
217 

 

 

  

 
    

 
 
 

FLUID FLOW VISUALIZATION USING COMPLEX VARIABLES IN GROUNDWATER 
DYNAMICS MODELS 

 
Dr. K. Jonah Philliph 

Assistant Professor, Dept of Science and Humanities, Mother Theresa Institute of Engineering and 
Technology, Palamaner, Chittoor Dist, A.P 

 

 

ABSTRACT 

Fluid dynamics studies the behaviour of liquids and gases at rest and in motion 

and their interactions with other objects. One important aspect of fluid 

dynamics is flowing visualization. Flow visualization can be done using the 

complex variable method. This method uses the results of complex number 

theory to obtain solutions for two-dimensional potential incompressible 

flows. The advantage of this method is that it makes it easier to find solutions 

to two-dimensional incompressible flows because there is no need to solve 

differential equations. The aim of this research is to visualize the two-

dimensional complex potential of water fluid flow. The parameters to be 

varied are the potential function and flow function of several simple flow 

forms. It is hoped that this research can provide information about the 

application of complex variable methods in studying fluid dynamics, especially 

fluid flow visualization. 

Key words: fluid flow visualization, complex potential, flow function, complex 

numbers. 
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1. INTRODUCTION 

Fluid dynamics is a branch of science that studies the behavior of liquids and gases at rest and in 

motion and their interactions with other objects. One important aspect of fluid dynamics is flow 

visualization. In this paper we will visualize fluid flow in a groundwater flow model. There are several 

methods that have been used in modeling fluid flow visualization, including: Lattice Boltzman [1], this 

method is based on the kinetic theory of gases where a fluid is assumed to be an ideal gas that moves 

randomly in all directions and is related to each other. Smoothed particle hydrodynamics, in this 

method the flow of a fluid is discretized into small particles of the same diameter and have physical 

properties such as mass, density, position and speed. Finite element method [2], this method uses the 

Navier-Stokes equations in solving fluid flow problems, where the N-S equation is discretized in a 
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function of time and position. Line integral convolution is very well used to visualize the vector field 

of a flow [3]. 

In this paper, flow visualization will be carried out using the complex variable method. The complex 

variable method is very well used in studying incompressible Newtonian fluid flow [4] and simulating 

flow in porous media [5]. This method uses results from complex number theory to obtain solutions 

to the flow. The advantage of using complex variables in flow visualization is that it makes it easier to 

find solutions to 2-dimensional incompressible flows because there is no need to solve partial 

differential equations as in other methods. Therefore, in this paper we will visualize potential fluid 

flow using complex numbers and determine the shape or pattern of flow lines and equipotential of 

several forms of flow. 

1.1 VISUALIZATION OF FLUID FLOW WITH COMPLEX VARIABLES 

Fluid Flow Classification 

Based on the flow, fluids can be divided into several groups: 

1. 1D, 2D and 3D streams: 1D flow is flow that only occurs in one dimension, 2D flow only occurs 

in 2-dimensional space, while 3D flow occurs in 3-dimensional space. 

2. Compressible flow and incompressible flow: Compressible flow is a flow condition where the 

fluid mass density changes, while incompressible flow is a flow condition where the fluid mass 

density does not change or is constant. 

3. Steady flow and unsteady flow: Steady flow is a flow condition where the flow components 

do not change with time, while unsteady flow is a flow condition where the flow components 

change with time. 

4. Uniform flow and non-uniform flow: Uniform flow is a condition where the flow components 

do not change with distance, while non-uniform flow is a flow condition where the flow 

components change with distance. 

5. Laminar flow and turbulent flow: Laminar flow is flow in which fluid moves in layers with one 

layer flowing smoothly. Meanwhile, turbulent flow is a flow in which the movement of fluid 

particles is erratic due to mixing and rotation of particles between layers which results in the 

exchange of momentum from one part of the fluid to another on a large scale. 

6. Viscous flow and inviscid flow: Viscous flow is flow that is influenced by viscosity. The presence 

of viscosity causes shear stress and energy loss, while inviscid flow is flow that is not influenced 

by viscosity. 

7. Rotational flow and irrotational flow: Rotational flow is a flow where the rotation value or 

each component of the rotation vector is not equal to zero, while tacrorotational flow is flow 

where the rotation value or each component of the rotation vector is equal to zero or curl V 

 0. 

For 2D non-rotational flow, then: 
𝜕𝑣𝑥

𝜕𝑥
−
𝜕𝑣𝑦

𝜕𝑦
= 0  (1) 

Continuity Equation 

The continuity equation is obtained from the law of conservation of fluid mass. The continuity 

equation states the requirements that a fluid must be continuous and that the mass of the fluid is 

conserved. 
𝜕𝜌

𝜕𝑧
+
𝜕(𝜌𝑣𝑥)

𝜕𝑥
+
𝜕(𝜌𝑣𝑦)

𝜕𝑦
+
𝜕(𝜌𝑣𝑧)

𝜕𝑧
= 0   (2)    

Equation (2) is the fluid continuity equation. For an incompressible flow where the mass density is 

constant, the continuity equation becomes: 
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𝜕(𝑣𝑥)

𝜕𝑥
+
𝜕(𝑣𝑦)

𝜕𝑦
+
𝜕(𝑣𝑧)

𝜕𝑧
= 0   (3)    

Stream Function 

The flow function is a mathematical function that cannot be observed directly in the real world but is 

very good for calculating and visualizing two-dimensional flows. Together with the potential, the flow 

function makes it possible to visualize flow shapes that are difficult to produce with other methods 

[6]. In two-dimensional flow, the equations for streamlines can be described by flow functions. 

Different values of the flow function  express different streamlines. Streamline or a streamline is a 

line that is at any time a tangent to the speed vectors. The characteristics of streamline flow patterns 

are: no flow intersects a streamline. The distance between streamlines is inversely proportional to 

speed so that the narrower the distance between streamlines indicates greater speed and the 

streamlines do not intersect each other. The streamline equation is as follows: 

  𝑣𝑥  𝑑𝑦 − 𝑣𝑣𝑑𝑥 = 0    (4) 

The flow function in 2 dimensions has its velocity components defined by the following equation: 

𝑣𝑥 =
𝜕Ψ

∂y
, 𝑣𝑦 = −

𝜕Ψ

∂x
    (5) 

Where 𝑣𝑥  and 𝑣𝑦 are the velocity components in the 𝑦 and 𝑥 directions. If 𝑣𝑥  and 𝑣𝑦 are substituted 

into the streamline equation then: 

𝑣𝑥 =
𝜕Ψ

∂y
 𝑑𝑦 +

𝜕Ψ

∂x
𝑑𝑥 = 0   (6) 

 constant along streamlines. When  (x, y) is known, various constant  lines can be plotted to obtain 

various flow streamlines. For irrotational flow the flow function satisfies the Laplace equation:  
𝜕2Ψ

∂y2
+
𝜕2Ψ

∂x2
= 0  (7) 

Speed Potential Function 

Table 1. The relationship of flow function and potential function 

Flow function Potential Functions 

• Continuity equation: 

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑥
= 0 

• Speed components: 

𝑣𝑥 =
𝜕𝑣𝑥
𝜕𝑦

, 𝑣𝑦 =
𝜕𝑣𝑦

𝜕𝑥
 

𝑉 =
𝜕Ψ

∂n
 

𝜕𝑛 is the part of an equipotensil line expressed 

by =  0 

n perpendicular to the current line 

• Irotational equation:  = 0 

• Irotational equation: 

𝜕𝑣𝑥
𝜕𝑥

−
𝜕𝑣𝑦

𝜕𝑥
= 0 

• Speed components: 

𝑣𝑥 =
𝜕𝑣𝑥
𝜕𝑦

, 𝑣𝑦 =
𝜕𝑣𝑦

𝜕𝑥
 

𝑉 =
𝜕𝜑

∂s
 

∂s is part of a Streamline stated by 

 = 0 

∂s perpendicular to the equipotential line 

• Continuity equation   = 0 

The potential notation is  where the flow field is derived from the gradient  .  is the potential 

speed if v =  Because the velocity vector v is the gradient of the potential velocity, the potential 

flow is also called irrotational flow. For incompressible fluids, the continuity equation becomes: 

∇2𝜑 = 0                               (8) 

so that the potential flow for an incompressible fluid, the potential velocity  satisfies the Laplace 

equation so that for the 2-dimensional case it becomes: 
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
= 0                  (9) 

After obtaining the solution to the equation, the speeds 𝑣𝑥 and 𝑣𝑦 can be determined: 
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𝑣𝑥 =
𝜕φ

∂x
, 𝑣𝑦 =

𝜕φ

∂y
         (10) 

Complex Numbers 

Complex numbers are imaginary numbers that have the following form: 

𝑧 =  𝑥 + 𝑖𝑦 , (11) 

where 𝑥 and 𝑦 are real numbers while 𝑖 is an imaginary number with the property 𝑖2 = −1. 

 
Figure 1. Complex field [6] 

Complex number operations are the same as ordinary arithmetic operations, namely addition, 

subtraction, multiplication and division like real numbers. However, complex numbers also have 

additional unique properties, for example in every polynomial algebra number, real numbers have 

complex number solutions, unlike real numbers which only have partial ones. 

The complex number 𝑧 =  𝑥 + 𝑖𝑦 , is a specification of real numbers (𝑥, 𝑦) so that complex numbers 

have a one-to-one relationship with points in one plane. Complex numbers can be visualized as points 

or position vectors on a two-dimensional coordinate system known as the complex plane. 

The Cartesian coordinates of a complex number are the real 𝑥 axis and the imaginary 𝑦 axis, while the 

circular coordinates are 𝑟 =  |𝑧| which is called the modulus and   𝑎𝑟𝑔 (z) which is called the 

complex argument of z. After combining it with Euler's formula, we get: 

 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃) = 𝑟𝑒𝑖𝜃 (12) 

The complex argument is unique modulo 2π so that if there are two complex argument values that 

differ by an integer multiple of 2π then the two arguments are the same or equivalent. Using basic 

trigonometric identities, we obtain: 

{
 

 𝑠𝑖𝑛𝜃 =
𝑒𝑖𝜃 − 𝑒𝑖𝜃

2𝑖

𝑐𝑜𝑠𝜃 =
𝑒𝑖𝜃 + 𝑒𝑖𝜃

2

 

The addition of two complex numbers is like the vector addition of two vectors, and multiplication by 

a complex number can be visualized as a simultaneous rotation and extension. Multiplication by 𝑖 is a 

90-degree counterclockwise rotation (
𝜋

2
 radians). Geometrically  𝑖2 is two 90-degree rotations which 

is the same as a 180-degree rotation (π radians). 

Cauchy Riemann equation 

The Cauchy–Riemann equation is a very important equation in complex analysis because this equation 

is used to test the analyticity of a complex function𝑤 𝐹(𝑧) = 𝑣𝑥(𝑥. 𝑦) + 𝑖𝑣𝑦(𝑥, 𝑦). To find out the 

analytical properties of a complex function, limits and continuity of a function in a complex plane can 

be used. If 𝐹(𝑧) has a limit for z  zo, then F z  is said to be analytic at z0 . For vx and vy to be real 
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functions of x and y on R, the necessary condition is that vx and vy satisfy the Cauchy-Riemann 

equation, namely: 
𝜕𝑣𝑥

𝜕𝑥
=

𝜕𝑣𝑦

𝜕𝑦
,
𝜕𝑣𝑥

𝜕𝑦
= −

𝜕𝑣𝑦

𝜕𝑥
  (14) 

1.2 COMPLEX POTENTIAL FOR 2-DIMENSIONAL POTENTIAL FLOW 

Two-dimensional potential flow solutions can be obtained with complex potentials using complex 

variables with the following conditions: 

1. The fluid flow is two-dimensional, steady and irrotational. 

2. The fluid is incompressible so it follows the continuity equation for incompressible fluids. 

3. It is assumed that the fluid has no viscosity following the properties of an ideal fluid. 

4. The potential velocity function  and flow function  are connected by the Cauchy-Riemann 

equation so that they become as follows: 
𝜕𝜑

𝜕𝑥
=

𝜕Ψ

𝜕𝑦
,
𝜕𝜑

𝜕𝑦
= −

𝜕Ψ

𝜕𝑥
 (15) 

This equation explains the conditions that must be fulfilled by a function 𝐹 (𝑧) if the function is an 

analytic function with: 

𝐹(𝑧) = 𝜑(𝑥, 𝑦) + 𝑖Ψ(x, y) 

𝑧 =  𝑥 + 𝑖𝑦 (16) 

Visualization of Complex Potentials in Groundwater Models 

In general, the working procedure for complex potential visualization in groundwater models is as 

follows: 

1. Conduct a literature review of complex variable applications for potential flows. 

2. Determine the complex potential function of water fluid flow F(z) which will be used for the 

simulation. 

3. Create a MATLAB program to simulate the potential distribution of a predetermined complex 

potential function. 

4. Simulate the potential form of the determined potential flow function. 

5. Analyse the simulation results. 

 
Figure 2. Workflow 
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2. RESULTS 

In this paper, a two-dimensional potential fluid flow simulation is carried out for the case of a well 

system with several variations in pumping rates. The number of wells used is 3 wells. The simulation 

is carried out using a complex potential function for base and well flow with the following equation: 

Base flow: 𝐹1(𝑧) = −𝑄0⃗⃗ ⃗⃗  𝑧 

Well : 𝐹2(𝑧) =
𝑄

2𝜋
 ln (𝑧 − 𝑧1) 

with 𝑧 =  𝑥 + 𝑖𝑦. F2 (z) is a function for the type of source flow with the assumption that the source 

flow is a pumping well. Q is the pumping rate in the well while zl is the position of the well in complex 

numbers. In visualization, the mirror method is also used, the position of which is determined by the 

conjugate complex function of complex numbers [7]. 

The visualization results are shown in figures 3 to 5. The white lines are streamlines which represent 

the trajectory of fluid particles. Meanwhile, the blue lines are equipotential lines which represent 

differences in fluid pressure. The black arrow represents the flow field. Stream lines and equipotential 

lines are always perpendicular to each other. The different colors show the potential distribution with 

red for the highest potential and blue for the lowest potential [8-9]. 

Figure 3 shows that the closer the distance between the streamlines, the greater the flow velocity, 

and vice versa. The flow field moves from areas of high potential to areas of low potential. 

Visualization was carried out by varying the pumping rate, namely 2 m3/s and 5 m3/s, 5 m3/s and 8 

m3/s, 8 m3/s and 11 m3/s. The results show that the greater the pumping rate value, the greater the 

potential value of each well. This can be seen from the equipotential lines that map each well. Each 

equipotential line shows a difference in potential value [8]. 

The following is an image of the visualization results with 3 pumping wells and several variations in 

pumping rates: 

 
Figure 3. Current line and equipotential line pattern with pumping rates of 2 m/s3 and 5 m/s3 
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Figure 4. Current line and equipotential line pattern with pumping rates of 5 m/s3 and 8 m/s3 

 

 
Figure 5. Current line and equipotential line pattern with pumping rates of 8 m/s3 and 11 m/s3 

2. CONCLUSION 

The complex variable method can be an alternative and simple method for visualizing fluid flow in 

groundwater flow models without having to solve partial differential equations. Streamline patterns 

and equipotential lines can be visualized well using the complex variable method. Next, other potential 

shape variations can be carried out to see streamline patterns and equipotential lines. 
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