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ABSTRACT 

This paper deals with an optimal inventory systems wherein profit maximization 

as well as, total cost minimization is simultaneously carried out under conditions 

of exponential decay patterns of the inventory holding. These patterns are 

studied under different situations of Constancy, Linearity and Quadratic forms. 

Usual assumptions are made about instant replenishment, time horizon being 

infinite with shortages being allowed and so on. All the theoretical work and 

results are extensively supported by empirical work as a comparison study to 

bring out the qualitative aspects. 

Keywords: Optimal Price; Optimal cycle length; Optimal Order rate; optimal 

cost; Optimal Profit. 
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1. INTRODUCTION 

  In recent times, we consider the class of Inventory systems: (a) provided with shortages and 

(b) suffering decay with some general, say, quadratic rate. First, we observe that inventory models 

allowing for shortages are: (i) more pragmatic in character. For, in most physical conditions of 

marketing, there invariably exists some time lapse before replenishment through fresh inventory. 

Further, (ii) these systems are more generally, in as much as the results for systems with ‘no 

shortages’ case can be recovered from systems ‘with shortages’ by rendering the time interval 

degenerate, corresponding to the “excess demand situation”. In the following, we therefore devote 

our attention to inventory systems provided with ‘shortages’. Nextly, the inventory modeling 

formulated by us relates to perishable commodities, like, for example, food grains, blood-stocks and 

so on where it is assumed that the deterioration takes place exponentially. In fact, Cohen [1] 

initiated some work in this direction, while Mukherjee [2] and Sumalatha [3] further added some 

contributions in [1,2]. 

 However, we observe that still a good scope exists for further work in this line. Motivated thus, 

we obtained results in this direction and report these in the following.  
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 The analytic results are obtained using an approximation technique. The practical use of the 

results is illustrated with empirical work, carried out in some detail. Specifically, we considered 

inventory models for item that perish exponentially with decay rates that are: (a) constant, that is, 

time independent (b) linear and the dependent and (c) quadratic and time dependent. Some 

demand and pricing patterns are assumed. We then developed cost-profit optimal joint policy for 

ordering and pricing. That is, analytic expressions for optimal order rates and optimal cycle lengths 

are obtained.  

 Discussion leading to operational policy for inventory management is also given in the end. First 

we give the notation and nomenclature. 

2. NOTATION AND NOMENCLATURE 

Following Cohen [1], the notation and nomenclature is adopted. 

P   Selling price 

d (p)  Known demand rate  

I (t)   Inventory storage at time ‘ t ’ 

λ   Stock decay rate (constant, time-independent)  

λ (t)   Time dependent decay rate 

Z (t)  Stock loss due to decay in the closed time interval [0,t] 

T   Cycle length, i.e.,  I (NT-) = 0 and I (NT+) = QT , N = 0,1,2,3…. 

Q   Order quantity in [0,T] 

η   Fraction in *0,T+, when there is no excess demand, i.e I(N ηT+) = 0, N=0,1,2,3…. 

Z(T)   Stock loss due to decay in closed [0,T] 

K   Order cost 

h   Holding cost per unit 

C1   Purchase cost per unit 

S   Shortage cost rate per unit thus in the no shortage case, S = + ∞ 

T*   Optimal cycle length (or order interval) 

p*   Optimal price 

Q0   Optimal order rate = Q/T* 

C   𝐶  (T, T1, p), total cost  

C*        C (T*, η , p*), optimal cost (per unit time) 

Π*   π (T*, η , p*), optimal profit. 

 In consistent with most physical situations, we stipulate that 0 < λ, λ (t) << 1. 

We now explain the model and present our results. 

3. THE MODEL AND RESULTS 

As indicated earlier, we consider the inventory model for items that exponentially perish with 

progress of time. Shortages are allowed. The inventory replenishment is assumed to be 

instantaneously. First the case of constant decay rate is dealt with. 

 The basic purpose is to obtain analytic expressions for T*, Q0, and P* by minimizing cost and or 

profit functions. An important aspect of our work consists in deriving joint optimal pairs ( T* , p* ), 

employing algorithms suitably developed by us. 

3a. Constant Decay Rate  

 Allowing for shortages implies backlogging of excess demand in (T1 , T ), where T1 = η T. 

Following Cohen [1], we have:  

The differential equation explaining the time behavior of the inventory system, described above is 

given by: 
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𝑑 𝐼(𝑡)

𝑑 𝑡
 = - λ I (t) – d (p)          (1) 

Using known results from the theory of differential equations, the solution to (1) is given by: 

I (t) = I (o) 𝑒− λ t   - d (p) [ 1-  𝑒− λ t  + / λ         (2) 

The stock lost due to decay in [0, T] is  

Z (T1) = the difference in the stock with no decay to that when decay exists. 

Z (T1) = I (o) – d (p) T1 – I (T1) 

      = d (p) T1 + d (p) [𝑒  λ T1  - 1+ / λ                                                  (3) 

Now the order quantity comprises of the sum of demands met and back-logged and stocks that 

decayed. 

Therefore, Q0 = Z(T1) + T d(p)                            (4) 

 The total cost equation for 𝐶 (T, T1, p) I given by: 

C=  𝐶 (T, T1, p) = K + C1 Q +  𝐼  𝑡 𝑑𝑡 
T1

0
 + S d(p) +   𝑡 𝑑𝑡 

(T−T1)

0
      (5) 

Using (2), (3) and (4) in (5) we obtain after some calculations:  

𝐶 (T, T1, p) / T = 
𝐾

𝑇
 + C1 d (p) { 

𝑇−𝑇1

𝑇
+ 

𝑒  λ T1 −1 

𝜆 𝑇
 }+ h d(p) { 𝑒  λ T1 –  1 −  λ T1 } / λ2 T + S d(p)    

(T-T1)
2 / 2T            (6) 

Truncating the Taylor’s expansion for eλ T1  to second term (that is , ignoring terms with λj , j ≥ 3) in (6) 

and recasting (6) in terms of η, we obtain, after some calculations: 

C (T, η, p) = C1 d(p) + K / T + T d (p) * λ C1 η
2 + h η2 + s (1- η)2] / 2      (7) 

T* is now obtained by minimizing C (T, η, p), with respect to T, that is, using the two conditions: 

  ∂C (T,η,p) 

𝜕  𝑇
  T=T*  = 0 and              (7a)   

  𝜕
2C (T,η,p) 

𝜕 𝑇2   T=T*  > 0                     (7b)  

We notice that the later condition (of positivity) is really satisfied. Thus we obtain : 

T* = [ 2K / d (p) (C1λ η2 + h η2 + s (1- η)2 ) ]1/2          (8) 

Notice that, in the case with ‘no shortages’, that is when η = 1 (8) reduces to : 

T* = * 2K / d (p) * λ C1 + h] ] ½ 

Agreeing with an earlier result ( see also [1] ). Now p*  is obtained by maximizing the profit function π 

(T, η , p), with respect to ‘ p ‘ , where  

π (T, η , p) = p d(p) - C (T, η , p)          (9) 

Proceeding on similar lines as above (see also [1] ), we obtain 

p* = C1( 1+ λ η2 T / 2) + h η2 T / 2 + s (1- η)2 T / 2 – d(p) / d’ (p) ……..(10)  

The maximum of π (T, η , p) with respect to p, is obtained through the conditions  

   d π (T,η,p) 

𝑑 𝑇
  p= p*  = 0 and                    (10a) 

  𝑑
2π (T,η,p) 

𝑑 𝑇2   p= p*  > 0                           (10b)  

Now, (8) and (10) can be solved simultaneously for obtaining the joint optimal ( T* , p* ). Also the 

optimal orders quantity Q0 can be obtained as 

Q0 = d (p) *1+ λ η2 T* / 2]          (11) 

We now propose the following algorithm and hence obtain the optimal policy jointly for order cycle 

and pricing, namely ( T* , p* ). 

STEP I  :  Use (8) to obtain T*, for some assumed ‘p’ in d(p). 

STEP II :  Use T* obtained in step I, in (10) and obtain the p*, yielding the pair (T*, p*). 

STEP III:  Continue the procedure in the above two steps till we get the same pair (T*, p*), that 

is finally stabilizing. 
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 Even though no theoretical justification is established assuring a guaranteed termination 

(convergence) of the algorithmic procedure, we remark that in practice, final results (in  step III) are 

usually obtained fairly fast after a few iterative steps are performed. 

 Using (6) and (9) we obtain the optimal cost (C*) and optimal profit (π*). Numerical results are 

given in Table 1, Table 2, based on computer programmes. 

3B. LINEAR AND TIME-DEPENDENT DECAY RATE 

 We now add to the results un earlier literature by considering linear decay rate λ (t). We recall 

that, Cohen [1] considered only constant decay rate while Mukherjee [2] had not investigated the 

case with shortages being allowed.  

We stipulate: λ (t) = a + bt, 0 < a, b << 1        (12)  

For the time dependent decay rate,  λ (t), we have the following versions of the results given in 

section 3a. 

Z(T1) = d(p) T1+ I(T1) [ exp ( 𝜆 𝑥 𝑑𝑥 
T1

0
-1] + d(p)  exp (  𝜆 𝑥 𝑑𝑥 

t

0
) 𝑑𝑦 

T1

0
   (13)  

Inserting (12) for λ (t) in (13) and using Taylor’s approximation for exp (  𝜆 𝑥 𝑑𝑥 
T1

0
) upto the first 

term in T1 (justified, as 0 < a, b<<1), we obtain after calculations the following: 

QT = Z (T1) + d(p) T 

 = (T-T1) d(p) + d(p)  exp (  (𝑎 + 𝑏𝑥)𝑑𝑥 
t

0
) 𝑑𝑦 

T1

0
   

 = d(p) { (T-T1) + T1 + 
a𝑇12  

2
 + 

b𝑇13  

6
 }         (14) 

I (t) = d(p) exp (- (𝑎 + 𝑏𝑥)𝑑𝑥 
t

0
) ( exp(  (𝑎 + 𝑏𝑥)𝑑𝑥) 𝑑𝑦 

y

0

𝑇1

𝑡
)  

 𝐼 𝑡 𝑑𝑡  
T1

0
= d (p) { 

𝑇12  

2
 + 

a𝑇13  

6
 −   

𝑎2𝑇14  

8
  - 

a𝑏𝑇15  

12
 + 

𝑏𝑇14  

12
 - 

𝑏2𝑇16  

72
 }      (15) 

Now,  C (T, T1, p) = 𝐶  (T, T1, p) / T 

= 
𝐾

𝑇
 + 

𝐶1 𝑑(𝑝)

𝑇
 {(T-T1) + T1 +  

𝑎𝑇12  

2
 + 

b𝑇13  

6
}+ 

ℎ 𝑑 (𝑝)

𝑇
 { 

𝑇12  

2
 + 

a𝑇13  

6
 −   

𝑎2𝑇14  

8
  - 

a𝑏𝑇15  

12
 + 

𝑏𝑇14  

12
 - 

𝑏2𝑇16  

72
 } + 

𝑠 𝑑(𝑝)

2𝑇
 

(T-T1)
2             (16) 

Casting (16) in terms of η, we have  

C (T, η, p) = 
𝐾

𝑇
 + C1 d (p) {(1- η) + (η + 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3𝑇2  

6
} + h d(p) { 

𝜂2T 

2
 + 

𝑎𝜂 3𝑇2  

6
 + 

𝑏𝜂 4𝑇3  

12
 - 

𝑎2𝜂4𝑇3  

8
 – 

𝑎𝑏  𝜂5𝑇4  

12
 - 

𝑏2𝜂6𝑇5  

72
 } + s d(p) T(1-η)2 / 2       (17) 

Now we have:  

Π ( T, η, p) = pd(p) – C (T, η, p)                       (18) 

 The optimal: T* and p* are obtained by minimizing C (T, η, p) with respect to T and 

maximizing π(T, η, p) with respect to ‘p’. 

From (17) we have 

   d C (T,η,p) 

𝑑 𝑇
  T= T*  = - K + [

𝐶1 𝑑 𝑝 𝑎 𝜂2  

2
 + 

ℎ 𝑑 𝑝  𝜂2  

2
] T2 + [

𝐶1 𝑑 𝑝 𝑏 𝜂3  

3
 + 

ℎ 𝑑 𝑝 𝑎 𝜂3  

3
] T3 + [

ℎ 𝑑 𝑝 𝑏 𝜂4  

4
 – 

3ℎ𝑑 𝑝  𝑎2𝜂4  

8
] T4 – [

ℎ 𝑑 𝑝 𝑎𝑏  𝜂5  

3
] T5–[ 

5ℎ𝑑 𝑝  𝑏2𝜂6  

72
] T6 + [sd(p)(1-η)2/2]T2=0  (19) 

From (18) we obtain  

   d π (T,η,p) 

𝑑 𝑝
  p= p*  = 

−𝑑(𝑝)

𝑑 ̍ 𝑝 
 + C1 { 1+ 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
} + h { 

 𝜂2T 

2
 + 

𝑎 𝜂3𝑇2  

6
 + 

𝑏 𝜂4𝑇3  

12
 - 

  𝑎2𝜂4𝑇3  

8
 - 

𝑎𝑏  𝜂5𝑇4  

12
 - 

  𝑏2𝜂6𝑇5  

72
}+ ST(1-n)2 /2 = 0 

If d(p) =X+YP; X>0 and Y<0, the above equation becomes:  

   d π (T,η,p) 

𝑑 𝑝
  p= p*  = - 

−𝑋

𝑌
 + C1 { 1+ 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
} + h { 

 𝜂2T 

2
 + 

𝑎 𝜂3𝑇2  

6
 + 

𝑏 𝜂4𝑇3  

12
 - 

  𝑎2𝜂4𝑇3  

8
 - 

𝑎𝑏  𝜂5𝑇4  

12
 - 

  𝑏2𝜂6𝑇5  

72
 

}+ ST(1-n)2 /2 = 0        (20) 
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From (19) and (20), we obtain optimal values T* and p*. For this T* satisfies the conditions 

(7a) and (7b) and also for the p*, the conditions (10a) and (10b) should be satisfied. Now (19) and 

(20) can be solved simultaneously for obtaining the joint optimal values of ordering interval and 

price, that is, (T*, p*). Also using (14), (17) and (18) we respectively obtain the optimal quantity (Q0), 

optimal cost (C*) and optimal profit (π*). Numerical results are given in Table 3 and Table 4 based on 

computer programmes. 

As before, the algorithm suggested in the earlier section will lead to the optimal pair     (T*, 

p*). Further, for given price-pattern, we obtain T* and the other characteristic of the system, namely, 

Q0.  

3C. QUADRATIC AND TIME DEPENDENT DECAY RATE 

 We now consider the decay rate as: 

λ (t) = a+bt+ct2, o<a, b, c <<1          (21) 

 we observe that it is worthwhile to consider decay rates even upto second degree 

(quadratic), as certain food commodities (like certain type of special fruits like mangoes, bananas, 

and so on) decay not only exponentially but also at a faster rate than just linear rate. Such 

considered as these, motivated us to investigate this situation in detail. Further, we observe that 

decay rates: constant and linear or not just special cases of (21) in terms of respectively obtaining 

results by setting b=c=0 and b ≠ 0 but c=0 (this is so because of the truncated Taylor’s expansion, 

yielding different results).  

We now give the theoretical results.  Substituting (21) in (16) and using Taylor’s series expansion for 

exponential function (truncated upto the second term), we get  

C (T, T1, p) = 
𝐾

𝑇
 +     

C1 d (p) 

𝑇
 [  (1 + 

𝑇1

0  (
𝑡

0
 a+bx+cx2) dx) dt] + 

h d (p) 

𝑇
 [ (1 −  

𝑇1

0  (
𝑡

0
 a+bx+cx2) dx  (

𝑇1

𝑡
1+ 

 (
𝑦

0
 a+bx+cx2) dx) dy] dt + 

s d (p) 

2𝑇
 (T-T1)

2 

After some calculations, we have  

C* = 𝐶  (T, η, p) = 
𝐾

𝑇
 + C1 d(p)[ 1+ 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
 + 

𝑐  𝜂4  𝑇3  

12
 + h d(p) [

 𝜂2T 

2
 + 

𝑎 𝜂3  𝑇2  

6
 +( 

𝑏

12
 - 

 𝑎2  

8
 )  𝜂4 𝑇3 + (

𝑐

20
 

- 
𝑎𝑏

12
 )  𝜂5 𝑇4 + (

−𝑎𝑐

24
 - 

 𝑏2  

72
 )  𝜂6 𝑇5 - 

𝑏𝑐  𝜂7  𝑇6  

72
 - 

  𝑐2𝜂8  𝑇7  

288
 ] +  s d(p) [

𝑇

2
 + 

 𝜂2T 

2
 – η T + …… (22) 

Minimizing (22) with respect to T, we obtain optimal interval, T* 

C
*
 = 𝐶  (T, η, p) = 

𝐾

𝑇
 + C1 d(p)[ 1+ 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
 + 

𝑐  𝜂4  𝑇3  

12
 + h d(p) [

 𝜂2T 

2
 + 

𝑎 𝜂3  𝑇2  

6
 +( 

𝑏

12
 - 

 𝑎2  

8
 )  𝜂4  𝑇3 

+ (
𝑐

20
 - 

𝑎𝑏

12
 )  𝜂5  𝑇4 + (

−𝑎𝑐

24
 - 

 𝑏2  

72
 )  𝜂6  𝑇5 - 

𝑏𝑐  𝜂7  𝑇6  

72
 - 

  𝑐2𝜂8  𝑇7  

288
 ] +  s d(p) [

𝑇

2
 + 

 𝜂2T 

2
 – η T ] 

(22) 

Minimizing (22) with respect to T, we obtain optimal interval, T
*
 

  ∂C (T,η,p) 

𝜕 𝑇
  T=T*  = -K+ C1 d(p) [  

𝑎 𝜂2

2
 + 

𝑏 𝜂3𝑇 

3
 + 

𝑐  𝜂4  𝑇2  

4
 ] T

2 
+ h d(p) [

 𝜂2  

2
 + 

𝑎 𝜂3𝑇 

3
  +3 ( 

𝑏

12
 - 

 𝑎2  

8
 )  𝜂4  𝑇2 + 

4 (
𝑐

20
 - 

𝑎𝑏

12
 ) 𝜂5 𝑇3+ 5(

−𝑎𝑐

24
 - 

 𝑏2  

72
) 𝜂6 𝑇4 - 

𝑏𝑐  𝜂7  𝑇5  

12
 - 

 7 𝑐2𝜂8  𝑇6  

288
 ]T

2
 +  s d(p)[ 

1

2
 + 

 𝜂2

2
 –  ] T

2
    

……. (23) 

   = 0 

Now T* is obtained from (23) which must also satisfy (7a) and (7b).  

 Again maximizing the profit function π( T, η, p) with respect to p, we get  
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   d π (T,η,p) 

𝑑 𝑝
  p= p*  = 

−𝑑(𝑝)

𝑑 ̍ 𝑝 
 + C1 [1+ 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
 + 

𝑐  𝜂4  𝑇3  

12
 ]+ h  [

 𝜂2T 

2
 + 

𝑎 𝜂3  𝑇2  

6
   +( 

𝑏

12
 - 

 𝑎2  

8
 ) 𝜂4 𝑇3 

+(
𝑐

20
 - 

𝑎𝑏

12
 )  𝜂5 𝑇4+(

−𝑎𝑐

24
 - 

 𝑏2  

72
 ) 𝜂6𝑇5 - 

𝑏𝑐  𝜂7  𝑇6  

72
 - 

  𝑐2𝜂8  𝑇7  

288
 ] +  s [

𝑇

2
 + 

 𝜂2T 

2
 – ηT ]  …(24)  

    = 0 

Setting d(p) = X+Yp, Y<0 in (24), we obtain  

   d π (T,η,p) 

𝑑 𝑝
  p= p*  = 

−𝑋

𝑌
 + C1 [1+ 

𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
 + 

𝑐  𝜂4  𝑇3  

12
 ]+ h  [

 𝜂2T 

2
 + 

𝑎 𝜂3  𝑇2  

6
   +( 

𝑏

12
 - 

 𝑎2  

8
 )  𝜂4 𝑇3 + 

(
𝑐

20
 - 

𝑎𝑏

12
 )  𝜂5  𝑇4 + (

−𝑎𝑐

24
 - 

 𝑏2  

72
 )  𝜂6 𝑇5 - 

𝑏𝑐  𝜂7  𝑇6  

72
 - 

  𝑐2𝜂8  𝑇7  

288
 ] +  s[

𝑇

2
 + 

 𝜂2T 

2
 – ηT ]…. (25) 

  = 0 

Now P* is obtained from (25) which must also satisfy (10a) and (10b). 

Now the maximum profit is given by 

π
*
 = π (T, η, p) - C (T, η, p ) 

= p
*
 d (p) – C

*
                                  (26) 

 The joint optimal pair (p*, T*) can be obtained from (23) and (25). Further Q0 is given by  

Q0
 =  

d(p) [
 1 +  𝑎 𝜂2T 

2
 + 

𝑏 𝜂3  𝑇2  

6
 + 

𝑐  𝜂4  𝑇3  

12
 ]         (27) 

 Finally, optimal cost, C* and optimal profit π* are obtained using (22) and (26). Further, from (27) 

we can obtain the optimal order rate. Illustrate empirical work is presented in the tables 6 and 7 

using computer programmes. 

 In the following section, we present some numerical work.  

4. NUMERICAL WORK 

We choose the following parametric values K=Rs.250; C1 =Rs.1/unit; h=Rs. 0.5/unit; d(p)= X- Yp; s = 

0.7. 

Table 1: OPTIMAL VALUES; constant decay rate 

K=250; C1=1; h=0.5; X=25; Y=- 0.5: s=0.7; 𝜂 = 0.5 

 Optimal Price (p
*
) Optimal interval 

(T
*
) 

Optimal order rate 

(Q0) 

Optimal Cost (C
*
) Optimal Profit 

(π
*
) 

0.05 25.89 11.52 12.92 55.45 256.65 

0.10 26.44 11.43 13.46 55.54 255.93 

0.15 26.46 11.22 14.24 56.33 255.10 

0.20 26.48 11.02 14.99 57.12 254.28 

0.25 26.50 10.83 15.73 57.90 253.48 

0.30 26.52 10.66 16.43 58.66 252.69 

0.35 26.55 10.49 17.12 59.41 251.91 

0.40 26.55 10.32 17.78 60.15 251.15 

0.45 26.56 10.17 18.42 60.88 250.40 

0.50 26.58 10.02 19.05 61.59 249.66 

5. DISCUSSION 

 A perusal of the expression for T* in (8) and p* in (10) reveals that theoretically as λ increases, T* 

decreases while p* increases and this is also observed in the computed values in table 1. However, 

the knowledge of the extent of increase (or decrease) is important in physical situations for policy 

and management of inventory. Empirical exercises such as are indicated in the above bring to view 

these operational aspects. Using (11), we compute Q0 while C* and π* are obtained on the basis of T* 
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and p* using (7) and (9). From the tabulated values, we also notice that as increases, Q0 and C* 

increases while it is otherwise for π*, that is profits drop down, which is consistent with experience. 

 However, if price variable is not controllable or it is prefixed or predetermined, we can only 

obtain optimal order cycle T*, using (8) for various and given ‘p’. it will be useful to observe the 

extent of increases or decreases in (T*, Q0)’s for increases or decreases in (T*, p*)’s for operational 

purposes.  

In the following we report further empirical work  

TABLE 2: OPTIMAL VALUES: CONSTANT DECAY RATE (‘p’ fixed) (T*) 

K=250; C1=1; h=0.5; X=25; Y=- 0.5: s=0.7; 𝜂 = 0.5 

P 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

0.0 8.00 

(26.25) 

7.84 

(27.45) 

7.70 

(28.61) 

7.56 

(29.72) 

7.43 

(30.82) 

7.30 

(31.85) 

7.18 

(32.86) 

7.07 

(33.84) 

6.96 

(34.79) 

6.86 

(35.72) 

1.0 8.08 

(25.74) 

7.92 

(26.93) 

7.78 

(28.07) 

7.64 

(29.18) 

7.50 

(30.24) 

7.38 

(31.28) 

7.26 

(32.28) 

7.14 

(33.25) 

7.03 

(34.19) 

6.93 

(35.11) 

3.0 8.25 

(24.71) 

8.09 

(25.88) 

7.94 

(26.99) 

7.80 

(28.08) 

7.66 

(29.13) 

7.53 

(30.14) 

7.41 

(31.12) 

7.29 

(32.07) 

7.18 

(32.99) 

7.08 

(33.89) 

5.0 8.43 

(23.69) 

8.27 

(24.83) 

8.11 

(25.92) 

7.97 

(26.98) 

7.83 

(28.01) 

7.70 

(28.99) 

7.57 

(29.95) 

7.45 

(30.89) 

7.34 

(31.79) 

7.23 

(32.67) 

10.0 8.94 

(21.12) 

8.77 

(22.10) 

8.61 

(23.23) 

8.45 

(24.23) 

8.30 

(25.19) 

8.16 

(26.12) 

8.03 

(27.03) 

7.91 

(27.91) 

7.78 

(28.69) 

7.67 

(29.59) 

15.0 9.56 

(18.55) 

9.38 

(19.55) 

9.20 

(20.52) 

9.04 

(21.45) 

8.87 

(22.36) 

8.73 

(23.23) 

8.59 

(24.07) 

8.45 

(24.90) 

8.32 

(25.69) 

8.20 

(26.47) 

20.0 10.33 

(15.97) 

10.13 

(16.90) 

9.94 

(17.80) 

9.76 

(18.66) 

9.59 

(19.49) 

9.43 

(20.30) 

9.27 

(21.09) 

9.13 

(21.85) 

8.99 

(22.58) 

8.86 

(23.30) 

 

TABLE 3: OPTIMAL VALUES: LINEAR DECAY RATE 

K=250; C1=1; h=0.5; a=0.02 X=25; Y=- 0.5: s=0.7; 𝜂 = 0.5 

λ Optimal 

Price (p
*
) 

Optimal 

Time  

(T
*
) 

Optimal order 

rate (Q0) 

Optimal Cost (C
*
) Optimal 

Profit (π
*
) 

0.04 26.24 17.23 12.57 44.01 267.72 

0.08 26.27 16.88 12.74 44.84 266.86 

0.12 26.29 16.59 12.94 45.61 266.07 

0.16 26.31 16.33 13.13 46.30 265.34 

0.20 26.33 16.08 13.32 46.97 264.64 

0.24 26.35 15.83 13.51 47.63 263.97 

0.28 26.36 15.55 13.69 48.28 263.29 

0.32 26.38 15.24 13.85 48.95 262.60 

0.36 26.39 14.86 14.07 49.67 261.86 

0.40 26.40 14.37 14.26 50.52 260.99 

0.44 26.42 13.69 14.45 51.63 259.87 

0.52 26.43 10.89 14.83 56.74 254.74 
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TABLE 4: OPTIMAL VALUES; LINEAR DECAY RATE 

K=250; C1=1; h=0.5;  a= 0.02; s=0.7; 𝜂 = 0.5 

    λ 

P 
 

0.05 0.09 0.13 0.16 0.20 0.25 0.30 0.35 0.40 0.45 

0.0 11.75 

(25.89) 

11.39 

(26.13) 

11.09 

(26.35) 

10.98 

(26.45) 

10.72 

(26.66) 

10.45 

(26.92) 

10.21 

(27.45) 

10.07 

(27.33) 

9.91 

(27.51) 

9.79 

(27.68) 

1.0 11.87 

(25.39) 

11.50 

(25.62) 

11.19 

(25.84) 

11.09 

(25.94) 

10.83 

(26.13) 

10.54 

(26.40) 

10.30 

(26.66) 

10.16 

(26.82) 

10.01 

(27.00) 

9.89 

(27.15) 

2.0 11.99 

(24.87) 

11.61 

(25.11) 

11.32 

(25.34) 

11.15 

(25.43) 

10.93 

(25.62) 

10.63 

(25.89) 

10.39 

(26.15) 

10.25 

(26.31) 

10.13 

(26.46) 

10.01 

(26.59) 

3.0 

 

12.11 

(24.37) 

11.72 

(24.61) 

11.43 

(24.85) 

11.27 

(24.92) 

11.03 

(25.11) 

10.73 

(25.38) 

10.48 

(25.63) 

10.34 

(25.81) 

10.21 

(25.94) 

10.08 

(26.93) 

5.0 12.36 

(23.35) 

11.95 

(23.59) 

11.67 

(23.90) 

11.48 

(23.90) 

11.24 

(24.09) 

10.93 

(24.36) 

10.76 

(24.53) 

10.55 

(24.83) 

10.42 

(24.94) 

10.31 

(25.86) 

10.0 13.07 

(20.81) 

12.64 

(21.00) 

12.42 

(21.25) 

12.12 

(21.40) 

11.82 

(21.54) 

11.60 

(21.72) 

11.40 

(21.88) 

11.16 

(22.13) 

11.00 

(22.38) 

10.83 

(22.41) 

15.0 13.92 

(18.26) 

13.12 

(18.41) 

13.18 

(18.60) 

12.82 

(18.79) 

12.67 

(18.89) 

12.40 

(19.06) 

12.13 

(19.25) 

11.90 

(19.69) 

11.74 

(19.63) 

11.61 

(19.79) 

20.0 14.96 

(15.71) 

14.26 

(15.83) 

14.11 

(16.02) 

13.90 

(16.14) 

13.54 

(16.32) 

13.29 

(16.61) 

13.02 

(16.70) 

12.82 

(16.83) 

12.45 

(16.99) 

12.50 

(17.14) 

Note: The values in the brackets indicate the optimal order rate.  

TABLE 5: OPTIMAL VALUES; QUADRATIC DECAY RATE 

K=250; C1=1; h=0.5;  c= 0.002; X=25; Y=- 0.5: s=0.7; 𝜂 = 0.5 

      λ Optimal Price 

(p
*
) 

Optimal 

interval (T
*
) 

Optimal order 

rate (Q0) 

Optimal Cost 

(C
*
) 

Optimal Profit 

(π
*
) 

0.05 26. 28 11.66 12.26 51.69 259.98 

0.10 26.29 11.45 12.41 52.33 259.33 

0.15 26.30 11.26 12.55 52.94 258.72 

0.20 26.31 11.09 12.68 53.50 258.14 

0.25 26.32 10.95 12.80 54.04 257.59 

0.30 26.33 10.81 12.92 54.54 257.08 

0.35 26.34 10.69 13.04 55.01 256.59 

0.40 26.35 10.59 13.15 55.45 256.15 

0.45 26.35 10.49 13.26 55.86 255.72 

 

TABLE 6: OPTIMAL VALUES[  
𝑻∗

𝑸∗]; QUADRATIC DECAY RATE 

K=250; C1=1; h=0.5;  a= 0.02; s=0.7;𝜂 = 0.5; c=0.0002 

    λ 

P 
 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

0 9.57 

(25.34) 

9.50 

(25.76) 

9.46 

(25.87) 

9.40 

(26.02) 

9.35 

(26.15) 

9.31 

(26.28) 

9.27 

(26.45) 

9.25 

(26.59) 

9.22 

(26.75) 

1 8.06 

(25.00) 

8.02 

(25.23) 

7.92 

(25.38) 

7.82 

(25.55) 

7.74 

(25.69) 

7.68 

(25.82) 

7.60 

(25.98) 

7.54 

(26.13) 

7.45 

(26.34) 

2 8.13 

(24.57) 

8.05 

(24.78) 

7.95 

(24.95) 

7.86 

(25.12) 

7.77 

(25.31) 

7.70 

(25.46) 

7.62 

(25.66) 

7.55 

(25.85) 

7.46 

(26.01) 

3 8.21 

(24.06) 

8.08 

(24.28) 

7.98 

(24.45) 

7.89 

(24.62) 

7.80 

(24.80) 

7.72 

(24.96) 

7.63 

(25.16) 

7.56 

(25.33) 

7.48 

(25.69) 

5 8.39 

(23.05) 

8.25 

(23.26) 

8.17 

(23.41) 

8.05 

(23.60) 

7.95 

(23.79) 

7.89 

(23.92) 

7.80 

(24.12) 

7.73 

(24.26) 

7.66 

(25.03) 
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10 8.88 

(20.52) 

8.73 

(20.71) 

8.65 

(20.85) 

8.53 

(21.05) 

8.43 

(21.20) 

8.36 

(21.33) 

8.25 

(21.53) 

8.18 

(21.67) 

8.00 

(21.99) 

15 9.45 

(17.90) 

9.36 

(18.14) 

9.24 

(18.29) 

9.09 

(18.48) 

9.00 

(18.62) 

8.92 

(18.74) 

8.81 

(18.92) 

8.73 

(19.06) 

8.54 

(19.96) 

20 10.15 

(15.53) 

10.07 

(15.62) 

9.96 

(15.73) 

9.81 

(15.89) 

9.71 

(16.03) 

9.59 

(16.18) 

9.48 

(16.32) 

9.41 

(16.44) 

9.02 

(16.98) 

 

We can now tabulate the optimal values of the three yard sticks namely: (i.) π*/Q0     (ii.) 

C*/Q0 and (iii.) Q0 / T*
 (that is, (i.) optimal profit / optimal order Quantity, (ii.) optimal cost / optimal 

Order Quantity and (iii.) optimal order Quantity / optimal ordering time unit) in the following table 7.  

The purpose is to comprehensively put all the empirical results together at the place for 

ready comparison.  

TABLE 7: COMPARISON OF OPTIMAL VALUES 

   

λ 

π
*
/Q0 C

*
/Q0 Q0 / T

*
 

Constant Linear  Quadratic  Constant Linear  Quadratic  Constant Linear  Quadratic  

0.05 19.06 21.29 21.21 4.29 3.50 4.22 1.12 0.73 1.05 

0.10 19.01 20.75 20.89 4.12 3.57 4.22 1.17 0.76 1.08 

0.15 17.91 20.20 20.61 3.95 3.52 4.22 1.26 0.78 1.11 

0.20 16.96 19.86 20.34 3.89 3.52 4.22 1.36 0.82 1.14 

0.25 16.11 19.53 20.12 3.68 3.52 4.22 1.45 0.86 1.17 

0.30 15.38 19.03 19.89 3.57 3.53 4.22 1.54 0.90 1.19 

0.35 14.71 18.53 19.68 3.47 3.53 4.22 1.63 0.94 1.22 

0.40 14.12 16.06 19.48 3.38 3.54 4.22 1.72 0.99 1.24 

0.45 13.59 14.71 19.28 3.30 3.56 4.22 1.87 1.05 1.26 

5. CONCLUSIONS 

We first observe that empirical work such as is reported in Tables 1 – 4 has this use of enabling 

one to perform qualitative analysis or interpretation of the quantitative results. For example,  

comparison of optimal values from Tables 1 and 3 reveals that for linear decay rate (as compared to 

constant decay rate – see table 1) T* and π* (optimal) values show an increasing pattern, while p* , Q0 

and c* decrease. The qualitative analysis points to a desirable or preferred inventory system in this 

case, especially as the more realistic pattern of linear decay rate is also incorporated. However the 

extent of increases and decreases in the relevant optimal values corresponding to the same changes 

in numerical values of λ (note that in the case of Table3, the linear decay rate pattern is 

incorporated) would help the policy maker or business executive to suitably design the system as per 

his requirements or choice. For similar purposes, table 4 values are also presented to facilitate 

comparison with optimal values corresponding to the constant decay rate setup given in table 2. 

Earlier works (see [1]) had not considered this case of constant decay rate corresponding to various 

alternative values of p. An attempt is thus made by us now to profitability bring into comprehensive 

focus the qualitative behavior of the different inventory systems (with regard to the decay patterns 

and price-structures) based on the quantitative (analytic) results derived by us.   

 These points, in fact are brought out in a better focus through Table 7. The models involving 

linear decay rates appear to be preferable yard sticks (i), (ii) and (iii), even though an certain other 

minor counts inventory models suffering quadratic decay rate seem to be better (for example,  π*/Q0  

are higher where λ is > 0.35). A deeper analysis through more detailed empirical work may lead to 

clearer insight into the qualitative aspects, further.  
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