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ABSTRACT 

     In this paper we further develop the theory of vague filters of a residuated 

lattice.  We introduce and investigate implicative vague filters, positive 

implicative vague filters, fantastic vague filters, strong vague filter, n-

contractive vague filter, divisible vague filter  of a residuated lattice and 

describe their mutual connections. 
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1.INTRODUCTION  

The concept of fuzzy set was introduced by Zadeh (1965) [19].  Since then this idea has been applied 

to other algebraic structures. Since the fuzzy set is single function, it cannot express the evidence of 

supporting and opposing.  Hence the concept of vague set [6] is introduced in 1993 by W.L.Gau and 

Buehrer. D.J.  In a vague set A, there are two membership functions: a truth membership fucntion 𝑡𝐴  

and a false membership function 𝑓𝐴, where 𝑡𝐴  and 𝑓𝐴 are lower bound of the grade of membership 

respectively and 𝑡𝐴(x) + 𝑓𝐴(x)  1.  Thus the grade of membership in a vague set A is a subinterval 

[𝑡𝐴(x), 1-𝑓𝐴(x)] of [0, 1].  Vague sets is an extension of fuzzy sets.  The idea of vague sets is that the 

membership of every elements which can be divided into two aspects including supporting and 

opposing.  With the development of vague set theory, some structure of algebras corresponding to 

vague set have been studied.  R.Biswas [3] initiated the study of vague algebras by studying vague 

groups.  T.Eswarlal [5] study the vague ideals and normal vague ideals in semirings.  H.Hkam , etc 

[13] study  the vague relations and its properties.  In this paper we introduce implicative vague 

filters, positive implicative vague filters, Boolean vague filters and fantastic vague filter, strong vague 

filter, n-contractive vague filter, divisible vague filter of a residuated lattice and analyse their 

properties. 

2.Preliminaries 

Definition 2.1: [17] 

 A residuated lattice is an algebraic structure L = (L, , , *, , 0, 1) satisfying the following axioms: 
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1. (L, , , 0, 1) is a bounded lattice 

2. (L, *, 1) is a commutative monoid . 

3. (*, 1) is an adjoint pair, i.e., for any x, y, z, wL,  

i. if x  y and z  w , then x * z  y * w. 

ii. if  x  y and y  z  x  z then z  x  z  y. 

iii. (adjointness condition) x * y  z if and only if x  y  z. 

In this paper, denote L as residuation lattice unless otherwise specified. 

Theorem 2.2: [17]  

In each residuated lattice L, the following properties hold for all x, y, z  L: 

1. (x * y)  z = x  (y  z). 

2. z  x  y  z * x  y. 

3. x  y  z * x  z * y. 

4. x  (y  z) = y (x  z). 

5. x  y  z  x  z  y. 

6. x  y  y  z  x  z, 𝑦 ′   𝑥 ′. 

7. y  z  (x  y)  (x  z). 

8. y  x  (x  z)  (y  z). 

9. 1  x = x, x  x = 1. 

10. 𝑥𝑚   𝑥𝑛   , m, n  N, m  n. 

11. 𝑥  y  x  y = 1. 

12. 0′ = 1, 1′ = 0, 𝑥 ′ = 𝑥𝑚 , x  𝑥𝑛 . 

13. 𝑥  y  z = (x  z)  (y  z). 

14. 𝑥 ∗  𝑥 ′ = 0. 

15. 𝑥  (y  z) = (x  y)  (x  z). 

Lemma 2.3: [20] 

1. y  x  y 

2. x * y  x * (x  y)  x  y  x  (x  y)  x 

3. y  x  (x * y) 

4. (x  y)  z  x  (y  z) 

5. (x  y) * (y  z)  x  z (transitivity of ) 

6. 𝑦1  𝑦2, 𝑥1  𝑥2 imply 1. x𝑦1  x𝑦2(isotonicity of the second variable of ) 2. 𝑥2 

 y  𝑥1  y (antitonicity of the first variable of ) 

7. 𝑥  (y  z) = y  (x  z) = (x * y)  z(Exchange rule) 

8. (y  z) * x = (y * x)  (z * x) 

9. (y  z)  x = (y  x)  (z  x), in particular, (y  z)  y = z  y 

10. x  (y  z) = (x  y)  (x  z), in particular, y  (y  z) = y  z 

11. x  (y  z)  (x  y)  (x  z) 

12. (y  z)  x  (y  x)  (z  x) 

13. (y  x) * [(x  y)  z]  [y  (x  y)]  (y  z) 

14. (x  y) * (z  w)  (x  z)  (y  w) 

15. (x  y) * (z  w)  (x  z)  (y  w) 

16. (x  y) * (z  w)  (x * z)  (y * w), in particular, x  y  (x * z)  (y * z) 

17. (y  x) * (z  w)  (x  z)  (y  w), in particular, x  ~~x, x  (x  y)  y and y 

 x  ~x  ~y 
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18. ~~(x  ~~y) = x  ~~y = ~~x  ~~y 

19. ~~x  ~~y  ~~(x  y) 

20. [(x  y)  y]  y = x  y 

21. x  y  (x  y)  y. 

Definition 2.3: [20]  

  A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies 

1. x, y  F  x * y  F. 

2. x  F, x  y  y  F. 

Theorem 2:4: [20] 

             A non-empty subset F of a residuated lattice L is called a filter of L if it satisfies, for any x,y L, 

1. 1  F. 

2. x  F, x  y  F  y  F. 

Note 2.5: [20] 

A fuzzy set A on a residuated lattice L is a mapping from 𝐿′ to [0, 1] 

Definition 2.6: [20] 

A fuzzy set A of a residuated lattice L is called a fuzzy filter, if it satisfies, for any x, y  L                         

1. A(1)  A(x). 

2. A(x * y)  min{A(x), A(y)}. 

Theorem 2.7: [20] 

A  fuzzy set A of a residuated lattice L is a fuzzy filter, if and only if it satisfies, for any x, y  L, 

1. A(1)  A(x). 

2. A(y)  min{A(x  y), A(x)} 

Definition 2.8:[20] 

On any residuated lattice L let us define a unary operation negation ~ by 𝑥~ = x  0 for any x  L. 

Definition 2.9:[20] 

A residuated Lattice L is called  

1.BL-algebra if and only if M satisfies the identity of pre-linearity (x  y)  (y  x) = 1. 

2.MV-algebra if and only if M fulfils the double negation law 𝑥~~ = x. 

3.Heyting algebra if and only if the operations * is idempotent. 

Definition 2.10: [6] 

 A Vague set A in the universe of discourse S is a Pair (𝑡𝐴, 𝑓𝐴) where 𝑡𝐴  : S → [0,1] and 𝑓𝐴  : S → [0,1] 

are mappings (called truth membership function and false membership function respectively) where 

𝑡𝐴(x) is a lower bound of the grade of membership of x derived from the evidence for x and 𝑓𝐴(x) is a 

lower bound on the negation of x derived from the evidence against x and  𝑡𝐴(x) + 𝑓𝐴(x) ≤ 1 ∀x∈ S. 

 3.Vague filters of a Residuated Lattice 

Definition 3.1: 

A vague set V in a Residuated Lattice L is called a vague filter of L if any x, y  L satisfy 

1. V(x * y)  V(x)  V(y) 

2. x  y  V(x)  V(y) 

3. V(1)  V(x) for every x  L. 

Lemma 3.2: 

Let V be a vague filter of L.  Then for any x, y  L we have 

1. V(x  y)  V(x)  V(y) 

2. V(x  y) = V(x)  V(y) 

3. V(x * y) = V(x)  V(y). 
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Proof: 

                        For any x, y  L we have x * y  x  y  x  y.  Then from Definition 3.1 we have V(x  y) 

 V(x * y)  V(x)  V(y).  Since x * y  x  y  x, y, it follows by definition 3.1  that  V(x)  V(y)  V(x * 

y)  V(x  y)  V(x)  V(y). 

Proposition 3.3:      

A vague set V in a Lattice L is a vague filter of L if and only if it satisfies Definition 3.1(1) and V(x  y) 

 V(x) for any x, y  L. 

Proof: 

 If  V is a vague filter of a Lattice L then x  x  y implies V(x)  V(x  y).  Conversely, if V satisfies 

Definition 3.1(1) and V(x  y)  V(x) for any x, y  L and x  y, then V(y) = V(x  y)  V(x).           Hence 

V is a vague filter of L.      

Theorem 3.4: 

Let V be a vague set in a Lattice L.  Then the following conditions are equivalent. 

1. V is a vague filter of L. 

2. V satisfies V(1)  V(x) and for all x, y  L, V(y)  V(x)  V(x  y). 

Proof:       

(1) (2):  Let V be a vague filter of L and let x, y  L. Then by Lemma 3.2(3),V(y)  V(x  y) = V((x  

y) * x) = V(x  y)  V(x). Hence V satisfies the condition (2).   

(2)  (1): Let V be a vague set in L satisfying (2).  Let x, y  L, x  y.  Then x  y = 1.  Thus V(y)  V(x) 

 V(1) = V(x), hence Definition 3.1(2) holds.  Further, since x  y  (x * y), by (2) and Definition 3.1(2) 

we get V(x * y)  V(y)  V(y  (x * y))  V(y)  V(x).  Therefore Definition 3.1(1) is also satisfied and 

hence V is a vague filter of L. 

Definition 3.5:  

For every subset V of L, we define a formula 𝑃𝑉  defined by   

𝑃𝑉  : x, y (V(𝑢1(x,y)) V( 𝑢2(x,y)) …….. V(𝑢𝑛 (x,y)))  V(𝑢𝑛 (x,y))).  

Definition 3.6: 

For every subset V of L, we call V a vague P-set if it satisfies the formula 𝑃𝑉 . 

Definition 3.7: Transfer Principle: A vague set V defined in a (general) algebra A has a property P (or 

A is a vague P-set) if and only if all non-empty level subsets U(t, ) and L(1-f, ) have the property P. 

4. Positive Implicative and Boolean Vague Filters 

Definition 4.1: 

A vague set V in a Lattice L is called an implicative vague filter of L if for any x, y, z  L  

1. V(1)  V(x) 

2. V(x  (y  z))  V(x  y)  V(x  z). 

Proposition 4.2: 

Every implicative vague filter of a Lattice L is a vague filter of L. 

Proof: 

Let V be an implicative vague filter of L.  Let   [0, 1] be such that U(t, )  .  Then for any x  U(t, 

) we have t(1)  t(x), thus 1  U(t, ).  Also let   [0, 1] such that  L(1-f, )  .  Then for any x  

L(1-f, ) we have 1-f(1)  1-f(x), thus 1  L(1-f, )    Let x, x  y  U(t, ), i.e. t(x), t(x  y)  . Then 

t(1  x),  t(1  (x  y))  , hence t(1  (x  y))  t(1  x)  , thus by Definition 4.1(2), t(1  y) 

 .  That means t(y)  , and therefore y  U(t, ). Similarly we can prove  1-f(y)   implies y  

L(1-f, ).  Hence V is a vague filter of L. 

Theorem 4.3: 

  Let F be a vague filter of a Lattice L.  Then the following conditions are equivalent. 
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1. 𝑉𝐹 is an implicative vague filter of L. 

2. 𝑉𝐹 (y  (y  x))  𝑉𝐹(y  x) for any x, y  L 

3. 𝑉𝐹(z  (y  x))  𝑉𝐹((z  y)  (z  x)) for any x, y  L 

4. 𝑉𝐹(z  (y  (y  x)))  𝑉𝐹(z)  𝑉𝐹(y  x) for any x, y  L 

5. 𝑉𝐹(x  (x * x)) = 𝑉𝐹(1). 

Proof:  It follows from Definitions. 

Definition 4.4:  

A vague set V in a Lattice L is called a positive implicative vague filter of L if for any x,y,z  L, 

1. V(1)  V(x) 

2. V(x  ((y  z)  y))  V(x)  V(y) 

Proposition 4.5: 

Every positive implicative vague filter of a Lattice L is a vague filter of L. 

Proof:                                                  

 Let V be a positive implicative vague filter of L, ,   [0, 1] and U(t, )   , L(1-f, )  .  Then 1  

U(t, ) and 1  L(1-f, ).   Further, let x, x  y  U(t, ). i.e.,t(x), t(x  y)   and  1-f(x), 1-f(x  y)  

.  Then t(x  ((y  1)  y)) = t(x  (1  y)) = t(x  y), 1-f(x  ((y  1)  y)) = 1-f(x  (1  y)) = 

1-f(x  y) hence  t(x  ((y  1)  y)  t(x)   and  1-f(x  ((y  1)  y)  1-f(x)   and thus by 

Definition 4.4 we have t(y)   and 1-f(y)  .  Therefore y  U(t, ) and y  L(1-f, ).  Hence V is a 

vague filter of L. 

Theorem 4.6:   

A vague filter F of a lattice L is positive implicative if and only if 𝑉𝐹 is a positive implicative vague 

filter of L. 

Proof:  

Let F be a vague filter of L.  Let us suppose that F is positive implicative.  Let 𝑡𝐹(x   ((y  z)  y))  

𝑡𝐹(x) =  and 1 − 𝑓𝐹(x   ((y  z)  y))  1-𝑓𝐹(x) = .  Then 𝑡𝐹(x   ((y  z)  y))  =  = 𝑡𝐹(x), and 

1- 𝑓𝐹(x   ((y  z)  y))  =  = 1 − 𝑓𝐹(x), thus x  ((y  z)  y), x  F, and hence y  F, that 

means𝑡𝐹(y) =  and 1- 𝑓𝐹(y) = .  Therefore we get that 𝑉𝐹 is positive implicative vague filter of L.  

Conversely, let 𝑉𝐹 be a positive implicative vague filter of L. Let  x  ((y  z)  y)  F and x  F.  

Then 𝑡𝐹(x   ((y  z)  y)) =  = 𝑡𝐹(x), 1-𝑓𝐹(x   ((y  z)  y)) =  = 1-𝑓𝐹(x),  hence 𝑡𝐹(y) =  and 1-

𝑓𝐹(y) =  and so y  F.  That means F is a positive implicative filter of L. 

Theorem 4.7:  

Let F be a vague filter of a lattice L.  Then the following conditions are equivalent. 

1. 𝑉𝐹 is a positive implicative vague filter of L. 

2. 𝑉𝐹((x  y)  x)  𝑉𝐹(x) for any x, y  L. 

3. 𝑉𝐹((𝑥~  x)  x) = 𝑉𝐹(1). 

Proof: 

Analogous to that for Theorem 4.3. 

Theorem 4.8: 

Let V be a vague filter of a lattice L.  Then V is a positive implicative vague filter of L if and only if all 

non-empty level subsets are positive implicative filter of L for every ,   [0, 1] such that U(t, )  

 and L(1-f, )  . 

Proof: 

Let us suppose that V is a vague filter of L. Let V be positive implicative, , [0,1], U(t, )    and 

L(1-f, )  , x, y, z  L ,  x  ((y  z)  y) U(t, )  and x  ((y  z)  y) L(1-f, ), x  U(t, ) 

and x  L(1-f, ). Then t(x  ((y  z)  y)) ,t(x)   and 1-f(x  ((y  z)  y)), 1-f(x)  .  Hence t(x 
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 ((y  z)  y))  t(x)  .  Since t(y)  t(x  ((y  z)  y))  t(x) and 1-f(y)  1-f (x  ((y  z)  

y))  1-f(x) we get y  U(t, ) and y  L(1-f, ).  Therefore U(t, ) and L(1-f, ) are positive implicative 

filter.  Conversely, Let V be such that U(t, ) and L(1-f, ) are positive implicative filter for any ,   

[0, 1] such that U(t, )   and  L(1-f, )  .  If x, y, z  L, then x  ((y  z)  y), x  U(t, (x ((y 

 z)  y))  x) and   x  L(1-f, (x ((y  z)  y))  x)thus also y  L(1-f, (x ((y  z)  y))  x), 

hence V(y)  V((x  ((y  z)  y))  x) = V(x  ((y  z)  y)))  V(x).  That means V is a positive 

implicative vague filter. 

Theorem 4.9: 

Every positive implicative vague filter of a lattice L is implicative. 

Proof: 

Let V be a positive implicative vague filter of L.  Then by Theorem 4.8, if ,   [0, 1] is such that U(t, 

)   and L(1-f, )   then U(t, ) and L(1-f, ) are positive implicative filters of L.  Hence U(t, ) 

and L(1-f, ) are implicative filters of L.  Therefore V is an implicative vague filter of L. 

Definition 4.10:  

A vague filter V of a lattice L is called a Boolean vague filter of L, if for any x  L,  V(x  𝑥~) = V(1) 

Theorem 4.11: 

 A filter F of a lattice L is Boolean if and only if 𝑉𝐹 is Boolean vague filter of L. 

Proof: 

Let F be a Boolean filter of L and let x  L.  Then 𝑉𝐹(x  𝑥~ ) = 𝑉𝐹(1), hence 𝑉𝐹 is Boolean vague filter 

of L.  Conversely, let 𝑉𝐹 be a Boolean vague filter of L and let x  F.  

Then 𝑉𝐹(x  𝑥~)  = 𝑉𝐹(1) = , then x  𝑥~   F, that means F is Boolean filter of L. 

Definition 4.12: 

A vague subset V in a lattice L is called a fantastic vague filter of L if for any x, y, z  L,  

1. V(1)  V(x) 

2. V(z  (y  x))  V(z)  V(((x  y)  y)  x). 

Proposition 4.13: 

Every fantastic vague filter of a lattice L is a vague filter of L. 

Proof: 

Let V be a fantastic vague filter of L.  Let ,   [0, 1] , U(t, )   and L(1-f, )  .  Then 1 U(t, ) 

and 1  L(1-f, ).  Let x, x  y  U(t, ) and L(1-f, ), i.e., t(x), t(x  y)   , 1-f(x),  1-f(x  y)  .  

Then t(x  (1  y)) = t(x  y)  ,  1-f(x  (1  y)) = 1-f(x  y)  .  Hence t(x  (1  y))  t(x)  

, thus by Definition 4.12 we have t(y) = t(1  y) = t(((y  1)  1)  y)  t(x  (1  y))  t(x)  , 

1-f(y) = 1-f(1  y) =  1-f(((y  1)  1)  y)  1-f(x  (1  y))  1-f(x)  , and so y  U(t, ) and y  

L(1-f, ).  Therefore V is a vague filter of L. 

Theorem 4.14: 

A vague filter F of a lattice L is fantastic if and only if 𝑉𝐹 is a fantastic vague filter of L. 

Proof: 

Let F be a vague filter of L.  Let us suppose that F is fantastic.  Let 𝑡𝐹(z  (y  x))  𝑡𝐹  (z) =  and     

1-𝑓𝐹(z  (y  x))  1-𝑓𝐹  (z) = .  Then 𝑡𝐹(z  (y  x)) =  = 𝑡𝐹(z) and 1 − 𝑓𝐹(z  (y  x)) =  =1-  

𝑓𝐹(z), thus z  (y  x)  F, z  F, and hence ((x  y)  y)  x  F, that means  t(((x  y)  y)  x) 

=   and 1- f(((x  y)  y)  x) = .  Therefore we get 𝑉𝐹 is a fantastic vague filter of L.  Conversely, 

let 𝑉𝐹 be a fantastic vague filter of L.  Let z  (y  x)  F and z  F.  Then 𝑡𝐹  (z  (y  x)) =  = 

𝑡𝐹(z), 1 − 𝑓𝐹 (z  (y  x)) =  = 1-𝑓𝐹(z), hence  

𝑡𝐹  (((x y)  y)  x) =  , 1- 𝑓𝐹 (((x y)  y)  x) =  and therefore ((x  y)  y)  x F That 

means, F is a fantastic filter of L. 
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Theorem 4.15: 

Every positive implicative vague filter of a lattice L is fantastic. 

Proof: 

If V is a positive implicative vague filter of L, then U(t, ) and L(1-f, ) are positive implicative filter of 

L for every U(t, )   and L(1-f, )  .  Hence U(t, )  and L(1-f, ) are fantastic filter of L, and 

hence, by Theorem 4.14, V is fantastic filter of L. 

5.New subclasses of  vague filters 

Definition 5.1: 

Let F be a vague filter of L.  Then it is called a divisible vague filter if for all x, y  L , 

𝑉𝐹((x y)  [x * (x  y)]) = 𝑉𝐹(1). 

Theorem 5.2: 

Let F be a vague filter of L.  Then the following assertions are equivalent for all x, y,z  L: 

1. 𝑉𝐹 is a divisible vague filter. 

2. 𝑉𝐹([x  (y  z)]  {(x  y) * [(x  y)  z]}) = 𝑉𝐹(1). 

Proof: 

Assume that 𝑉𝐹 is a divisible vague filter.  Then we have 𝑉𝐹([(x  y) (x  z)]  {(x  y) *  [(x  y) 

 (x  z)]}) =  𝑉𝐹([x  (y z)]  {(x  y) * {[x* (x  y) z)}} and hence           

 𝑉𝐹([x  (y z)]  {(x  y) * {[x* (x  y) z)}}=  𝑉𝐹(1).  Therefore 𝑉𝐹((x y)  [x * (x  y)])  

𝑉𝐹[{[x * (x  y)]  z}  [(x  y)  z)]]  𝑉𝐹[{(x  y) * {[x * (x  y)]  z}}         {(x  y) * [(x  y) 

 z]} and hence 𝑉𝐹[{(x  y) * {[x * (x  y)]  z}}  {(x  y) * [(x  y)  z]} = 𝑉𝐹(1). By the 

transitivity of  , we have 𝑉𝐹([x  (y z)]  {(x  y) *  {[ x  y ) z)]})  = 𝑉𝐹(1).  

Definition 5.3: 

Let F be a vague filter of L.  Then it is called a strong filter if for x  L 𝑉𝐹[~~(~~x  x)] = 𝑉𝐹(1). 

Proposition 5.4:          

Let F be a vague filter of L.  Then the following assertions are equivalent for all x, y  L, 

1. 𝑉𝐹 is a strong vague filter 

2. 𝑉𝐹[(y  ~~x)  ~~(y  x) ] = 𝑉𝐹(1). 

Proof: 

Assume that F is a strong vague filter, that is, 𝑉𝐹[~~(~~x  x)] = 𝑉𝐹(1).                                       

Therefore 𝑉𝐹[~~(~~x  x)]  𝑉𝐹(~~[(y  ~~x) (y  x)] )  𝑉𝐹(~~[(y ~~x)  ~~(y  x)] ) = 𝑉𝐹 [(y 

 ~~x)  ~~(y  x)].  Hence 𝑉𝐹[(y  ~~x)  ~~(y  x)] = 𝑉𝐹(1).  Conversely, it follows immediately 

by taking y = ~~x in (2). 

Theorem 5.5: 

Let F be a vague filter of L.  Then the following assertions are equivalent for all x, y  L. 

1. 𝑉𝐹 is a strong vague filter 

2. 𝑉𝐹[ (x  y)  ~~(~~x  y)] = 𝑉𝐹(1). 

Proof: It follows from Propostion 5.5 

Theorem 5.6: 

Let F be a vague filter of L.  Then the following assertions are equivalent for all x, y  L, 

1. 𝑉𝐹 is a strong vague filter 

2. 𝑉𝐹[(~x  y)  ~~(~y  x)] = 𝑉𝐹(1). 

Proof: 

Assume that F is a strong vague filter, that is, 𝑉𝐹[~~(~~x  x)] = 𝑉𝐹(1). 𝑉𝐹[~~(~~x  x)]   𝑉𝐹[~~{[(~x 

 y) * ~y]  x}] =  𝑉𝐹[~~(~x  y)  (~y  x)]  𝑉𝐹[~~[(~x  y) ~~(~y x)]] =  𝑉𝐹 [(~x  y)  

~~(~y  x)] = 𝑉𝐹(1).  Conversely, it follows immediately by taking y = ~~x. 
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Definition 5.7: 

            Let F be a vague filter of L.  Then it is called an n-contractive vague filter if for all x  L,   𝑉𝐹[𝑥𝑛  

 𝑥𝑛+1]  = 𝑉𝐹(1). 

Theorem 5.8: 

Let F be a vague filter of L.  Then the following assertions are equivalent for all x, y  L: 

1. F is an n-contractive vague filter 

2. 𝑉𝐹[[𝑥𝑛* (𝑥𝑛   y)]  (x * y)] = 𝑉𝐹(1) 

3. 𝑉𝐹[[𝑥𝑛  * (𝑥𝑛   y)]  𝑥𝑛+1] = 𝑉𝐹(1). 

Proof: 

(1)  (2)   

Assume that F is an n-contractive vague filter. 𝑉𝐹[𝑥𝑛   𝑥𝑛+1]  𝑉𝐹[[𝑥𝑛* (𝑥𝑛   y)] [𝑥𝑛+1 * (𝑥𝑛   

y)]]  𝑉𝐹[[𝑥𝑛  * (𝑥𝑛   y)]  (x * y)] and hence 𝑉𝐹[[𝑥𝑛  * (𝑥𝑛   y)]  (x * y)] = 𝑉𝐹(1).  Conversely, it 

follows immediately by taking y = 𝑥𝑛  that 𝑉𝐹[𝑥𝑛   𝑥𝑛+1] = 𝑉𝐹(1).  Thus F is an n-contractive vague 

filter . 

(1)  (3)    Consider the inequality 𝑉𝐹{[𝑥𝑛  * (𝑥𝑛 y)]  [𝑥𝑛+1 * (𝑥𝑛y)]}  𝑉𝐹{[ 𝑥𝑛  *(𝑥𝑛y)] 

 𝑥𝑛+1}, then it can be similarly proved as that of (1)  (2). 

Theorem 5.9: 

Let F be a vague filter of L.  Then F is an n-contractive vague filter if and only if  𝑉𝐹[𝑥𝑛   𝑥2𝑛 ] = 

𝑉𝐹(1). 

Proof:                         

 Assume that F is an n-contractive vague filter.  It follows immediately that 𝑉𝐹[𝑥𝑛   𝑥𝑛+1]  

𝑉𝐹[𝑥𝑛+1  𝑥𝑛+2], and hence 𝑉𝐹[𝑥𝑛+1  𝑥𝑛+2] = 𝑉𝐹(1).  Similarly, we have 𝑉𝐹[𝑥𝑛+2  𝑥𝑛+3], 

…….𝑉𝐹[𝑥2𝑛−1  𝑥2𝑛 ] = 𝑉𝐹(1). The transitivity of  leads that 𝑉𝐹[𝑥𝑛   𝑥𝑛+1] *…..𝑉𝐹[𝑥2𝑛−1  𝑥2𝑛 ] 

 𝑉𝐹[𝑥𝑛   𝑥2𝑛 ], and hence 𝑉𝐹[𝑥𝑛   𝑥2𝑛 ] = 𝑉𝐹(1).  Conversely, since 𝑉𝐹[𝑥2𝑛 ]  𝑉𝐹[𝑥𝑛+1], it follows 

immediately from the isotonicity of the second variable of  that 𝑉𝐹[𝑥𝑛   𝑥2𝑛 ]   𝑉𝐹[𝑥𝑛   𝑥𝑛+1], 

and hence 𝑉𝐹[𝑥𝑛   𝑥𝑛+1] = 𝑉𝐹(1). 

Remark 5.10: 

Let F be a vague filter of L.  Then the following assertions are equivalent for all x, y  L, 

1. F is an n-contractive vague filter 

2. 𝑉𝐹[[𝑥𝑛* (𝑥𝑛   y)]  (𝑥𝑛  * y)] = 𝑉𝐹(1) 

3. 𝑉𝐹[[𝑥𝑛  * (𝑥𝑛   y)]  𝑥2𝑛  ] = 𝑉𝐹(1). 

Theorem 5.11: 

Let F be a divisible vague filter of L.  Then 𝑉𝐹[[(x * y)  (x * z)]  [x * (y  z)]] = 𝑉𝐹(1), for all x, y, z  

L. 

Proof: 

 Assume that F is a divisible vague filter.  Then we get 𝑉𝐹[[(x * y)  (x * z)]  {(x * y) * [(x * y)  (x * 

z)]}] = 𝑉𝐹(1).  (x * y) * [(x * y)  (x * z)]} = x * y * {y  [x  (x * z)]}  x * {y  [x  (x * z)]}.  

Therefore we have 𝑉𝐹[[(x * y)  (x * z)]  {(x * y) * [(x * y)  (x * z)]}] = 𝑉𝐹[[(x * y)  (x * z)]  {x * {y 

 [x  (x * z)] ]   = 𝑉𝐹(1).  By applying the definition of  divisible vague filter we get 𝑉𝐹[{y  [x  (x * 

z)]}  {[x  (x * z)] * {[x  (x * z)]  y }}]  𝑉𝐹[x * {y  [x  (x * z) ]}]  x* {[x  (x * z)] * {[x  (x 

* z)]  y}}] and hence 𝑉𝐹[x * {y  [x  (x * z) ]}]  x* {[x  (x * z)] * {[x  (x * z)]  y}}] = 𝑉𝐹(1).  

Therefore by the transitivity of  , we get 𝑉𝐹[[(x * y)  (x * z)]  {x * [x  (x * z)] * {[x  (x * z)  

y}}] = 𝑉𝐹(1). Since  x * [x  (x * z)] * {[x  (x * z)  y}  x * z * (z  y)  x * (y  z).  Hence 𝑉𝐹[[(x * y) 

 (x * z)]  x * (y  z)] = 𝑉𝐹(1).                                  
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