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S.K. BISWAS 

ABSTRACT 

This paper deals with characterizations of finite Boolean lattices.  In this paper, 

we discuss some lemmas and some important theorems such as “Let L be a 

finite lattice if and only if each congruence relation  on L can be associated a 

congruence relation K on GL, where xKy if and only if xy, then L is a BOOLEAN 

lattice”. 
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1.INTRODUCTION 

  A binary, reflexive, symmetric and transitive relation K on an undirected graph G=(V,E) is 

called a congruence relation on G, if xKy only when xKy. The purpose of this brief paper is to show 

that a finite lattice is BOOLEAN iff each lattice congruence  on L is a congruence relation K on the H-

ASSE diagram graph GL of L. 

 The definitions of terms of graph and lattice theories not given here can be found in 

monographs [4] and [5] of ORE and SZASZ respectively, to which the reader is referred. 

 Suppose L is a finite BOOLEANlattice and GL=(VL, EL) the HASSE diagram graph associated with L. 

Consider GL an undirected graph, where VL=L and (a, b)EL whenever, a covers b or b covers a in L, a, 

bL. 

 As well known, GL is a graph without loops, multiple edges and isolated vertices. If xVL, 

then x means the set of all vertices y for which (x,y)EL. Suppose R is a binary, symmetric and 

reflexive relation on the vertex set VL. ZELINKA [6] calls R a tolerance relation on GL, if R satisfies the 

condition: xRy only if xRy. That is ,  ux, an element zy such that uRz and vice versa,  

wy there is an element tx such that wRt. If K is a tolerance relation on GL and if it is also 

transitive. That is xKw and wKzxKz, K is called a congruence relation on GL. In [1] CHAJDA and 
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ZELINKA consider tolerance relations defined by means of meet and join operations on lattices and in 

[2] and [3] the reader can find some properties of congruence relations on graphs. 

2.BASIC PART 

 In a finite BOOLEAN lattice L each congruence relation  on L is uniquely determined by its 

kernel I, where I = (a] = { x : xa, xL} according to the finity of L. Thus xyxa = ya, hence each 

 on L is determined by a specified translation sa(x)=ax as follows:  

xy iff sa(x)=sa(y). Conversely one can easily shown that, each translation  on L is determined by a 

congruence relation  the kernel of which is (b] whenever dJ= [b). Thus we can write 

Lemma 2.1: In a finite BOOLEANlattice L each congruence relation , I=(a], is determined by the 

translation sa:xy iff sa(x) = sa(y), and conversely, each translation  on L, dJ= [b) is determined by 

the congruence relation :I=(b], (x) = xb and (x) = (y) iff xy. 

Lemma 2.2: Suppose L is a finite lattice and  a translation on L. Then  determines a congruence 

relation K on GL as follows: xKy iff  (x) = (y). 

Proof:The relation K is evidently reflexive, symmetric and transitive. So it remains to show that xKy 

only when xKy. Assume xy; the case x = y is trivial.  

Suppose zx and assume z covers x i.e.; z>x. Then (z)(x) and thus we have two case to 

consider: (i) (x) = (z) and (ii) (z)>(x). The case x>z can be proved analogously. 

(i) (z) = (x) = (y), (xy) = (x)(y) = (y) and suppose that xy>y. Thus  w[y, xy] = 

{v:yvxy, vL}, (w) = (y). Since L is finite, there is also an element w[y, xy] such that 

w>y, and so wy such that zKw. If y = xy, then x<y and w[x,y], w<y such that (w) = (y) 

= (z). Thus wKz. The part vice versa can be proved similarly. 

(ii)  (z)>(x). Now, (x)z>(x), as in the other case z(x), from which it follows the 

contradiction: (z)((x)) = (x). Since L is distributive and z>x, (x)z>(x). On the other 

hand, ((x)z)=(x)(z)=(z)=(xz) and thus (z)>(x). Now, we must show that there is 

an element w>y in L such that (w) = (z).  If y = (x), the case is trivial : w = (z). Therefore 

we assume that y (x), hence (x)[y, (z)]. The convex sublattice [y, (z)] of L is 

complemented and hence there is an element u[y, (z)] such that u(x) = (z) and u(x) 

= y. Since (z)>(x) and [y, (z)] is distributive u>y and since u[y,(z)], u(u)(z). 

Suppose (u)<(z). From u(x) = y we have (u(x)) = (y) = (u)(x) and hence 

(u)(y). Now, (z)>(y) and (z)>(u)(x) = (y); consequently (u) = (y). Then 

(u(x)) = (u)(x) = (x)(z), which is a contradiction. Therefore (u) = (z). 

So, if xKy then  zx there is an element uy such that zKu. The vice versa part can be prove 

similarly. Thus the proof is complete. 

Lemma 2.3:Let L be a finite lattice. If each congruence relation  on L can be associated a 

congruence relation K on GL, where xKy iff xy, then L is a BOOLEANlattice. 

Proof: First we show that L must be distributive where after the complementedness of L can be 

proved. 

Consider the lattices L1 and L2 of Fig. 1. In the lattice L1, {b, 0}, {a, 1} and {c} are congruence classes 

module a1. Thus if bK0, the relation bK0 does not hold, since there is no ub such that ua1c, 

c0. Furthermore, in the lattice L2, {a, 1}, {b} and {c, 0} are the congruence classes module a1. When 

0Kc, the relation 0Kc does not hold since b0 and there are no element uc such that uKb. Thus 

L can not contain L1 or L2 as a sublattice from which the distributivity of L follows: 
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Fig. 2.1 

In a distributive lattice L each ideal (a] determines a congruence relation [(a]], where 0L, i[(a]] 0 

iff i(a]. In particular,  dual atom zL, i.e., z<l, there is at least one element kL such that k>0, 

k(z]. Indeed, in all other cases all the elements in 0(z] and since 1z and 1[(z]]z, the relation 

yKx iff xy would not be a congruence relation on GL. Thus for each dual atom z of L, k is the 

complement of z in L. 

The complement is unique, since L is distributive. We can show as above that, if w<z<1, there is an 

element k>0 such that k(w] and kw=0. Since k is the unique complement of an element 

y<1,wk=r<1. If r denotes the complement of r in L, wr=(rw)r=0 and so (kr) is the 

complement of w in L. It is unique according to the distributivity of L. Since L is finite, we can 

construct by this process a complement for each element of L. Thus the proof is complete. 

By combining the results of Lemmas 1, 2 and 3 we have our characterization. 

Theorem 2.1:A finite lattice L is a BOOLEAN lattice iff for each congruence relation  on L the relation 

K, xKyxy, is a congruence relation on the graph GL. 

We shall finally make some remarks on the congruence relations K on the graph GL when L is a finite 

BOOLEAN lattice. As well known, the congruence relations K on GL form a lattice K(GL) w.r.to the meet 

and join operations defined as follows: If K, HK(GL), then x(KH)y iff xKy and xHy and x(KH)y iff 

there is in VL a sequence u1, u2, u3 --------, un of elements, x=u1 and y=un such that for each value of i 

at least one of the relations uiHui+1, uiKui+1 holds, i=1, 2-------, n-1. 

The lattice K(GL) need not be even modular since one can see by means of the lattice L of Fig. 2. The 

only non-trivial lattice congruence on L are a0 and b0. The congruence relations K on GL that are not 

simultaneously lattice congruence on L are K1,K2 and K3.    The classes modulo K1 are {1} and {0}. 

Those modulo K2: {1, 0} and {a, b} and those modulo K3:{1,0}, {a} and {b}. The lattice K(GL) is given in 

Fig. 2. 
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Fig. 2.2 

 According to the definitions of join and meet operations in K(GL) and in the lattice (L) of all lattice 

congruences on L, we can write 
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3.CONCLUSION 

If L is a finite BOOLEAN lattice, (L) is a BOOLEAN sublattice of the lattice K(GL). 
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