Vol.3.Issue.4.2015 (Oct-Dec.)

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

FIXED POINT THEOREM FOR A SEQUENCE OF MAPPINGS IN DISLOCATED QUASI-METRIC SPACE

Dr. S.S. PAGEY¹, NEENA GUPTA²

¹Institute for excellence in Higher Education, Bhopal, Retired Professor, Department of Mathematics, Institute for excellence in Higher Education, Bhopal

²Department of Mathematics, Career College, Bhopal, University of Barkatullah, Bhopal ¹pagedrss@rediffmail.com, ²gneena33@gmail.com

ABSTRACT

In this Paper we have proved Fixed Point Theorems in dislocated quasi-metric space for sequence of mappings using rational inequality.

Key-words: Dislocated metric space, dislocated quasi-metric space, fixed point, dq- Cauchy sequence, dq limit.

©KY PUBLICATIONS

NEENA GUPTA

1 INTRODUCTION

In 1922, S. Banach [8] proved a fixed point theorem for contraction mapping in metric space. Since then a number of fixed point theorems have been proved by different authors and many generalizations of this theorem have been established. In 2000, P. Hitzler and A.K. Seda [5,7] introduced the notion of dislocated metric space in which self distance of a point need not be equal to zero. They also generalized the famous Banach contraction principle in this space. Dislocated metric space plays a very important role not only in topology but also in other branches of science involving mathematics especially in logic programming and electronic engineering [6]. D.S Jaggi [3] proved fixed point theorem using rational type of contractive condition which generalize the Banach contradiction principle in complete metric space. Zeyada et. Al. [4] initiated the concept of dislocated quasi metric space and generalized the result of Hitzler and Seda [7] in dislocated quasi metric space .C.T. Aage and J.N. Salunke [2], A Isufati [1] established some important fixed point theorems in single and pair of mappings in dislocated metric space. In this paper we established a fixed point theorem in the context of dislocated quasi metric space.

2 Preliminaries

We introduce below necessary notions and present a few results in dislocated quasi-metric space that will be used throughout the paper.

Definition 2.1 [4,5] Let X be a non-empty set d: $X \times X \rightarrow R^+$ be a function, called a distance function if for all x,y,z $\in X$, satisfies:

 $d_1: d(x, x) = 0$

 $d_2: d(x, y) = d(y, x) = 0 \Longrightarrow x = y$

 $\mathsf{d}_3:\mathsf{d}(x,y)=d(y,x)$

 $\mathsf{d}_4:\mathsf{d}(x,y) \leq d(x,z) + d(z,y)$

If d satisfies the condition $d_1 - d_4$ then d is called a metric on X.

If it satisfies the condition d_1 , d_2 and d_4 , it is called quasi-metric space.

If d satisfies condition d_2 , d_3 and d_4 , it is called dislocated metric (or simply d-metric)

If d satisfies only d_2 and d_4 , then d is called a dislocated quasi-metric (or simply dq-metric) on X.

Definition 2.2 [4,5] A sequence $(x_n)_{n \in N}$ in dq-metric space (X,d) is called Cauchy if for all $\varepsilon > 0, \exists n_0 \in N$ such that $\forall m, n \ge n_0, d(x_m, x_n) < \varepsilon$ or $d(x_n, x_m) < \varepsilon$

Definition 2.3 [4] A sequence $(x_n)_{n \in N}$ dislocated quasi converges or dq-converges to x if $\lim_{n \to \infty} d(x_n, x) = \lim_{x \to \infty} d(x, x_n) = 0$

In this case x is called a dq- limit of $(x_n)_{n \in N}$ and we write $x_n \to x$

Definition 2.4 [4,5] A dq-metric space (X, d) is complete if every Cauchy sequence in it is dq-convergent.

Lemma 2.5 [4] Every subsequence of dq-convergent sequence to a point x_0 is dq-convergent to x_0 **Definition 2.6 [4,5]** Let (X,d) be a dq-metric space. A mapping $f: X \to X$ is called contraction if there exists $0 \le \lambda < 1$ such that:

 $d(fx, fy) \le \lambda d(x, y)$ for all $x, y \in X$.

Lemma 2.7 [4,5] dq-limits in a dq-metric space are unique.

Further some theorems [5] give common fixed points for continuous contraction mapping satisfying contractive type condition and rational inequality in dislocated and dislocated quasi-metric space. Our theorem prove the result for sequence of mappings.

3 Main Result

We Prove the following theorem.

Theorem- Let (X,d) be a complete dislocated quasi-metric space. Let $\langle T_k \rangle$ be a sequence of self mappings on X satisfies the condition :

For all $x, y \in X, \alpha, \beta, \gamma$ are non negative with $0 \le 2\alpha + 3\beta + \gamma < 1$ Then $\langle T_k \rangle$ have a unique common fixed point.

Proof- Let $x_0 \in X$. We define a sequence $\langle x_n \rangle$ in X such that $T_i x_{n-1} = x_n$ and $T_j x_n = x_{n+1}$, for n=1,2,3......

Then
$$d(x_{n,x_{n+1}}) = d(T_{i}x_{n-1},T_{j}x_{n})$$

 $\leq \alpha \frac{d(x_{n-1},T_{j}x_{n})d(x_{n},T_{j}x_{n})}{d(T_{i}x_{n-1},x_{n-1})+d(x_{n-1},T_{j}x_{n})} + \beta[d(x_{n-1},T_{j}x_{n}) + d(x_{n},T_{j}x_{n})] + \gamma d(x_{n-1},x_{n})$
by (3.1)
 $= \alpha \frac{d(x_{n-1},x_{n+1})d(x_{n},x_{n+1})}{d(x_{n},x_{n-1})+d(x_{n-1},x_{n+1})} + \beta[d(x_{n-1},x_{n+1}) + d(x_{n},x_{n+1}) + \gamma d(x_{n-1},x_{n})]$
 $\leq \alpha d(x_{n-1}x_{n+1}) + \beta[d(x_{n-1},x_{n+1}) + d(x_{n},x_{n+1}) + \gamma d(x_{n-1},x_{n})]$
 $\therefore \text{ By } d_{4}$
 $d(x_{n},x_{n+1}) \leq d(x_{n},x_{n-1}) + d(x_{n-1},x_{n+1})$

 $\Rightarrow \frac{d(x_n, x_{n+1})}{d(x_n, x_{n-1}) + d(x_{n-1}, x_{n+1})} \le 1$ $= (\alpha + \beta)d(x_{n-1}, x_{n+1}) + \beta[d(x_n, x_{n+1})] + \gamma d(x_{n-1}, x_n)$ $\leq (\alpha + \beta)[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] + \beta[d(x_n, x_{n+1})] + \gamma d(x_{n-1}, x_n)$ $\Rightarrow d(x_n, x_{n+1}) \le \alpha d(x_{n-1}, x_n) + 2\beta d(x_n, x_{n+1}) + \beta d(x_{n-1}, x_n) + \beta d$ $\alpha d(x_n, x_{n+1}) + \gamma d(x_{n-1}, x_n)$ $= \alpha d(x_{n-1}, x_n) + (\alpha + 2\beta) d(x_n, x_{n+1}) + (\beta + \gamma) d(x_{n-1}, x_n)$ $\Rightarrow d(x_n, x_{n+1}) - (\alpha + 2\beta)d(x_n, x_{n+1}) \le (\alpha + \beta + \gamma)d(x_{n-1}, x_n)$ $\Rightarrow (1 - \alpha - 2\beta)d(x_n, x_{n+1}) \le (\alpha + \beta + \gamma)d(x_{n-1}, x_n)$ $d(x_n, x_{n+1}) \le \frac{\alpha + \beta + \gamma}{1 - \alpha - 2\beta} d(x_{n-1}, x_n)$ Where $\lambda = \frac{\alpha + \beta + \gamma}{1 - \alpha - 2\beta}$, $0 \le \lambda < 1$ $\Rightarrow \frac{\alpha + \beta + \gamma}{1 - \alpha - 2\beta} < 1$ $\Rightarrow \alpha + \beta + \gamma < 1 - \alpha - 2\beta$ $\Rightarrow 2\alpha + 3\beta + \gamma < 1$ Hence $d(x_n, x_{n+1}) \leq \lambda d(x_{n-1}, x_n)$ Similarly $d(x_{n-1}, x_n) \leq \lambda d(x_{n-2}, x_{n-1})$ $\Rightarrow d(x_n, x_{n+1}) \leq \lambda \cdot \lambda d(x_{n-2}, x_{n-1})$ by using 3.2 $\Rightarrow d(x_n, x_{n+1}) \leq \lambda^2 d(x_{n-2}, x_{n-1})$ and $d(x_n, x_{n+1}) \le \lambda^3 d(x_{n-3}, x_{n-2})$ $d(x_n, x_{n+1}) \leq \lambda^4 d(x_{n-4}, x_{n-3})$ Continuing in this way. We have $d(x_n, x_{n+1}) \leq \lambda^n d(x_0, x_1)$ $:: 0 \le \lambda < 1$ and as $n \to \infty d(x_n, x_{n+1}) \to 0$ Similarly we show that $d(x_{n+1}, x_n) \rightarrow 0$ Hence $\langle x_n \rangle$ is a Cauchy sequence in a complete dislocated quasi-metric space (X,d) So there exist $u \in X$ such that $\langle x_n \rangle$ converges to u in dislocated quasi-metric space. i.e. $\lim_{n\to\infty} x_n = u$(3.3) Now $d(u, T_i u) \leq d(u, x_n) + d(x_n, T_i u)$ by d₄ $= d(u, x_n) + d(T_i x_{n-1}, T_i u)$ $\leq d(u, x_n) + \alpha \frac{(x_{n-1}T_j u) \cdot d(u, T_j u)}{d(T_i x_{n-1}, x_{n-1}) + d(x_{n-1}T_j u)} + \beta \left[d(x_{n-1}, T_j u) + d(u, T_j u) \right] + \gamma d(x_{n-1}, u) \dots (3.1)$ $\rightarrow 0$ as $n \rightarrow \circ$ by (3.3) \Rightarrow d(u, $T_i u$) \rightarrow 0 as $n \rightarrow \infty$ \Rightarrow u is a fixed point of T_i Similarly we can prove that u is a fixed point of T_i . $d(T_i u, u) \to 0 \text{ as } n \to \infty$ Hence we have proved that u is a common fixed point of T_{i} and T_{i} **Uniqueness** – Let u and v are fixed point of T_i , and T_i . Such that $T_i u = u$ and $T_i v = v$ Then $d(u, u) = d(T_i u, T_i u)$ $\leq \alpha \frac{d(u,T_iu)d(u,T_iu)}{d(T_iu)+d(u,T_iu)} + \beta [d(u,T_iu) + d(u,T_iu)] + \gamma d(u,u)$

 $= \alpha \frac{d(u,u)d(u,u)}{d(u,u)+d(u,u)} + \beta [d(u,u) + d(u,u)] + \gamma d(u,u)$ $= \alpha \frac{[d(u,u)]^2}{2d(u,u)} + 2\beta d(u,u) + \gamma d(u,u)$ $\leq \alpha d(u, u) + 2\beta d(u, u) + \gamma d(u, u)$ $= (\alpha + 2\beta + \gamma)d(u, u)$ $\Rightarrow d(u, u) - (\alpha + 2\beta + \gamma)d(u, u) \le 0$ $d(u, u)[1 - (\alpha + 2\beta + \gamma)] \le 0$ $\Rightarrow d(u, u) = 0$(3.4) Thus d(u, u)=0 for a fixed point u of T_i . Similarly we get d(v, v) = 0 for a fixed point v of T_i (3.5) Now $d(u, v) = d(T_i, T_i v)$ $\leq \alpha \frac{d(u,T_jv)d(v,T_jv)}{d(T_iu,u)+d(u,T_jv)} + \beta \left[d(u,T_jv) + d(v,T_jv) \right] + \gamma d(u,v)$ $= \alpha \frac{d(u,v)d(v,v)}{d(u,u) + d(u,v)} + \beta [d(u,v) + d(v,v)] + \gamma d(u,v)$ $\leq \alpha d(v,v) + \beta [d(u,v)] + \gamma d(u,v) + \beta d(v,v)$ By using d₄ $d(u, v) \le d(u, u) + d(u, v)$ $= (\alpha + \beta)d(v, v) + (\beta + \gamma)d(u, v)$ $\Rightarrow [1 - (\beta + \gamma)d(u, v) \le (\alpha + \beta)d(v, v)$ $d(u,v) \le \frac{\alpha + \beta}{1 - (\beta + \gamma)} d(v,v)$ $d(u, v) \le 0$ (3.6) By (3.5) and $\because \frac{\alpha + \beta}{1 - (\beta + v)} < 1$ Similarly $d(v,u) \le \frac{\alpha + \beta}{1 - (\beta + \gamma)} d(u,u)$ (3.7) By (3.5) $\Rightarrow d(v, u) \leq 0$ Hence $|d(u, v) - d(v, u)| \le \left|\frac{\alpha + \beta}{1 - (\beta + \gamma)}\right| |d(v, v) - d(u, u)| \le 0$ By 3.4 and $\therefore \frac{\alpha+\beta}{1-(\beta+\gamma)} < 1$ $\Rightarrow |d(u, v) - d(v, u)| = 0$ * Modulus is not negative d(u, v) = d(v, u).....(3.8) From (3.6), (3.7) and (3.8) d(u,v) = d(v,u) = 0Then u = vby d_2 Hence fixed point is unique

Reference :

- [1] A. Isufati Fixed point Theorem in Dislocated Quasi-Metric Space, Applied Math, Sci., 4(5), 217-223, (2010).
- [2] C.T. Aage and J.N. Salunke, The Result on fixed point Theorem in Dislocated and Dislocated-Metric Space, Applied Math, Sci, 2(59) 2941, 2948, (2008).

- [3] D.S. Jaggi. Some Unique fixed point theorems. Indian J. Pure Appl. Math, 8(2): 223-230, (1977).
- [4] F. M. Zeyada, G.H. Hassan and M.A. Ahmed, A Generalization of a fixed point theorem due to Hitzler and seda in dislocated quasi-metric spaces. The Arabian J. Sci. Engg., 31(1A) 111-114, (2006).
- [5] Kastriot Zoto, Elida Hoxha and Arben Isufati, Some New Results in Dislocated and Dislocated Quasi-Metric Spacs, Applied Mathematical Science,6(71), 3519-3526 (2012).
- [6] P. Hitzler, Generalized Metric and Topology in Logic Programming Semantics, Ph.D. Thesis, National University of Ireland, (University College, Cork), (2001).
- [7] P. Hitzler and A.K. Seda, Dislocated Topplogies, J. Electr. Engg., 51(12/s), 3-7, (2000).
- [8] S. Banach, "Sur les operations dans les ensembles abstraits et leur applications aux equations integrals," Fundamental Mathematicae,3(7), pp. 133–181, (1922).