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1 INTRODUCTION 

 In 1922, S. Banach [8] proved a fixed point theorem for contraction mapping in metric space. 

Since then a number of fixed point theorems have been proved by different authors and many 

generalizations of this theorem have been established. In 2000, P. Hitzler and A.K. Seda [5,7] 

introduced the notion of dislocated metric space in which self distance of a point need not be equal 

to zero. They also generalized the famous Banach contraction principle in this space. Dislocated 

metric space plays a very important role not only in topology but also in other branches of science 

involving mathematics especially in logic programming and electronic engineering [6]. D.S Jaggi [3] 

proved fixed point theorem using rational type of contractive condition which generalize the Banach 

contradiction principle in complete metric space. Zeyada et. Al. [4] initiated the concept of 

dislocated quasi metric space and generalized the result of Hitzler and Seda [7] in dislocated quasi 

metric space .C.T. Aage and J.N. Salunke [2], A Isufati [1] established some important fixed point 

theorems in single and pair of mappings in dislocated metric space. In this paper we established a 

fixed point theorem in the context of dislocated quasi metric space. 

2 Preliminaries 

We introduce below necessary notions and present a few results in dislocated quasi-metric space 

that will be used throughout the paper.  
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Definition 2.1 [4,5]  Let X be a non-empty set d: X  X R+ be a function, called a distance function if 

for all x,y,zX, satisfies:  

d1 : d(𝑥, 𝑥) = 0 

d2 : d(𝑥, 𝑦) = 𝑑 𝑦, 𝑥 = 0 𝑥 = 𝑦 

d3 : d(𝑥, 𝑦) = 𝑑 𝑦, 𝑥  

d4 : d(𝑥, 𝑦) 𝑑 𝑥, 𝑧 + 𝑑(𝑧, 𝑦) 

If d satisfies the condition 𝑑1 − 𝑑4 then d is called a metric on X.  

If it satisfies the condition 𝑑1 , 𝑑2 and 𝑑4, it is called quasi-metric space.  

If d satisfies condition 𝑑2 ,  𝑑3 and 𝑑4, it is called dislocated metric (or simply d-metric) 

If d satisfies only 𝑑2 and 𝑑4, then d is called a dislocated quasi-metric (or simply dq-metric) on X.  

Definition 2.2 [4,5] A sequence (𝑥𝑛 )𝑛∈𝑁 in dq-metric space (X,d) is called Cauchy if for all 

> 0, ∃𝑛0 ∈ 𝑁 such that ∀ 𝑚, 𝑛 ≥ 𝑛0 ,  𝑑 𝑥𝑚,𝑥𝑛 <  or 𝑑 𝑥𝑛 , 𝑥𝑚  <  

Definition 2.3 [4] A sequence (𝑥𝑛 )𝑛∈𝑁dislocated quasi converges or dq-converges to 𝑥 if 

lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑥 = lim𝑥→∞ 𝑑 𝑥, 𝑥𝑛 = 0 

In this case 𝑥 is called a dq- limit of (𝑥𝑛 )𝑛∈𝑁 and we write 𝑥𝑛 → 𝑥 

Definition 2.4 [4,5] A dq-metric space (X, d) is complete if every Cauchy sequence in it is dq-

convergent.  

Lemma 2.5 [4] Every subsequence of dq-convergent sequence to a point 𝑥0 is dq-convergent to 𝑥0   

Definition 2.6 [4,5] Let (X,d) be a dq-metric space. A mapping f:𝑋 → 𝑋 is called contraction if there 

exists 0 ≤ 𝜆 < 1 such that:  

𝑑 𝑓𝑥, 𝑓𝑦 ≤ 𝜆𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. 

Lemma 2.7 [4,5] dq-limits in a dq-metric space are unique.  

Further some theorems [5] give common fixed points for continuous contraction mapping satisfying 

contractive type condition and rational inequality in dislocated and dislocated quasi-metric space. 

Our theorem prove the result for sequence of mappings.  

3 Main Result 

We Prove the following theorem.  

Theorem- Let (X,d) be a complete dislocated quasi-metric space. Let <Tk> be a sequence of self 

mappings on X satisfies the condition : 

𝑑 𝑇𝑖𝑥, 𝑇𝑗 𝑦 ≤

𝛼
𝑑 𝑥,𝑇𝑗𝑦 𝑑 𝑦,𝑇𝑗𝑦 

𝑑 𝑇𝑖𝑥 ,𝑥 +𝑑(𝑥,𝑇𝑗𝑦)
+ 𝛽 𝑑 𝑥, 𝑇𝑗 𝑦 + 𝑑 𝑦, 𝑇𝑗 𝑦  +

                            𝛾𝑑 𝑥, 𝑦                                                              … … … … … (3.1)  

For all 𝑥, 𝑦 ∈ 𝑋, 𝛼, 𝛽, 𝛾 are non negative with 0 ≤ 2𝛼 + 3𝛽 + 𝛾 < 1 

Then <Tk> have a unique common fixed point. 

Proof-  Let 𝑥0 𝑋. We define a sequence <𝑥n> in X such that 𝑇𝑖𝑥𝑛−1 = 𝑥𝑛  and 𝑇𝑗 𝑥𝑛 = 𝑥𝑛+1 , for 

n=1,2,3…….. 

Then 𝑑(𝑥𝑛,𝑥𝑛+1) = 𝑑(𝑇𝑖𝑥𝑛−1,𝑇𝑗 𝑥𝑛 ) 

≤ 𝛼
𝑑 𝑥𝑛−1,𝑇𝑗𝑥𝑛  𝑑(𝑥𝑛 ,𝑇𝑗 𝑥𝑛 )

𝑑 𝑇𝑖𝑥𝑛−1,𝑥𝑛−1 +𝑑(𝑥𝑛−1 ,𝑇𝑗𝑥𝑛 )
+ 𝛽[𝑑 𝑥𝑛−1,𝑇𝑗 𝑥𝑛 + 𝑑 𝑥𝑛,𝑇𝑗 𝑥𝑛 ] + 𝛾𝑑(𝑥𝑛−1,𝑥𝑛)                                                                                             

by (3.1) 

= 𝛼
𝑑(𝑥𝑛−1,𝑥𝑛+1) 𝑑(𝑥𝑛 ,𝑥𝑛 +1)

𝑑 𝑥𝑛 ,𝑥𝑛−1 +𝑑(𝑥𝑛−1,𝑥𝑛+1)
+ 𝛽[𝑑 𝑥𝑛−1,𝑥𝑛+1 + 𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝛾𝑑(𝑥𝑛−1,𝑥𝑛) 

≤ 𝛼𝑑 𝑥𝑛−1𝑥𝑛+1 + 𝛽[𝑑 𝑥𝑛−1,𝑥𝑛+1 + 𝑑 𝑥𝑛,𝑥𝑛+1 + 𝛾𝑑(𝑥𝑛−1,𝑥𝑛) 

  By d4 

         𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝑑 𝑥𝑛 , 𝑥𝑛−1 + 𝑑 𝑥𝑛−1 , 𝑥𝑛+1  
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  
𝑑 𝑥𝑛 ,𝑥𝑛+1 

𝑑 𝑥𝑛 ,𝑥𝑛−1 +𝑑 𝑥𝑛−1 ,𝑥𝑛+1 
≤ 1 

=  𝛼 + 𝛽 𝑑 𝑥𝑛−1 , 𝑥𝑛+1 + 𝛽 𝑑 𝑥𝑛 , 𝑥𝑛+1  + 𝛾𝑑 𝑥𝑛−1 , 𝑥𝑛  

≤  𝛼 + 𝛽 [𝑑 𝑥𝑛−1 , 𝑥𝑛 + 𝑑 𝑥𝑛 , 𝑥𝑛+1 ] + 𝛽[𝑑 𝑥𝑛 , 𝑥𝑛+1 ] + 𝛾𝑑 𝑥𝑛−1 , 𝑥𝑛  

 

 𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝛼𝑑 𝑥𝑛−1 , 𝑥𝑛 + 2𝛽𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝛽𝑑 𝑥𝑛−1 , 𝑥𝑛 + 

                          𝛼𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝛾𝑑 𝑥𝑛−1 , 𝑥𝑛  

                          = 𝛼𝑑 𝑥𝑛−1 , 𝑥𝑛 +  𝛼 + 2𝛽 𝑑 𝑥𝑛 , 𝑥𝑛+1 + (𝛽 + 𝛾)𝑑 𝑥𝑛−1 , 𝑥𝑛  

 𝑑 𝑥𝑛 , 𝑥𝑛+1 −  𝛼 + 2𝛽 𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ (𝛼 + 𝛽 + 𝛾)𝑑 𝑥𝑛−1 , 𝑥𝑛  

   1 − 𝛼 − 2𝛽 𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ (𝛼 + 𝛽 + 𝛾)𝑑 𝑥𝑛−1 , 𝑥𝑛  

𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤
𝛼 + 𝛽 + 𝛾

1 − 𝛼 − 2𝛽
𝑑 𝑥𝑛−1 , 𝑥𝑛  

Where  =
𝛼+𝛽+𝛾

1−𝛼−2𝛽
,     0 ≤  < 1 

 
𝛼 + 𝛽 + 𝛾

1 − 𝛼 − 2𝛽
< 1 

𝛼 + 𝛽 + 𝛾 < 1 − 𝛼 − 2𝛽 

2𝛼 + 3𝛽 + 𝛾 < 1 

Hence 𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝑑 𝑥𝑛−1 , 𝑥𝑛                                   ………………… (3.2) 

Similarly 𝑑 𝑥𝑛−1 , 𝑥𝑛 ≤ 𝑑 𝑥𝑛−2 , 𝑥𝑛−1  

𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ .𝑑 𝑥𝑛−2 , 𝑥𝑛−1  by using    3.2 

 𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 2𝑑 𝑥𝑛−2 , 𝑥𝑛−1  

and  𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 3𝑑 𝑥𝑛−3 , 𝑥𝑛−2  

𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 4𝑑 𝑥𝑛−4 , 𝑥𝑛−3  

Continuing in this way. We have 

𝑑 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝑛𝑑 𝑥0 , 𝑥1  

 0 ≤  < 1 

and as 𝑛 → ∞ 𝑑 𝑥𝑛 , 𝑥𝑛+1 → 0   

Similarly we show that 𝑑 𝑥𝑛+1 , 𝑥𝑛 → 0 

Hence <𝑥𝑛 >is a Cauchy sequence in a complete dislocated quasi-metric space (X,d) So there exist 

𝑢  𝑋 such that < 𝑥𝑛 > converges to u in dislocated quasi-metric space.  

i.e. lim𝑛→∞ 𝑥𝑛 = 𝑢                                                …………………………(3.3) 

Now 𝑑 𝑢, 𝑇𝑗 𝑢 ≤ 𝑑 𝑢, 𝑥𝑛 + 𝑑(𝑥𝑛,𝑇𝑗 𝑢)                 by  d4 

                          = 𝑑 𝑢, 𝑥𝑛 + 𝑑(𝑇𝑖𝑥𝑛−1,𝑇𝑗 𝑢) 

      ≤ 𝑑 𝑢, 𝑥𝑛 + 𝛼
 𝑥𝑛−1𝑇𝑗𝑢 .𝑑 𝑢,𝑇𝑗𝑢 

𝑑 𝑇𝑖𝑥𝑛−1,𝑥𝑛−1 +𝑑 𝑥𝑛−1𝑇𝑗𝑢 
+ 𝛽 𝑑 𝑥𝑛−1,𝑇𝑗 𝑢 + 𝑑 𝑢, 𝑇𝑗 𝑢  + 𝛾𝑑 𝑥𝑛−1,𝑢 … (3.1)                                  

                            → 0  as   𝑛 → ∞                                                             by (3.3) 

 d(u, 𝑇𝑗 𝑢) → 0 as 𝑛 → ∞ 

 u is a fixed point of 𝑇𝑗  

Similarly we can prove that u is a fixed point of 𝑇𝑖. 

𝑑(𝑇𝑖𝑢, 𝑢) → 0 as 𝑛 → ∞ 

Hence we have proved that u is a common fixed point of 𝑇𝑖. and 𝑇𝑗 . 

Uniqueness – Let u and 𝑣 are fixed point of 𝑇𝑖. and 𝑇𝑗 . Such that 𝑇𝑖𝑢 = 𝑢 and                   

                        𝑇𝑗 𝑣 = 𝑣 

Then 𝑑 𝑢, 𝑢 = 𝑑(𝑇𝑖𝑢, 𝑇𝑖𝑢) 

                       ≤ 𝛼
𝑑 𝑢,𝑇𝑖𝑢 𝑑(𝑢,𝑇𝑖𝑢)

𝑑 𝑇𝑖𝑢,𝑢 +𝑑(𝑢,𝑇𝑖𝑢)
+ 𝛽 𝑑 𝑢, 𝑇𝑖𝑢 + 𝑑 𝑢, 𝑇𝑖𝑢  + 𝛾𝑑(𝑢, 𝑢) 
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                       = 𝛼
𝑑 𝑢,𝑢 𝑑(𝑢,𝑢)

𝑑 𝑢,𝑢 +𝑑(𝑢,𝑢)
+ 𝛽 𝑑 𝑢, 𝑢 + 𝑑 𝑢, 𝑢  + 𝛾𝑑(𝑢, 𝑢) 

                       = 𝛼
[𝑑 𝑢,𝑢 ]2

2𝑑(𝑢,𝑢)
+ 2𝛽𝑑 𝑢, 𝑢 + 𝛾𝑑(𝑢, 𝑢) 

                      ≤ 𝛼𝑑 𝑢, 𝑢 + 2𝛽𝑑 𝑢, 𝑢 + 𝛾𝑑(𝑢, 𝑢) 

                      =  𝛼 + 2𝛽 + 𝛾 𝑑(𝑢, 𝑢) 

𝑑 𝑢, 𝑢 −  𝛼 + 2𝛽 + 𝛾 𝑑(𝑢, 𝑢) ≤ 0 

d(u, u)[1-(𝛼 + 2𝛽 + 𝛾)] ≤ 0 

𝑑 𝑢, 𝑢 = 0                                                                ……………………(3.4) 

Thus d(u, u)=0 for a fixed point u of 𝑇𝑖 .  

Similarly we get 𝑑 𝑣, 𝑣 = 0    for a fixed point 𝑣 of 𝑇𝑗       …………….....(3.5) 

Now  

𝑑 𝑢, 𝑣 = 𝑑(𝑇𝑖 , 𝑇𝑗 𝑣) 

              ≤ 𝛼
𝑑 𝑢,𝑇𝑗𝑣 𝑑(𝑣,𝑇𝑗𝑣)

𝑑 𝑇𝑖𝑢,𝑢 +𝑑(𝑢,𝑇𝑗𝑣)
+ 𝛽 𝑑 𝑢, 𝑇𝑗 𝑣 + 𝑑 𝑣, 𝑇𝑗 𝑣  + 𝛾𝑑(𝑢, 𝑣) 

                = 𝛼
𝑑 𝑢, 𝑣 𝑑(𝑣, 𝑣)

𝑑 𝑢, 𝑢 + 𝑑(𝑢, 𝑣)
+ 𝛽 𝑑 𝑢, 𝑣 + 𝑑 𝑣, 𝑣  + 𝛾𝑑(𝑢, 𝑣) 

 

                 ≤ 𝛼𝑑 𝑣, 𝑣 + 𝛽 𝑑 𝑢, 𝑣  + 𝛾𝑑 𝑢, 𝑣 + 𝛽𝑑(𝑣, 𝑣) 

                                                                             By using d4 

                                                                             𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑢 + 𝑑(𝑢, 𝑣) 

=  𝛼 + 𝛽 𝑑 𝑣, 𝑣 +  𝛽 + 𝛾 𝑑(𝑢, 𝑣) 

[1 −  𝛽 + 𝛾 𝑑(𝑢, 𝑣) ≤  𝛼 + 𝛽 𝑑(𝑣, 𝑣) 

𝑑 𝑢, 𝑣 ≤
𝛼 + 𝛽

1 −  𝛽 + 𝛾 
𝑑 𝑣, 𝑣  

𝑑(𝑢, 𝑣) ≤ 0       …………(3.6)          By (3.5) and      
𝛼+𝛽

1−(𝛽+𝛾)
< 1 

Similarly  

𝑑(𝑣, 𝑢) ≤
𝛼 + 𝛽

1 −  𝛽 + 𝛾 
𝑑(𝑢, 𝑢) 

𝑑 𝑣, 𝑢 ≤ 0              …………    (3.7)     By (3.5)  

Hence   𝑑 𝑢, 𝑣 − 𝑑(𝑣, 𝑢) ≤  
𝛼+𝛽

1−(𝛽+𝛾)
  𝑑 𝑣, 𝑣 − 𝑑(𝑢, 𝑢) ≤ 0 

                                                                       By 3.4 and       
𝛼+𝛽

1−(𝛽+𝛾)
< 1 

 𝑑 𝑢, 𝑣 − 𝑑(𝑣, 𝑢) = 0      Modulus is not negative  

𝑑 𝑢, 𝑣 = 𝑑(𝑣, 𝑢)                                                                     ……………..(3.8) 

From (3.6), (3.7) and (3.8)  

𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 = 0 

Then  𝑢 = 𝑣               by d2 

Hence fixed point is unique  
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