Vol.3.Issue.4.2015 (Oct-Dec.)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal



CHARACTERIZATIONS OF FINITE BOOLEAN LATTICES

S.K. BISWAS¹, SUMAN KAR² ¹Department of Mathematics, World University of Bangladesh, Dhaka,Bangladesh. E-mail: sanjoy.biswas22@yahoo.com ²Department of Mathematics, World University of Bangladesh, Dhaka,Bangladesh. E-mail: suman.kar.du@gmail.com

S.K. BISWAS

ABSTRACT

This paper deals with characterizations of finite Boolean lattices. In this paper, we discuss some lemmas and some important theorems such as "Let L be a finite lattice if and only if each congruence relation θ on L can be associated a congruence relation K on G_L , where xKy if and only if x θ y, then L is a BOOLEAN lattice".

Key Words: Binary relation, HASSE diagram, sublattice, distributive lattice, congruence relation, finite Boolean lattice.

©KY PUBLICATIONS

1.INTRODUCTION

A binary, reflexive, symmetric and transitive relation K on an undirected graph G=(V,E) is called a congruence relation on G, if xKy only when $\Gamma x K \Gamma y$. The purpose of this brief paper is to show that a finite lattice is BOOLEAN iff each lattice congruence θ on L is a congruence relation K on the H-ASSE diagram graph G_L of L.

The definitions of terms of graph and lattice theories not given here can be found in monographs [4] and [5] of ORE and SZA'SZ respectively, to which the reader is referred.

Suppose L is a finite BOOLEANIattice and $G_L = (V_L, E_L)$ the HASSE diagram graph associated with L. Consider G_L an undirected graph, where $V_L = L$ and $(a, b) \in E_L$ whenever, a covers b or b covers a in L, a, $b \in L$.

As well known, G_L is a graph without loops, multiple edges and isolated vertices. If $x \in V_L$, then Γx means the set of all vertices y for which $(x,y) \in E_L$. Suppose R is a binary, symmetric and reflexive relation on the vertex set V_L . ZELINKA [6] calls R a tolerance relation on G_L , if R satisfies the condition: xRy only if $\Gamma xR\Gamma y$. That is \exists , $\forall u \in \Gamma x$, an element $z \in \Gamma y$ such that uRz and vice versa, \forall $w \in \Gamma y$ there is an element $t \in \Gamma x$ such that wRt. If K is a tolerance relation on G_L and if it is also transitive. That is xKw and wKz \Rightarrow xKz, K is called a congruence relation on G_L . In [1] CHAJDA and ZELINKA consider tolerance relations defined by means of meet and join operations on lattices and in [2] and [3] the reader can find some properties of congruence relations on graphs.

2.BASIC PART

In a finite BOOLEAN lattice L each congruence relation θ on L is uniquely determined by its kernel I_{θ}, where I_{θ} = (a] = { x : x≤a, x∈L} according to the finity of L. Thus x θ y \Leftrightarrow x \lor a = y \lor a, hence each θ on L is determined by a specified translation s_a(x)=a \lor x as follows:

x θ y iff s_a(x)=s_a(y). Conversely one can easily shown that, each translation φ on L is determined by a congruence relation θ the kernel of which is (b] whenever dJ_{φ}= [b). Thus we can write

Lemma 2.1: In a finite BOOLEANIattice L each congruence relation θ , I_{θ} =(a], is determined by the translation $s_a:x\theta y$ iff $s_a(x) = s_a(y)$, and conversely, each translation ϕ on L, dJ_{ϕ} = [b) is determined by the congruence relation $\theta:I_{\theta}$ =(b], $\phi(x) = x \lor b$ and $\phi(x) = \phi(y)$ iff $x\theta y$.

Lemma 2.2: Suppose L is a finite lattice and φ a translation on L. Then φ determines a congruence relation K on G_L as follows: xKy iff $\varphi(x) = \varphi(y)$.

Proof:The relation K is evidently reflexive, symmetric and transitive. So it remains to show that xKy only when $\Gamma x K \Gamma y$. Assume $x \neq y$; the case x = y is trivial.

Suppose $z \in \Gamma x$ and assume z covers x i.e.; z > x. Then $\varphi(z) \ge \varphi(x)$ and thus we have two case to consider: (i) $\varphi(x) = \varphi(z)$ and (ii) $\varphi(z) > \varphi(x)$. The case x > z can be proved analogously.

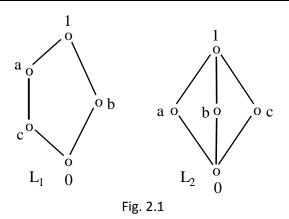
- (i) $\phi(z) = \phi(x) = \phi(y), \ \phi(x \lor y) = \phi(x) \lor \phi(y) = \phi(y)$ and suppose that $x \lor y > y$. Thus $\forall w \in [y, x \lor y] = \{v: y \le v \le x \lor y, v \in L\}, \ \phi(w) = \phi(y)$. Since L is finite, there is also an element $w \in [y, x \lor y]$ such that w > y, and so $w \in \Gamma y$ such that zKw. If $y = x \lor y$, then x < y and $w \in [x, y], w < y$ such that $\phi(w) = \phi(y) = \phi(z)$. Thus wKz. The part vice versa can be proved similarly.
- (ii) $\varphi(z)>\varphi(x)$. Now, $\varphi(x)\lor z>\varphi(x)$, as in the other case $z\leq\varphi(x)$, from which it follows the contradiction: $\varphi(z)\leq\varphi(\varphi(x)) = \varphi(x)$. Since L is distributive and z>x, $\varphi(x)\lor z>\varphi(x)$. On the other hand, $\varphi(\varphi(x)\lor z)=\varphi(x)\lor\varphi(z)=\varphi(z)=\varphi(x\lor z)$ and thus $\varphi(z)>\varphi(x)$. Now, we must show that there is an element w>y in L such that $\varphi(w) = \varphi(z)$. If $y = \varphi(x)$, the case is trivial : $w = \varphi(z)$. Therefore we assume that $y \neq \varphi(x)$, hence $\varphi(x)\in[y, \varphi(z)]$. The convex sublattice $[y, \varphi(z)]$ of L is complemented and hence there is an element $u \in [y, \varphi(z)]$ such that $u\lor\varphi(x) = \varphi(z)$ and $u\land\varphi(x) = y$. Since $\varphi(z)>\varphi(x)$ and $[y, \varphi(z)]$ is distributive u>y and since $u \in [y,\varphi(z)]$, $u\leq\varphi(u)\leq\varphi(z)$. Suppose $\varphi(u)<\varphi(z)$. From $u\land\varphi(x) = y$ we have $\varphi(u\land\varphi(x)) = \varphi(y) = \varphi(u)\land\varphi(x)$ and hence $\varphi(u)\geq\varphi(y)$. Now, $\varphi(z)>\varphi(y)$ and $\varphi(z)>\varphi(u)\geq\varphi(x) = \varphi(y)$; consequently $\varphi(u) = \varphi(y)$. Then $\varphi(u\lor\varphi(x)) = \varphi(u)\lor\varphi(x) = \varphi(x)\neq\varphi(z)$, which is a contradiction. Therefore $\varphi(u) = \varphi(z)$.

So, if xKy then $\forall z \in \Gamma x$ there is an element $u \in \Gamma y$ such that zKu. The vice versa part can be prove similarly. Thus the proof is complete.

Lemma 2.3:Let L be a finite lattice. If each congruence relation θ on L can be associated a congruence relation K on G_L, where xKy iff x θ y, then L is a BOOLEANIattice.

Proof: First we show that L must be distributive where after the complementedness of L can be proved.

Consider the lattices L_1 and L_2 of Fig. 1. In the lattice L_1 , {b, 0}, {a, 1} and {c} are congruence classes module θ_{a1} . Thus if bK0, the relation Γ bK Γ 0 does not hold, since there is no $u \in \Gamma$ b such that $u\theta_{a1}c$, $c \in \Gamma$ 0. Furthermore, in the lattice L_2 , {a, 1}, {b} and {c, 0} are the congruence classes module θ_{a1} . When OKc, the relation Γ OK Γ c does not hold since $b \in \Gamma$ 0 and there are no element $u \in \Gamma$ c such that uKb. Thus L can not contain L_1 or L_2 as a sublattice from which the distributivity of L follows:



In a distributive lattice L each ideal (a] determines a congruence relation $\theta[(a]]$, where $0 \in L$, $i\theta[(a]] 0$ iff $i \in (a]$. In particular, \forall dual atom $z \in L$, i.e., z < I, there is at least one element $k \in L$ such that k > 0, $k \notin (z]$. Indeed, in all other cases all the elements in $\Gamma 0 \in (z]$ and since $1 \in \Gamma z$ and $1\theta[(z]]z$, the relation yKx iff $x \theta y$ would not be a congruence relation on G_L . Thus for each dual atom z of L, k is the complement of z in L.

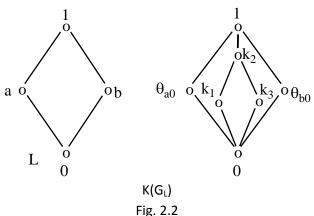
The complement is unique, since L is distributive. We can show as above that, if w<z<1, there is an element k>0 such that $k \notin (w]$ and $k \land w=0$. Since k is the unique complement of an element y<1,w \lor k=r<1. If r' denotes the complement of r in L, $w \land r'=(r \land w) \land r'=0$ and so $(k \lor r')$ is the complement of w in L. It is unique according to the distributivity of L. Since L is finite, we can construct by this process a complement for each element of L. Thus the proof is complete.

By combining the results of Lemmas 1, 2 and 3 we have our characterization.

Theorem 2.1:A finite lattice L is a BOOLEAN lattice iff for each congruence relation θ on L the relation K, xKy \Leftrightarrow x θ y, is a congruence relation on the graph G_L .

We shall finally make some remarks on the congruence relations K on the graph G_L when L is a finite BOOLEAN lattice. As well known, the congruence relations K on G_L form a lattice $K(G_L)$ w.r.to the meet and join operations defined as follows: If K, $H \in K(G_L)$, then $x(K \land H)y$ iff xKy and xHy and $x(K \lor H)y$ iff there is in V_L a sequence u_1 , u_2 , u_3 ------, u_n of elements, $x=u_1$ and $y=u_n$ such that for each value of i at least one of the relations u_iHu_{i+1} , u_iKu_{i+1} holds, i=1, 2------, n-1.

The lattice $K(G_L)$ need not be even modular since one can see by means of the lattice L of Fig. 2. The only non-trivial lattice congruence on L are θ_{a0} and θ_{b0} . The congruence relations K on G_L that are not simultaneously lattice congruence on L are K_1, K_2 and K_3 . The classes modulo K_1 are {1} and {0}. Those modulo K_2 : {1, 0} and {a, b} and those modulo K_3 :{1,0}, {a} and {b}. The lattice $K(G_L)$ is given in Fig. 2.



According to the definitions of join and meet operations in $K(G_L)$ and in the lattice $\theta(L)$ of all lattice congruences on L, we can write

3.CONCLUSION

If L is a finite BOOLEAN lattice, $\theta(L)$ is a BOOLEAN sublattice of the lattice $K(G_L)$.

4.REFERENCES

- [1] Chajda, I. and Zelinka, B., 1974, *Tolerance relation on lattices*, Casopis pest. mat. 99, 394-399
- [2] Nieminen, J., 1973, *On the Simploids; an extension*, Bull. Acad. Polon. Sci. Math. Astr. Phys. 21, 681-685.
- [3] Nieminen, J., 1974, A classification of the vertices of an undirected communication graph G generating a congruence relation on G, Wiss. Z. TH Ilmenau 20, 55-62.
- [4] Ore, O., 1962, *Theory of graphs*, Amer, Math. Soc., Providence RI.
- [5] Sza'sz, G., 1963, *Introduction to lattice theory*, Acad. Press, New York and London.
- [6] Zelinka, B., *Tolerance graphs*, Comment. Math. Univ. Carolinae 9, 121.