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ABSTRACT
Sufficient conditions for oscillation of solutions of third order nonlinear neutral
delay differential equations of the form

Sodf1d { v ) }}} N
y(t) + pt)yt—)]i t+ fOG(y(t-0))=0

are obtamed, where
E r(t),rt), pt),f(t) are real valued continuous  functions
SERSEEE (),r(), p() >0 and f(©)>0 |
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1. INTRODUCTION
In this paper we consider the nonlinear neutral delay differential equation of third order

d[ 1 d
o {r O dt {r(t) { YO+ POy —r)]}}}+ fOG(Y(t-0)=0 (L1)

where 1, (t),r(t) e C([t,,=),(0,20)), p(t), f(t) € C([t,,>),[0,2)) . We define a function

jr(t)dt jr (t)dt > o0 , t, >t
tO
When p(t )=0 the above equation reduces to the third order differential equation

df 1 d
dt {f (t) dt {r(t) { [y(t)]}} +T(OG(y(t-0))=0 (1.2)
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The study of behavior of solutions of differential equation (1.2) has been a subject of
interest for several researchers. We mention the works of [1, 3, 5 and 7]. Oscillatory
behavior of delay differential equations is extensively studied by several authors [6, 8, 13, 14
and 15].

By a solution of equation (1.1) we mean a function y(t) eC([T,,x)) where T, >t,

which satisfies (1.1) on [I'y ,).We consider only those solutions of y(t) of (1.1) which satisfy
Sup {|y(t)|: t>T }> 0 forall T >T, and assume that (1.1) possesses such solutions.

A solution of equation (1.1) is called oscillatory if it has arbitrary large zeros on
[Ty,oo); otherwise it is called nonoscillatory. Equation (1.1) is said to be oscillatory it all its

solutions oscillate. Unless otherwise stated, when we write a functional inequality, it will be
assumed to hold for sufficiently large t in our subsequent discussion.

2. MAIN RESULTS

We need the following in our discussion

(Hy) rr (), rt) ECI([to ), R) , h®,rt)>0

(H,): f®)eC(t,,»©),R), f(t)>0

(H;):p(t) eC(t,,»),R) and 0< p(t) <1
(H,):Gu)eC(R,R) and uG(u)>0, u=0

(Hy) :There exists g e C([t,,»),[0,)) and f(t)G(t) > q(t)x

t t
(He): [r(s)ds=w & [r(s)ds=co
to to
We set
2(t) = y(t) + p()y(t—7)
Lemma 2.1: Let (H,) and (H,) hold. Let y(t) be a positive solution of (1.1) and suppose

that 2t)>0,2()>0, [ ——7(@)| >0
r(t)
holds. Then there exists t, >t; sufficiently large such that

1 1 (1 ..
r(t—a)Z(t_U)25(t_0) rl(t)(@Z(t)J for t>t, (2.1)

Let D, = {(t,s) eR*:t>s Zto} and D= {(t,s) eR?:t>s Zto}.The function H e C(D,R)
is said to belong to a function of class F, if
(i) H(t,t) =0 for t>t, and H(t,s) >0 on D,.

(i) H has continuous partial derivatives H (t,s) on D, with respect to the second variable.

Theorem 2.2: Assume that (H,)—(H,) hold. Let p(t) be a positive real valued continuous

differentiable function and let H : D — R be real valued continuous functions such that H

belongs to the class F where
t

Limsup s | {H (9P p(s —a)]—%#(t,s)}ds —o (22)
where k(s) = 1 1 #(s)=H (t,3)p(s) + H(t,s) o (s)

485(-0)(s—o)p(s)’
Then (1.1) is oscillatory.
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Proof: Suppose to the contrary and let y(t) be a nonoscillatory solution of the equation
(1.1). Without loss of generality we may assume that y(t) is eventually positive, since the
case when y(t) is negative can be dealt similarly.

We set

z(t) =y(®) + pt)y(t—7)
Hence from (H;) equation (1.1) becomes

da;j1d i{
dt | r,(t) dt | r(t)

Further we obtain

d

dt

y(t) =z(t) - p(t)y(t—7)
y(t—o)=z(t-o)-pt-o)ylt-o—7)
>z(t—o)—pt-o)yt-o)
>[1-p(t-o)]e(t-o)

Hence from (2.3) and (2.4) we have

[y + p(t)y(t— r)]}}} <-qt)y(t-o)

(2.3)

(2.4)

d(1 d[1 (d
E{@E{W {a [yt) + p)y(t - r)]}}} <—qM[L- pt-o)fz(t-0) (2.5)
Define
rit) r(lt)zl(t)]
o) = p 20 26
1 (1 1 [ 11 ]
—17'(t) —7'(t)
ey rl(t)[r(t) J rl(t)(l’(t) j
o' (t) = p'(t) 2(t—0) +p(t) 2(—0)

_1 1 ] t— 1(1"[]'_1(1"[]"'[_
O rl(t)(r(t)z(t)J o : ")[rl(t) 0 ) Tholo®Y)
e=p -0y | F 2 (t—0)

tt)((lt)zl(t)j z(t—a)(rit)(r(lt)z'(t)n rtt)(r(lt)zl(t)jzl(t_a)
VN r r 1 B 1
oW=prO Ty [P 2t—o)2(t—o) ) R ra—
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1 | 1 ( j B |
r(t)(r(t) ()) [f@ O ] rl(t)((t) ()jz(t ?)

o) TPV 2(t—0) PO T o)

o'(t) = p'(1)

st-0) 1 (1 |
1 r(t)(r(t) (t)j

(t) r(t o)
p(t) 2(t-o)

OB (())co(t) pOIORL- p(t- )]~ p)

p'(t) o(t) ot)5(t - o)r(t—o)
()w(t) p®AML- pt—0o)]-p (t)p(t) s

w'(t) <

&' () < -pOABL- pt-0)]+ 2 (()) oty 2= ")(r)(‘ D2ty (27)

Multiplying the above inequality by H(t,s), we get

ot—o)r(t-o) &2 (1)
p(t)

H(t,8)' (t) <—H (L, s) gL plt— o) ]+ H(t, s)%)w(o —H(t,9)
Yo
or

H(t,s)p®aM®l- pt—o)]<-H(t,s)e' ) + H(t, S)pT(tt))w(t) —H(t,s) s(t-o)t-o) -
P

ORI

Using the integration by parts formula, we have

Jt'H (t,s)p®AM[L- p(t—o)]ds <—H (t,D)e(t) + H (L, T,)o(T,) + j H'(t,s)w(s)ds

o(s—o)r(s-o) ,
p(s)

‘ p (s) t
n Tj H(t,s)ma)(s)ds— Tj H(t,s) w?(s)ds (2.8)

Since H(t,t)=0, we obtain

j H(t,s)p(t)at)[L- p(t—o)]ds < H(t,T,)o(T,) + j[H (t,s)p(s)+H(t, S)p'(s)]ﬁi ds

o(s—o)r(s—-o) »?

5 (s)ds (2.9)

s
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THEPO80R - plt-0)]ds < HE T, o) + [[p, ]2 as
T2 T, p(s)

~ j Hits) S(s—o)r(s—o)

p(s)

®(s)ds

<H(tT)a)(T)+tl !
4 H(t,s)o(s—o)r(s—o)p(s)

#° (t,s)ds

B wfs) 1 1
j VHE9SG o) (s -0)p(s) " o ZJ HEL956—ore—ap@
Hence we obtain
[HEDPOAOR- pl-0lds < HE T, )ofT,) + | %w(t,s)ds (2.10)
where k(s) = 1 1 . Thenforall t>T, we have
46(s—o)r(s—o)p(s)
| {H(t,sm(s)q(s)[l— p(s )-8 s)}ds <HELTolT,) 211)

and this implies that
t

Limsup L {H(t,S)p(S)Q(S)[l— p(s— o) Hk((f)s) ¢2<t,s)}ds <o) (212

which contradicts (2.2). This contradiction completes the proof.
Example 2.3: Consider the following neutral delay differential equation

d|1ld d 2
E{Edt{ {dt{ ()+ y(t- }}H+?G(y(t—n):0 (2.13)
where

L) =t, r) =t, p(t):%, f(t):§

T=2n,0=1, q(t)=tl2
We set (t)_is H(ts) = (t—s)?

We observe that the conditions of the theorem are satisfied
Hence there exists an oscillatory solution in equation (2.13)
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