iv), $f^{-1}(B)$ is intuitionistic fuzzy ζ - open. Let us take $A = f^{-1}(B)$. Thus $f(A) \subseteq B$. Hence f is *intuitionistic fuzzy* slightly ζ - continuous.

Lemma 4.3: Let $g: X \to X \times Y$ be the graph of the mapping $f: X \to Y$. If A and B are IFS's of X and Y respectively, then $g^{-1}(1_{\sim} \times B) = (1_{\sim} \cap f^{-1}(B))$

Lemma 4.4: Let X and Y be intuitionistic fuzzy topological spaces, then (X, τ) is product related to (Y, κ) if for any IFS C in X, D in Y whenever $C \not\subset \overline{A}$, $D \not\subset \overline{B}$ implies $\overline{A} \times 1_{\sim} \bigcup 1_{\sim} \times \overline{B} \supseteq C \times D$ there exists $A_1 \in \tau$, $B_1 \in \kappa$ such that $\overline{A_1} \supseteq C$ and $\overline{B_1} \supseteq D$ and $\overline{A_1} \times 1_{\sim} \bigcup 1_{\sim} \times \overline{B_1} = \overline{A} \times 1_{\sim} \bigcup 1_{\sim} \times \overline{B}$

Theorem 4.5: Let $f: X \to Y$ be a function and assume that X is a product related to Y. If the graph $g: X \to X \times Y$ of f is *IF slightly* ζ – *continuous* then so is f.

Proof: Let B be IF clopen set in Y. Then by lemma 3.3, $f^{-1}(B) = (1_{\sim} \cap f^{-1}(B) = g^{-1}(1_{\sim} \times B)$. Now $1_{\sim} \times B$ is a IF clopen set in $X \times Y$. Since g is *IF slightly* ζ – *continuous* then $g^{-1}(1_{\sim} \times B)$ is IF ζ -open in X. Hence is $f^{-1}(B)$ IF ζ -open in X. Thus f is *IF slightly* ζ – *continuous*.

Theorem 4.6: A mapping $f: X \to Y$ from and IFTS X into an IFTS Y is *IF slightly* ζ – *continuous* if and only if for each IFP $p_{(\alpha,\beta)}$ in X and IF clopen set B in Y such that $f(p(\alpha,\beta)) \in B$, $cl(f^{-1}(B))$ is IFN of IFP $p_{(\alpha,\beta)}$ in X.

Proof: Let f be an *IF slightly* ζ – *continuous* mapping, $p(\alpha, \beta)$ be an IFP in X and B be any IF clopen set in Y such that $f(p_{(\alpha,\beta)}) \in B$. Then

 $p(\alpha, \beta) \in f^{-1}(B) \subseteq bcl(int(f^{-1}(B))) \subseteq cl(f^{-1}(B))$. Hence $cl(f^{-1}(B))$ is an IFN of $p_{(\alpha,\beta)}$ in X.

Conversely, let B be any IF clopen set in Y and $p_{(\alpha,\beta)}$ be IFP in X such that $f(p(\alpha,\beta)) \in B$. Then

 $p_{(\alpha,\beta)} \in f^{-1}(B)$. According to assumption $cl(f^{-1}(B))$ is IFN of IFP $p_{(\alpha,\beta)}$ in X.

So
$$p_{(\alpha,\beta)} \in bcl(\operatorname{int}(f^{-1}(B))) \subseteq cl(bcl(\operatorname{int}(f^{-1}(B))))$$
. So $f^{-1}(B) \subseteq bcl(\operatorname{int}(f^{-1}(B)))$. Hence

 $f^{-1}(B)$ is IF ζ OS in X. Therefore f is IF slightly ζ – continuous.

Proposition 4.7: Every *intuitionistic fuzzy* ζ – *continuous* function is *IF slightly* ζ – *continuous*. But the converse need not be true, as shown by the following example.

Example 4.8: Let $X = \{a, b\}$, $Y = \{u, v\}$

$$G_1 = \langle x, (0.7, 0.8), (0.3, 0.2) \rangle, G_2 = \langle y, (0.6, 0.7), (0.4, 0.3) \rangle$$

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \kappa)$ by f(a) = u and f(b) = v.

Then f is an IF slightly ζ – continuous but not an IF ζ – continuous mapping.

Proposition 4.9: Every $IF\zeta$ – *irresolute* function is *IF slightly* ζ – *continuous*. But the converse need not be true, as shown by the following example.

Example 4.10: Let $X = \{a, b\}, Y = \{u, v\}$

 $G_1 = \langle x, (0.3, 0.4), (0.6, 0.5) \rangle, G_2 = \langle y, (0.4, 0.5), (0.5, 0.5) \rangle$

Then $\tau = \{0_{2}, 1_{2}, G_{1}\}$ and $\kappa = \{0_{2}, 1_{2}, G_{2}\}$ are IFT on X and Y respectively.

Define a mapping $f:(X,\tau) \to (Y,\kappa)$ by f(a) = u and f(b) = v.

Then *f* is an *IF slightly* ζ – *continuous* but not an IF ζ – irresolute.

Theorem 4.11: Suppose that Y has a base consisting of IF clopen sets. If $f: X \to Y$ is IF slightly ζ continuous, then f is $IF \zeta$ – continuous.

Proof: Let $p_{(\alpha,\beta)} \in X$ and let C be IFOS in Y containing $f(p_{(\alpha,\beta)})$. Since Y has a base consisting of IF clopen sets, there exists an IF clopen set B containing $f(p_{(\alpha,\beta)})$ such that $B \subseteq C$. Since f is *IF*

slightly ζ – continuous, then there exists an IF ζ OS A in X containing $p_{(\alpha,\beta)}$ such that

 $f(A) \subseteq B \subseteq C$. Thus f is $IF\zeta$ – continuous.

Theorem 4.12: If a function $f : X \to \prod Y_i$ is an IF slightly fuzzy ζ continuous, then $P_i of : X \to Y_i$ is *IF slightly* ζ – *continuous*, where P_i is the projection of $\prod Y_i$ onto Y_i .

Proof: Let B_i be any IF clopen sets of Y_i . Since P_i is IF continuous and IF open mapping, and

 $P_i: \prod Y_i \to Y_i$, $P_i^{-1}(B_i)$ is IF clopen sets in $\prod Y_i$. Now $(P_i o f)^{-1}(B_i) = f^{-1}(P_i^{-1}(B_i))$. As IF

slightly ζ continuous and $P_i^{-1}(B_i)$ is IF clopen sets, $f^{-1}(P_i^{-1}(B_i))$ is IF ζ OS in X. Hence $P_i of$ is IF slightly ζ – continuous.

Theorem 4.13: The following hold for functions $f: X \to Y$ and $g: Y \to Z$

(i) If f is IF slightly ζ – continuous and g is IF totally continuous then gof is IF ζ continuous.

(ii) If f is IF ζ -irresolute and g is IF slightly ζ – continuous then gof is IF slightly ζ continuous.

Proof: (i) Let B be an IFOS in Z. Since g if IF totally continuous, $g^{-1}(B)$ is an IF clopen set in Y. Now $(gof)^{-1}(B) = f^{-1}(g^{-1}(B))$. Since f is *IF slightly* ζ *continuous*, $f^{-1}(g^{-1}(B))$ IF ζ OS in X. Hence *gof* is IF ζ continuous.

(ii)Let B be IF clopen set in Z. Since and g is *IF slightly* ζ – *continuous*, $g^{-1}(B)$ is an *IF* ζOS in Y. Now $(gof)^{-1}(B) = f^{-1}(g^{-1}(B))$ Since f is *IF* ζ -*irresolute*, $f^{-1}(g^{-1}(B))$ IF ζ OS in X which implies *gof* is *IF slightly* ζ – *continuous*.

5. INTUISTIONISTIC FUZZY ζ SEPARATION AXIOMS

Definition 5.1: An IFTS (X, τ) is called $\zeta - T_1$ if and only if for each pair of distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}, y_{(\gamma,\delta)}$ in X there exists $IF\zeta OS$ such that $x_{(\alpha,\beta)} \in U$, $y_{(\gamma,\delta)} \notin U$ and $x_{(\alpha,\beta)} \notin V$, $y_{(\gamma,\delta)} \in V$.

Theorem 5.2: If $f: X \to Y$ is *IF slightly* ζ – *continuous* injection and Y is $CO - T_1$, then X is $IF \zeta - T_1$.

Proof: Suppose that Y is IF $CO - T_1$. For any distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}$, $y_{(\gamma,\delta)}$ in X there exists IF clopen sets U,V in Y such that

 $f(x_{(\alpha,\beta)}) \in U, f(y_{(\gamma,\delta)}) \notin U, f(x_{(\alpha,\beta)}) \in V, f(y_{(\gamma,\delta)}) \notin V$. Since f is *IF slightly* ζ – continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are IF ζ –open sets in X such that

 $x_{(\alpha,\beta)} \in f^{-1}(U), y_{(\gamma,\delta)} \notin f^{-1}(U), x_{(\alpha,\beta)} \notin f^{-1}(V), y_{(\gamma,\delta)} \in f^{-1}(V)$. This shows that X is IF $\zeta - T_1$. **Definition 5.3:** An IFTS (X,τ) is called $\zeta - T_2$ or $\zeta - Hausdorff$ if for all pair of distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}, y_{(\gamma,\delta)}$ in X there exists IF ζ -open sets $U, V \in Y$ such that $x_{(\alpha,\beta)} \in U$, $y_{(\gamma,\delta)} \in V$ and $U \cap V = 0$.

Theorem 5.4: If $f: X \to Y$ is *IF slightly* ζ – *continuous*, injection and Y is $CO - T_2$, then X is IF $\zeta - T_2$.

Proof: Suppose that Y is IF $CO - T_2$. For any distinct intuitionistic fuzzy points $x_{(\alpha,\beta)}, y_{(\gamma,\delta)}$ in X there exists IF clopen sets U,V in Y such that $f(x_{(\alpha,\beta)}) \in U$ and $f(y_{(\gamma,\delta)}) \in V$. Since f is *IF slightly* ζ – *continuous*, $f^{-1}(U)$ and $f^{-1}(V)$ are IF ζ –open sets in X such that $x_{(\alpha,\beta)} \in f^{-1}(U), y_{(\gamma,\delta)} \in f^{-1}(V)$. Also we have $f^{-1}(A) \cap f^{-1}(V) = 0$. Hence then X is IF $\zeta - T_2$. **Definition 5.5:** An IFTS (X,τ) is called IF strongly ζ – *regular* if for each IF ζ –closed set C and IFP $x_{(\alpha,\beta)} \notin C$, there exists intuitionistic fuzzy open sets U and V such that $C \subseteq U, x_{(\alpha,\beta)} \in V$ and $U \cap V = 0$.

Theorem 5.6: If $f: X \to Y$ is *IF slightly* ζ – *continuous*, injective, IF open function from an IF strongly ζ – *regular* X onto an IF space Y, then and Y is IF co-regular.

Proof: Let D be an IF ζ open set in Y and $y_{(\gamma,\delta)} \notin D$. Take $y_{(\gamma,\delta)} = f(x_{(\alpha,\beta)})$. Since f is IF slightly ζ continuous, $f^{-1}(D)$ is an IF ζ -closed set in X. Let $C = f^{-1}(D)$. $x_{(\alpha,\beta)} \notin C$. Since X is IF strongly $\zeta - regular$, there exists intuitionistic fuzzy open sets U and V such that $C \subseteq U, x_{(\alpha,\beta)} \in B$ and $U \cap V = 0$. Hence, we have $D = f(C) \subseteq f(A)$ and $y_{(\gamma,\delta)} = f(x_{(\alpha,\beta)}) \in f(B)$ such that f(A) and f(B) are disjoint IF open sets. Hence Y is IF ζ regular.

Definition 5.7: An IFTS (X, τ) is called IF strongly ζ – *normal* if for each IF clopen sets C₁ and C₂ in X such that IFP set C and intuitionistic fuzzy point $x_{(\alpha,\beta)} \notin C$, there exists intuitionistic fuzzy open

sets U and V in X such that $C_1 \cap C_2 = 0_{\sim}$ there exists IF ζ -open sets U, V such that $C_1 \subseteq U$ and $C_2 \subseteq V$ and $U \cap V = 0$.

Theorem 5.8: If $f: X \to Y$ is *IF slightly* ζ – *continuous*, injective, IF open function from an IF strongly ζ – *normal* space X onto an IF space Y, then and Y is IF co-normal.

Proof: Let C₁ and C₂ be disjoint IF clopen sets in Y. Since f is IF slightly ζ continuous, $f^{-1}(C_1)$ and $f^{-1}(C_2)$ are IF ζ closed sets in X. Let us take $C = f^{-1}(C_1)$ and $D = f^{-1}(C_2)$. We have $C \cap D = 0_{\sim}$. Since X is IF strongly ζ – normal, there exists disjoint IF open sets U and V such that $C \subseteq U$ and $D \subseteq V$. Thus $C_1 = f(C) \subseteq f(U)$ and $C_2 = f(D) \subseteq f(V)$ such that f(U) and f(V) are disjoint IF open sets. Hence Y is IF ζ normal.

6. INTUISTIONISTIC FUZZY COVERING PROPERTIES

Definition 6.1: Let X be an IFTS. A family of $\{\langle x, \mu_{G_i}(x), \upsilon_{G_i}(x) \rangle; i \in J\}$ intuitionistic fuzzy open sets (*intuitionistic fuzzy* ζ – open sets) in X satisfies the condition

 $1_{\sim} = \bigcup \{ \langle x, \mu_{G_i}(x), \upsilon_{G_i}(x) \rangle i \in J \} \text{ is called an intuitionistic fuzzy open cover (intuitionistic fuzzy$ $<math>\zeta$ - open cover) of X. A finite subfamily of an intuitionistic fuzzy open cover (intuitionistic fuzzy ζ - open cover) $\{ \langle x, \mu_{G_i}(x), \upsilon_{G_i}(x) \rangle; i \in J \}$ of X which is also an intuitionistic fuzzy open cover (intuitionistic fuzzy ζ - open cover) is called a finite subcover of $\{ \langle x, \mu_{G_i}(x), \upsilon_{G_i}(x) \rangle; i \in J \}$.

Definition 6.2: A space X is called an intuitionistic fuzzy ζ -compact(ζ -Lindelof) if every intuitionistic fuzzy ζ – open cover of X has a finite (countable) subcover.

Definition 6.3: An IFTS X is said to be

- (i) IF ζ -compact if every ζ -open cover of X has a finite subcover.
- (ii) IF countably ζ -compact if every ζ -open countably cover of X has a finite subcover.
- (iii) IF ζ -Lindelof if every cover of X by IF ζ -open sets has a countable subcover.
- (iv) IF mildly compact if every IF ζ cover of X has a finite subcover.
- (v) IF mildly countably compact if every $IF \zeta$ countably cover of X has a finite subcover.
- (vi) IF mildly Lindelof if every cover of X has IF ζ -open sets has a countable subcover.

Theorem 6.4: Let $f: X \to Y$ be an IF slightly ζ continuous surjection. Then the following statements hold:

- (i) If X is IF ζ -compact, then Y is IF mildly compact.
- (ii) If X is IF ζ -Lindelof, then Y is IF mildly Lindelof.
- (iii) If X is IF countably ζ -compact, then Y is IF mildly countably compact.

Proof: (i) Let $\{A_{\alpha} : \alpha \in I\}$ be any IF clopen cover of Y. Since f is IF slightly ζ continuous, then $\{f^{-1}(A_{\alpha}) : \alpha \in I\}$ is IF ζ -open cover of X. Since X is IF ζ -compact, there exists a finite subset I_0 of I such that $1_{-x} = \bigcup \{f^{-1}(A_{\alpha}); \alpha \in I_0\}$. Thus we have $1_{-y} = \bigcup \{A_{\alpha}; \alpha \in I_0\}$ and Y is IF mildly compact.

(ii) Let $\{A_{\alpha} : \alpha \in I\}$ be any IF clopen cover of Y. Since f is *IF slightly* ζ – *continuous*, then

 $\{f^{-1}(A_{\alpha}): \alpha \in I\}$ is IF IF ζ -open cover of X. Since X is IF ζ -Lindelof, there exists a countable subset I_0 of I such that $1_{\chi} = \bigcup \{f^{-1}(A_{\alpha}); \alpha \in I_0\}$. Thus we have $1_{\chi} = \bigcup \{A_{\alpha}; \alpha \in I_0\}$ and Y is IF mildly Lindelof.

(iii) Let $\{A_{\alpha} : \alpha \in I\}$ be any IF clopen cover of Y. Since f is *IF slightly* ζ – *continuous*, then

 $\{f^{-1}(A_{\alpha}): \alpha \in I\}$ is IF IF ζ -open cover of X. Since X is is IF countably ζ -compact, subset I_0 of I

such that $1_{x} = \bigcup \{ f^{-1}(A_{\alpha}); \alpha \in I_0 \}$. Thus we have $1_{y} = \bigcup \{ A_{\alpha}; \alpha \in I_0 \}$ and Y is IF midly compact. **Definition 6.5:** An IFTS X is said to be

- (i) IF ζ –closed compact if every ζ –closed of X has a finite subcover.
- (ii) IF ζ -closed Lindelof if ever y cover of X by ζ -closed sets has a countable subcover.
- (iii) IF countably ζ –closed compact if every countable cover of X by ζ –closed sets has a finite subcover.

Theorem 6.6: Let $f: X \to Y$ be an *IF slightly* ζ – *continuous*, *surjection*. Then the following statements hold:

- (i) If X is $IF \zeta$ -closed compact, then Y is mildly compact.
- (ii) If X is $IF \zeta$ -closed Lindelof, then Y is mildly Lindelof.
- (iii) If X is IF countably ζ -closed compact, then Y is mildly countably compact.

Proof: (i) Let $\{A_{\alpha} : \alpha \in I\}$ be any IF clopen cover of Y. Since f is *IF slightly* ζ – *continuous*, then $\{f^{-1}(A_{\alpha}) : \alpha \in I\}$ is IF ζ -closed cover of X. Since X is IF ζ -closed compact, there exists a finite subset I_0 of I such that $1_{-x} = \bigcup \{f^{-1}(A_{\alpha}); \alpha \in I_0\}$. Thus we have $1_{-y} = \bigcup \{A_{\alpha}; \alpha \in I_0\}$ and Y is IF midly compact.

Similarly, we can obtain the proof for (ii) and (iii).

Definition 6.7: An IFTS (X, τ) is said to be *intuitionistic fuzzy* ζ -disconnected (IF ζ -disconnected) if there exists IF ζOS U,V in X such that $U \neq 0_{\sim}, V \neq 0_{\sim}$ such that $U \cup V = 1_{\sim}$ and $U \cap V = 0_{\sim}$. If X is not IF ζ -disconnected then it is said to be intuitionistic fuzzy ζ -connected (IF ζ -connected).

Theorem 6.8: Let $f: X \to Y$ be an *IF slightly* ζ – *continuous*, *surjection*, (X, τ) is an *intuitionistic* fuzzy ζ -connected, then (Y, κ) is IF connected.

Proof: Assume that (Y, κ) is not IF connected then there exists non-empty intuitionistic fuzzy U and V in (Y, κ) such that $U \cup V = 1_{\sim}$ and $U \cap V = 0_{\sim}$. Therefore U and V are intuitionistic fuzzy ζ

open sets in Y. Since *f* is *IF slightly* ζ – *continuous*, $C = f^{-1}(A) \neq 0_{\sim}$, $D = f^{-1}(B) \neq 0_{\sim}$, which are *IF* ζOS in X. And $f^{-1}(U) \cup f^{-1}(V) = f^{-1}(1) = 1$, which implies $C \cap D = 0$. Thus X is IF ζ -

disconnected, which is a contradiction to our hypothesis. Hence Y is IF connected.

Remark 6.9: The following example shows that *IF slightly* ζ – *continuous*, *surjection* do not necessarily preserve IF hyperconnectedness.

Example 7.0: Let $X = \{a, b\}, Y = \{u, v\}$

$$G_{1} = \left\{ \left\langle x, (0.7, 0.6), (0.3, 0.4) \right\rangle / x \in X \right\}, G_{2} = \left\{ \left\langle x, (0.1, 0.1), (0.9, 0.9) \right\rangle / x \in X \right\}$$
$$G_{3} = \left\{ \left\langle x, (0.9, 0.9), (0.1, 0.1) \right\rangle / x \in X \right\}$$

Then $\tau = \{0_{\sim}, 1_{\sim}, G_1\}$ and $\kappa = \{0_{\sim}, 1_{\sim}, G_2, G_3, G_2 \cup G_3, G_2 \cap G_3\}$ are IFT on X and Y respectively. Define a mapping $f: (X, \tau) \to (X, \kappa)$ by f(a) = u and f(b) = v.

Then f is an *IF slightly* ζ – *continuous* surjective. (X, τ) is hyperconnected. But (X, κ) is not hyperconnected.

REFERENCES

- I.Arockiarani and H. Jude Immaculate, A Note on intuitionistic Fuzzy d-Continuous mappings, {Proceeding of National Seminar on Recent Development in Topology}, (2015)236-244.
- [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems., 20 (1986), 1, 87-96.
- [3] Biljana Krsteska and ErdalEkici, Intuitionistic fuzzy Contra Strong Pre-continuity, Faculty of Sciences and Mathematics, 21 (2007), 273-284.
- [4] C.L. Chang, Fuzzy topological spaces, J.Math., Anal and Appl., 24 1968, 1, 182-190.
- [5] D. Coker, An introduction to Intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems.
 88 (1997), 1, 81-89.
- [6] Francisco Gallego Lupianez, Separation in Intuitionistic Fuzzy Topological Spaces, Int.Jour.Pure and Applied Mathematics 17(2004), 1, 29-34.
- [7] H. Gurcay, D. Coker and A.D. Es, On fuzzy continuity in intuitionistic fuzzy topological spaces,
 J.Fuzzy Math. 5 (1997), 2, 365- 378.
- [8] I. M.Hanafy, Intuitionistic Fuzzy γ -continuity Canad. Math, Bull. 52(8) (2009), 544-554.
- [9] Ilija Kovacevic, Almost Continuity and nearly Paracompactness, Publications de linstitut Mathematique, 30 (1981), 44, 73-79.
- [10] R.C. Jain, Ph.D Thesis, Meerut University, Meerut, India 1980.
- [11] J.K.Joen and Y.B. Jun, J.H.Park, Intuitionistic fuzzy α -continuity and Intuitionistic fuzzy Precontinuity, IJMMS.(19)(2005), 3091-3101.
- [12] S. J. Lee and E. P. Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37(1)(2000),63-76.
- [13] A. Manimaran, K. Arun Prakash, P. Thangaraj, Intuitionistic Fuzzy Totally continuous and Totally semi-continuous mappings in intuitionistic fuzzy topological spaces, Int. Jour, Adv. Sci. And Tech. Research, 2 (2011) 2249-9954.
- [14] R. Santhi and D. Jayanthi, intuitionistic fuzzy almost generalized semi-pre continuous mappings, Tamkang journal of mathematics, 2 (2011), 175-191.
- [15] Renuka.R and V. Seenivasan, Intuitionistic fuzzy pre- β -irresolute functions, Scientia Magna, 9 (2013), 2, 93-102
- [16] Renuka.R and V. Seenivasan, Intuitionistic fuzzy slightly precontinuous functions, Int. Jour.Pure and Appl. Mathematics, (6) (2013), 993-1004.
- [17] Sharmila.S and I.Arockiarani, On Intuitionistic fuzzy ζ Open sets, (Communicated).
- [18] Sharmila.S and I. Arockiarani, On Intuitionistic Fuzzy Completely ζ Continuous Mappings , International Journal of Applied Research (accepted).
- [19] I.L. Reilly and M. K. Vamanamurthy, On super-continuous mappings, Indian J.Pure Appl. Math. 14 (1983), 6, 767-772.
- [20] Takshi Noiri, Slightly β continuous functions, IJMMS, 28 (2001), 8, 469-478.
- [21] Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semipre open sets and intuitionistic fuzzy Semipre continuous mappings, Jour. Of Appl. Math and Computing, 19 (2005), 467-474.
- [22] I.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.