Vol.3.Issue.4.2015 (Oct-Dec.)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

CRITERION FOR A PRIME BELOW A GIVEN INTEGER TO BE RELATIVELY PRIME NUMBER

B. N. PRASAD RAO¹, Prof. M.RANGAMMA²

^{1,2}Department of Mathematics, Osmania University, Hyderabad, India

ABSTRACT

When *N* is a composite integer then *N* has prime factors less than or equal to \sqrt{N} . The prime factors of *N* that are less than or equal to \sqrt{N} are not relatively prime to *N*. Also some prime numbers less than or equal to $\frac{N}{2}$ are also not relatively prime to *N*. In this paper we proved a criterion under which a prime number less than *N* becomes relatively prime to *N*.

Keywords: condition, criterion for which a prime number of a composite number is relatively prime.

©KY PUBLICATIONS

INTRODUCTION

Let us consider a composite number 28. The prime factors 2,7 of 28 are not relatively prime to 28. The prime numbers greater than 7 and less than 28 are 11,13,17,19 and 23. We find these prime numbers to be relatively prime to 28. Thus, if a composite number $N \neq 2q$, 3q where q is a prime number, then the prime numbers greater than $\frac{N}{4}$ are relatively prime to N is discussed in this paper.

Similarly, when N = 3q where q is an odd prime or N = 2q where q is a prime number then the primes greater than $\frac{N}{2}$ or $\frac{N}{2}$ are relatively prime to N.

Theorem 1. Let $N \neq 2q$, 3q where q is a prime number, be a composite integer. The prime numbers greater than $\frac{N}{4}$ are relatively prime to N.

Proof: Let $N \neq 2q$, 3q where q is a prime number, be a composite integer and $\frac{N}{4} be a prime number.$

We prove that gcd(p, N) = 1.

Let
$$gcd(p, N) = d$$

Then d|p and d|N.

Since p is a prime number and hence d = 1 or d = p.

If d = 1 then the theorem is proved. If d = p then gcd(p, N) = p. p|N implies N = kp for some integer k, 1 < k < N and $\frac{N}{4} .$ $k = \frac{N}{n} < 4$ (since $\frac{N}{4} < p$ implies $\frac{N}{n} < 4$). Therefore, k < 4 implies k = 1,2,3. If k = 1 then N = p is a prime. This contradicts our hypothesis as N is a composite number. Therefore, $k \neq 1$ When k = 2 then N = 2p. This contradicts our hypothesis as $N \neq 2p$, where p is a prime number. Therefore, $k \neq 2$ When k = 3 then N = 3p. This contradicts our hypothesis as $N \neq 3p$, where p is a prime number. Therefore $k \neq 3$ Thus we proved gcd(p, N) = 1. Hence all prime numbers greater than $\frac{N}{4}$ and less than N are relatively prime to N. **Theorem 2.** Let N = 2q where q is a prime number, be a composite integer. The prime numbers greater than $\frac{N}{2}$ are relatively prime to N. **Proof.** There is nothing to prove here because we know that all primes greater than $\frac{N}{2}$ are relatively prime to N.

Theorem 3. Let N = 3q where q is an odd prime number, be a composite integer. The prime numbers greater than $\frac{N}{2}$ are relatively prime to N.

Proof. The proof is same as Theorem 1.

Acknowledgements

I thank MHRD, Govt. of India for supporting my work through UGC-BSR Fellowship.

Reference

Elementary Number Theory, David M. Burton, University of New Hampshire.