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ABSTRACT 

In this paper we present a solution for a fractional Black-Scholes equation for 

the price of an option via Laplace Transform technics. For this purpose, we first 

derive the Black-Scholes equation for a generic pay-off function whose value is 

equivalently the worth of the stock at time t. We then show how to reduce the 

equation to a general parabolic equation by means of change of variables, 

finally we solve the resulting equation using the Laplace transform method 

with appropriate boundary conditions.  
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1. INTRODUCTION  

 An option provides the holder with the right to buy or sell a specified quantity of an 

underlying asset at a fixed price (called a strike price or an exercise price) at or before the expiration 

date of the option. Since it is a right and not an obligation, the holder can choose not to exercise the 

right and allow the option to expire. 

 Options are generally defined as contracts between two parties in which one party has the 

right but not the obligation to do something at a final later time T, usually to buy or sell some 

underlying asset ST under protected conditions, see [1]. Having rights without, obligations has 

financial value, so option holders must purchase these rights, making them assets. These assets 

derive their value from the primary asset ST, so they are called derivative assets. More generally, 

financial derivatives may be viewed as random future payoffs 𝐻𝑇which depend somehow on the 
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price of the primary asset, i.e. 𝐻𝑇  =  𝑓 (𝑆𝑇) Payment for these options takes the form of a flat, up-

front sum called premium. 

 The important feature of an option, either a put or call, is that its purchase / ownership 

conveys the right to complete the transaction should it be advantageous but not the obligation to do 

so when not financially advantageous. American-style options give the holder the right to complete 

the transaction or ‘exercise the option’ anytime before its expiration, while European-style options 

can only be executed on the expiration date.The price paid for an option, its premium, differs from 

its value. Its value is theultimate profit returned to its owner should the transaction be completed. 

Its price is derived from the difference between the exercise price and the current value of the asset 

in addition to a premium based on the time remaining until the expiration of the option. The value 

of an option to its owner (its purchaser or holder) is theoretically unlimited. Conversely, the financial 

risk to the purchase of an option is limited to the premium, as by definition the owner of an option is 

not obligated to complete a financially detrimental transaction, see[2]. 

 Laplace transformation is one of the most popular methods of solution of diffusion 

equations in many areas of science and technology. It has an advantage over other analytical 

approaches e.g. Fourier or Green’s function methods in solving of many practical problems in 

finance. The most obvious one is a barrier options pricing. Another advantage of Laplace transform 

method is in straightforward constructing of replications of complex options.See[3]. 

Black–Scholesmodel is a mathematical model of a financial market containing certain derivative 

investment instruments. From the model, one can deduce the Black–Scholes formula, which gives a 

theoretical estimate of the price of options. The formula led to a boom in options trading and 

legitimized scientifically the activities of options markets around the world. It is widely used with 

some adjustments and corrections, by options market participants. The key financial insight behind 

the equation is that one can perfectly hedge the option by buying and selling the underlying asset in 

just the right way and consequently "eliminate risk". This hedge, in turn, implies that there is only 

one right price for the option which is calculated by the Black–Scholes formula. The Black–Scholes 

formula calculates the price of put options and call options. 

 The Black-Scholes model (BS) for pricing stock options has been applied tomany different 

commodities and payoff structures. The Black-Scholes model for value of an option is described by 

the following equation; 

𝜕𝑣

𝜕𝑡
+

1

2
𝜎2𝑥2

𝜕2𝑣

𝜕𝑥2
+ 𝑟 𝑡 𝑥

𝜕𝑣

𝜕𝑥
− 𝑟 𝑡 𝑣 = 0 ,  𝑥, 𝑡 ∈ 𝑅+ ×  0, 𝑇  

where 𝑣(𝑥;  𝑡) is the European option price at asset price x and at time t, T is the maturity, 𝑟(𝑡) is 

the risk free interest rate and 𝜎_(𝑥;  𝑡) represents the volatility function of underlying asset.  

Let us denote by 𝑐(𝑥;  𝑡) and 𝑝(𝑥;  𝑡) the value of the European call and put options, respectively. 

Then, the payoff functions are 

𝑐 𝑥;  𝑡 = max 𝑥–𝐸, 0 ; 

𝑝(𝑥;  𝑡)  =  𝑚𝑎𝑥(𝐸– 𝑥, 0);  

whereE is the exercise price,see [4]. 

The Black-Scholes equation relates the recommended price of the option to four other quantities. 

Three can be measured directly: time, the price of the asset upon which the option is secured and 

the risk-free interest rate. This is the theoretical interest that could be earned by an investment with 

zero risk, such as government bonds. The fourth quantity is the volatility of the asset. This is a 

measure of how erratically its market value changes. The equation assumes that the asset’s volatility 

remains the same for the lifetime of the option, which need not be correct. Volatility can be 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Financial_market
http://en.wikipedia.org/wiki/Derivative_%28finance%29
http://en.wikipedia.org/wiki/Option_%28finance%29
http://en.wikipedia.org/wiki/Hedge_%28finance%29
http://en.wikipedia.org/wiki/Underlying
http://en.wikipedia.org/wiki/Put_option
http://en.wikipedia.org/wiki/Call_option
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estimated by statistical analysis of price movements but it can’t be measured in a precise, foolproof 

way, and estimates may not match reality. 

In deriving the Black-Scholes equation, the model assumed that the market consists of at least one 

risky asset, usually called the stock, and one riskless asset, called the money market, cash, or bond, 

consequent on which we have the following assumptions as well: 

 The stock does not pay a dividend.  

 There is no arbitrage opportunity (i.e., there is no way to make a riskless profit). 

 It is possible to borrow and lend any amount, even fractional, of cash at the riskless rate. 

 It is possible to buy and sell any amount, even fractional; of the stock (this includes short 

selling). 

 The above transactions do not incur any fees or costs (i.e., frictionless market). 

With these assumptions holding, suppose there is a derivative security also trading in this market. 

We specify that this security will have a certain payoff at a specified date in the future, depending on 

the value(s) taken by the stock up to that date. It is a surprising fact that the derivative's price is 

completely determined at the current time, even though we do not know what path the stock price 

will take in the future. Black and Scholes showed that "it is possible to create a hedged position, 

consisting of a long position in the stock and a short position in the option, whose value will not 

depend on the price of the stock. Their dynamic hedging strategy led to a partial differential 

equation which governed the price of the option. Its solution is given by the Black–Scholes formula. 

Several of these assumptions of the original model have been removed in subsequent extensions of 

the model.  

 The outline of the paper is the following: In section 2 we derive the Black-Scholespartial 

differential equation which is parabolic. The parabolic equation is a second order partial differential 

equation in S-space and first order in time. In section, 3, we introduce the option pricing model for 

Laplace transform technics. The solution to the Fractional Black-Scholes equation is presented in 

section 4,and conclusions are given in section 5. 

2. Derivation of the Black-Scholes Equation 

 We base our derivation on replicating portfolio that ensures that no arbitrage opportunities 

are allowed. As in the discrete case, consider a portfolio⋀ = {⋀𝑡}𝑡>0, which is 𝐹𝑡 - measurable ( we 

can choose as we go, but at any point in time the choice is deterministic), ⋀𝑡  denotes the proportion 

of shares invested at time 𝑡, the rest of the money is invested in the money market account, giving 

risk-free rate of return, 𝑟, say.  In what follows, we state: 

Lemma 1(Ito’s lemma) 

 Let 𝑓(𝑥, 𝑡) be a 𝐶2 smooth function of  𝑥, 𝑡 variables. Suppose that the process {𝑥 𝑡 , 𝑡 ≥

0}satisfies the SDE: 

𝑑𝑥 = 𝜇 𝑥, 𝑡 𝑑𝑡 + 𝜎 𝑥, 𝑡 𝑑𝐵𝐻 𝑡 ,                                    (2.1) 

 thenthe first differential of  the process 𝑓 = 𝑓 𝑥 𝑡 , 𝑡  is given by  

dt
x

f
tx

t

f
dx

x

f
df 
























2

2
2 ),(

2

1
    (2.2) 

Theorem 1: 

Let a generic payoff function𝐺 𝑡 = 𝑉 𝑠, 𝑡 , the PDE associated with the price of derivative on the 

stock price is 
𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+ 𝐻𝜎2𝑆2𝑡2𝐻−1 𝜕2𝑉

𝜕𝑆2 − 𝑟𝑉 = 0   (2.3) 

Proof:  

The stock price 𝑆𝑡  follows the fractional Brownian motion process  

http://en.wikipedia.org/wiki/Dividend
http://en.wikipedia.org/wiki/Arbitrage
http://en.wikipedia.org/wiki/Short_selling
http://en.wikipedia.org/wiki/Short_selling
http://en.wikipedia.org/wiki/Short_selling
http://en.wikipedia.org/wiki/Frictionless_market
http://en.wikipedia.org/wiki/Hedge_%28finance%29
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𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝐻 𝑡  , 𝑆 0 = 𝑠,            (2.4) 

and the wealth of an investor 𝑋𝑡 , follows a diffusion driven by (with time suppressed ) 

𝑑𝑋 = ⋀𝑑𝑆 + 𝑟 𝑋 − ⋀𝑆 𝑑𝑡.       (2.5) 

Putting equation (2.4) into equation (2.5) yields; 

𝑑𝑋 =  𝑟𝑋 + ⋀𝑆 𝜇 − 𝑟  𝑑𝑡 + ⋀𝑆𝜎𝑑𝐵𝐻(𝑡)},    (2.6) 

where𝜇 − 𝑟 is the risk premium. 

Suppose that the value of this claim at time 𝑡 is given by 

𝐺 𝑡 = 𝑉 𝑆, 𝑡 , 𝑆 = 𝑆𝑡 .         (2.7) 

Applying the fractional Ito’s formula on equation 2.7, we have  

𝑑𝐺 =

 
 
 
 
 
𝜕𝑉

𝜕𝑡
+ 𝜇𝑆

𝜕𝑉

𝜕𝑆
+ 𝐻𝜎2𝑆2𝑡2𝐻−1

2

2

s

v





 
 
 
 
 

𝑑𝑡 + 𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑B𝐻 .   (2.8) 

To track 𝐺 𝑡  at all times, we have under the assumption of complete market that 

𝑋(𝑡) = 𝐺 𝑡 = 𝑉 𝑆, 𝑡 ∀𝑡 ∈  0, 𝑇 .                           (2.9) 

Thus 
𝜕𝑉

𝜕𝑡
+ 𝜇𝑠

𝜕𝑉

𝜕𝑆
+ 𝐻𝜎2𝑠2𝑡2𝐻−1 𝜕2𝑉

𝜕𝑆2 = 𝑟𝑉 + ⋀𝑡𝑆 𝜇 − 𝑟                                               (2.10) 

and 

𝜎𝑆
𝜕𝑉

𝜕𝑆
= ⋀𝑡𝑆𝜎.(2.11) 

 ⋀𝑡 =
𝜕𝑣

𝜕𝑠
 𝑠, 𝑡 .(2.12) 

While equation (2.10) with ⋀𝑡 =
𝜕𝑣

𝜕𝑠
gives 

𝜕𝑉

𝜕𝑡
+ 𝜇𝑆

𝜕𝑉

𝜕𝑆
+ 𝐻𝜎2𝑆2𝑡2𝐻−1 𝜕2𝑉

𝜕𝑆2 = 𝑟𝑉 + 𝑆𝜇
𝜕𝑉

𝜕𝑆
− 𝑆𝑟

𝜕𝑉

𝜕𝑆
(2.13) 

𝜕𝑉

𝜕𝑡
+ 𝐻𝜎2𝑆2𝑡2𝐻−1 𝜕2𝑉

𝜕𝑆2 + 𝑆𝑟
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0. (2.14) 

Thus, the famous Black-Scholes equation for valuing an option with value V is obtained.  This 

parabolic equation is a second order partial differential equation in S-space and first order in time. 

The properties of this equation and assumptions in the proof are: 

 The equation is a linear parabolic partial differential equation with non-constant coefficients. 

 The asset price follows the log-normal distribution. 

 The risk-free interest rate r and the volatility 𝜎are both known functions of time over the life of 

the option. 

 Transaction costs associated with hedging are not included. 

 There is no dividend payment (the basic model assumes no dividend payment, but a simple 

modification can be made to include some form of dividend payment). 

 It is assumed that there are no arbitrage possibilities. 

 Trading of the underlying can take place continuously. 

 Short selling is possible, which means that assets may be sold without possessing them. 

 One of the important drawbacks of this model is that the volatility is assumed to be a 

constant function. In reality this is not the case, but for many options the Black-Scholes model can 

still be successfully used. Currently there is a lot of research on more accurate modeling of asset 

price processes by inclusion of jumps or stochastic volatility in the asset price processes. 

3. Option Pricing Model For Laplace Transform. 

 For a call option with maturity date 𝑇, strike price 𝐾, and payoff function 𝐺, the value price 

𝑉 =  𝑉(𝑆, 𝑡)satisfies the following fBm, [5], 
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𝜕𝑉

𝜕𝑡
+ 𝐻𝑡2𝐻−1𝑆2𝜎2 𝜕2𝑉

𝜕𝑆2 + 𝑟𝑆
𝜕𝑣

𝜕𝑠
− 𝑟𝑉 = 0 ,     (3.1) 

 𝑆, 𝑡 ∈  0, ∞ ×  0, 𝑇 , 𝑉 𝑠, 0 = 𝑕 𝑠 , 

we set𝑆 = 𝑒𝑥 ⟹ 𝑥 = 𝑙𝑛 𝑠 , 𝑢 𝑥, 𝑡 = 𝑉 𝑒𝑥 , 𝑡  and 𝑕 𝑒𝑥 = 𝑔 𝑥 ,  to get    
𝜕𝑥

𝜕𝑠
 = 

1

𝑠
(3.2) 

𝜕𝑢

𝜕𝑠
= 
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑠
 

𝜕𝑢

𝜕𝑠
=

1

𝑠

𝜕𝑢

𝜕𝑥
   (3.3) 

𝜕2𝑢

𝜕𝑠2
=

1

𝑠

𝜕

𝜕𝑠
 
𝜕𝑢

𝜕𝑥
 +

𝜕𝑢

𝜕𝑥

𝜕

𝜕𝑠
 

1

𝑠
  

=
1

𝑠

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
 
𝜕𝑥

𝜕𝑠
+
𝜕𝑢

𝜕𝑥
 −

1

𝑠2
  

=
1

𝑠2

𝜕2𝑢

𝜕𝑥2
−

1

𝑠2

𝜕𝑢

𝜕𝑥
 

=
1

𝑠2  
𝜕2𝑢

𝜕𝑥2 −
𝜕𝑢

𝜕𝑥
 .                                            (3.4) 

Substituting (3.4) in(3.1), we have 

𝜕𝑢

𝜕𝑡
+ 𝐻𝑡2𝐻−1𝜎2  

𝜕2𝑢

𝜕𝑥2
−
𝜕𝑢

𝜕𝑥
 + 𝑟

𝜕𝑢

𝜕𝑥
− 𝑟𝑢 = 0 

𝜕𝑢

𝜕𝑡
+ 𝐻𝑡2𝐻−1𝜎2 𝜕2𝑢

𝜕𝑥2 −  𝐻𝑡2𝐻−1𝜎2 − 𝑟 
𝜕𝑢

𝜕𝑥
− 𝑟𝑢 = 0, 

this implies that  
𝜕2𝑢

𝜕𝑥2 −  1 −
𝑟

𝐻𝜎2 𝑡
1−2𝐻 

𝜕𝑢

𝜕𝑥
−

𝑟

𝐻𝜎2 𝑡
1−2𝐻𝑢 = −

s

𝐻𝜎2 𝑡
1−2𝐻.     (3.5) 

Let 𝜆 =  − 1 −
𝑟

𝐻𝜎2 𝑡
1−2𝐻 , α =  −

𝑟

𝐻𝜎2 𝑡
1−2𝐻, 𝑥 =

−𝑠

𝑟
. 

Thus, the resulting equation together with some boundary conditions gives 

 

 

𝜕2𝑢

𝜕𝑥2 + 𝜆
𝜕𝑢

𝜕𝑥
+ 𝛼𝑢 = −𝛼𝑥, 0 < 𝑥 < ∞, 𝑡 > 0

𝑢 0, 𝑡 = 0
𝑢′ 0, 𝑡 = 0

      (3.6) 

4. Laplace Transform TechnicsFor Fractional Black-Scholes Equation 

The Laplace transform of the equation (3.6) is  

 
𝜕²𝑢

𝜕𝑥²
𝑒−𝑠𝑡𝑑𝑡 +⋋ 

𝜕𝑢

𝜕𝑥
𝑒−𝑠𝑡𝑑𝑡 + 𝛼 

∞

0

∞

0

∞

0

𝑢𝑒−𝑠𝑡𝑑𝑡 = −𝛼 𝑥𝑒−𝑠𝑡𝑑𝑡

∞

0

 

⇒
𝜕²

𝜕𝑥²
 𝑢(𝑥, 𝑡

∞

0

)𝑒−𝑠𝑡𝑑𝑡 +⋋
𝜕

𝜕𝑥
 𝑢 𝑥, 𝑡 𝑒−𝑠𝑡𝑑𝑡 + 𝛼 𝑢 𝑥, 𝑡 𝑒−𝑠𝑡𝑑𝑡 =

−𝛼𝑥

𝑠

∞

0

∞

0

 

⇒
𝑑2

𝑑𝑥2 𝑢  𝑥, 𝑠 +⋋
𝑑

𝑑𝑥
𝑢  𝑥, 𝑠 + 𝛼𝑢  𝑥, 𝑠 =  

−𝛼𝑥

𝑠
. 

Transforming the boundary conditions (3.6), we have: 

𝑢 0, 𝑡 = 0 ⇒ 𝑢  0, 𝑠 = 0 

𝑢′ 0, 𝑡 = 0 ⇒ 𝑢 ′ 0, 𝑠 = 0, 

thus, the transformed problem is: 

 

𝑑2

𝑑𝑥2 𝑢  𝑥, 𝑠 +⋋
𝑑

𝑑𝑥
𝑢  𝑥, 𝑠 + 𝛼𝑢  𝑥, 𝑠 =

−𝛼𝑥

𝑠

𝑢  0, 𝑠 = 0
𝑢 ′ 0, 𝑠 = 0

      (4.1) 

The general solution of (4.1) is of the form: 
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𝑢  𝑥, 𝑠 = 𝑢 c  𝑥, 𝑠 + 𝑢 p (𝑥, 𝑠) 

where𝑢 c  𝑥, 𝑠  is the corresponding homogeneous solution and 𝑢 p  𝑥, 𝑠  is the particular solution. 

For the homogeneous equation, the auxiliary equation is: 

𝑚2 +⋋𝑚 + 𝛼 = 0 

Solving, we have: 

𝑚 =
−⋋ ± ⋋ ² − 4𝛼

2
 

There are three possibilities, 

Case I: If  ⋋2− 4𝛼 = 0, then the solution will be:  

𝑢 c  𝑥, 𝑠 = 𝐶1 𝑠 𝑒
−⋋𝑥

2 + 𝐶 2  𝑠 𝑥𝑒
−⋋𝑥

2        (4.2) 

Case II: If ⋋2− 4𝛼 > 0, then the solution will be: 

𝑢 c  𝑥, 𝑠 = 𝐶1 𝑠 𝑒
−⋋+ ⋋2−4𝛼𝑥

2 + 𝐶 2  𝑠 𝑥𝑒
−⋋− ⋋2−4𝛼𝑥

2  

𝐿𝑒𝑡𝛽 =  𝜆2 − 4𝛼 

𝑢 c  𝑥, 𝑠 =  𝐶1 𝑠 𝑒
−𝜆+𝛽𝑥

2 +𝐶 2  𝑠 𝑒
−𝜆−𝛽𝑥

2        (4.3) 

Case III: If  ⋋2− 4𝛼 < 0, then the solution will be: 

𝑢 c  𝑥, 𝑠 = 𝑒−
⋋𝑥

2  𝐶1 𝑠 𝑐𝑜𝑠
𝛽𝑥

2
+ 𝐶 2  𝑠 𝑠𝑖𝑛

𝛽𝑥

2
 .            (4.4) 

For the particular solution: the method of undetermined coefficient is used 

Assume   

 

𝑢 𝑝 𝑥, 𝑠 = 𝐴𝑥 + 𝐵

𝑢 𝑝
′  𝑥, 𝑠 = 𝐴

𝑢 𝑝
′′  𝑥, 𝑠 = 0

 (4.5) 

Substituting (4.5) in equation (4.1), we have: 

𝜆𝐴 + 𝛼(Α𝑥+𝐵) =
−𝛼x

𝑆
. 

Solving, we have: 

A = 
−1

𝑠
and  B = 

𝜆

𝛼𝑠
 

Thus,  

𝑢 p  𝑥, 𝑠 = 
−𝑥

𝑠
+

𝜆

𝛼𝑠
=
𝜆−𝛼𝑥

𝛼𝑠
. 

Hence, the general solution is 

𝑢 (𝑥,s)=𝑐1 𝑠 𝑒
−𝜆𝑥

2 + 𝑐2 𝑠 𝑥𝑒
−𝜆𝑥

2 +  
𝜆−𝛼𝑥

𝛼𝑠
      (4.6) 

OR          

𝑢 (x,s)=𝑐1 𝑠 𝑒
−𝜆+𝛽𝑥

2 + 𝑐2 𝑠 𝑒
−𝜆−𝛽𝑥

2 +  
𝜆−𝛼𝑥

𝛼𝑠
      (4.7) 

OR          

𝑢 (x,s)=𝑒
−𝜆𝑥

2  𝑐1 𝑠 𝐶𝑜𝑠
𝛽𝑥

2
+ 𝑐2 𝑠 𝑆𝑖𝑛

𝛽𝑥

2
 +

𝜆−𝛼𝑥

𝛼𝑠
                   (4.8) 

𝑇𝑜𝑜𝑏𝑡𝑎𝑖𝑛𝑡𝑕𝑒𝑣𝑎𝑙𝑢𝑒𝑠𝑜𝑓𝑐1 𝑠 𝑎𝑛𝑑𝑐2 𝑠 , we apply the boundary conditions. 

Applying the transformed boundary conditions (4.1) to (4.6), we have 

𝑢 (0,s) = 𝑐1 𝑠 +
𝜆

𝛼𝑠
= 0 

𝑢 ′(0,s) = 
−𝜆

2
𝑐1 𝑠 + 𝑐2 𝑠 −

1

𝑠
= 0. 

Solving, we have: 
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𝑐1(s) = 
−𝜆

𝛼𝑠
 

𝑐2(s) = 
2𝛼−𝜆2

2𝛼𝑠
. 

Thus, substituting in (4.6) we have:  

𝑢 (x,s) = 
−𝜆

𝛼𝑠
𝑒
−𝜆𝑥

2 +  
2𝛼−𝜆2

2𝛼𝑠
 𝑥𝑒

−𝜆𝑥

2 +
𝜆−𝛼𝑥

𝛼𝑠
 

=
−2𝜆𝑒

−
−𝜆𝑥

2 + 2𝛼−𝜆2 𝑥𝑒
−𝜆𝑥

2  +𝜆−𝛼𝑥

2𝛼𝑠
.                           (4.9) 

To find our solution, we apply the inverse Laplace transform: 

𝑢(x,t) = 𝐿−1[𝑢 (x,s)] 

𝑢(x,t) =
1

2𝜋𝑖
 𝑢  𝑥, 𝑠 𝑒𝑠𝑡𝑑𝑠
𝜎+𝑖∞

𝜎−𝑖∞
 

𝑢(𝑥, 𝑡) =  
1

2𝜋𝑖
 [

−2𝜆𝑒
−
−𝜆𝑥

2 + 2𝛼−𝜆2 𝑥𝑒
−𝜆𝑥

2  +𝜆−𝛼𝑥

2𝛼𝑠
]𝑒𝑠𝑡𝑑𝑠

𝜎+∞

𝜎−𝑖∞
. 

To evaluate this, we find the sum of residues at the poles of𝑢 (x,s)𝑒𝑠𝑡 . 

Here, the pole is at s=0. 

Recall:  Res[𝑓(𝑠),𝑠0] =lim𝑠→𝑠0

1

 𝑛−1 !

𝑑𝑛−1

𝑑𝑠𝑛−1 (𝑠 − 𝑠0)𝑛𝑓 𝑠  

 

Res (𝑎𝑡𝑠 = 0) =  lim
𝑠→0

⁡ 
𝑠 −2𝜆𝑒

−𝜆𝑥
2 + 2𝛼−𝜆2 𝑥𝑒

−𝜆𝑥
2 +𝜆−𝛼𝑥  𝑒𝑠𝑡

2𝛼𝑠
  

=  lim
𝑠→0

[
−2𝜆𝑒

−
𝜆𝑥
2 + 2𝛼−𝜆2 𝑥𝑒

−
−𝜆𝑥

2 +𝜆−𝛼𝑥

2𝛼
]𝑒𝑠𝑡  

 

=   [
−2𝜆𝑒

−
𝜆𝑥
2 + 2𝛼−𝜆2 𝑥𝑒

−
−𝜆𝑥

2 +𝜆−𝛼𝑥

2𝛼
], 

this implies that;  

u(x,t) =   [
−2𝜆𝑒

−
−𝜆𝑥

2 + 2𝛼−𝜆2 𝑥𝑒
−
−𝜆𝑥

2 +𝜆−𝛼𝑥

2𝛼
].                               (4.10) 

Similarly, applying the transformed boundary condition (4.1) to (4.7),we have: 

𝑢 (0,s) =𝑐1 𝑠 𝑒
−𝜆

2 + 𝑐2 𝑠 𝑒
−𝜆

2 +
𝜆

𝛼𝑠
= 0 

𝑢 ′(0,s) = 
𝛽

2
𝑐1 𝑠 𝑒

−𝜆

2 −
𝛽

2
𝑐2 𝑠 𝑒

−𝜆

2 −
1

𝑠
= 0. 

Solving, we have: 

𝑐1(s) = 
2𝛼−𝛽𝜆

2𝛼𝛽𝑠 𝑒
−𝜆
2

 

𝑐2(s) = 
−(2𝛼+𝛽𝜆)

2𝛼𝛽𝑠 𝑒
−𝜆
2

 , 

substituting in (4.7), we have: 

𝑢 (x,s) =
2𝛼−𝛽𝜆

2𝛼𝛽𝑠 𝑒
−𝜆
2

𝑒
−𝜆+𝛽𝑥

2 −
(2𝛼+𝛽𝜆)

2𝛼𝛽𝑠 𝑒
−𝜆
2

𝑒
−𝜆−𝛽𝑥

2 +
𝜆−𝛼𝑥

𝛼𝑠
 

u(x,t) = 𝐿−1{𝑢 (x,s)} 

=
1

2𝜋𝑖
 
𝜎+𝑖∞

𝜎−𝑖∞

(2𝛼−𝛽𝜆)𝑒
−𝜆+𝛽𝑥

2 − 2𝛼+𝛽𝜆  𝑒
−𝜆−𝛽𝑥

2 +2𝛽𝑒
−𝜆
2 (𝜆−𝛼𝑥)𝑒𝑠𝑡

2𝛼𝛽𝑠 𝑒
−𝜆
2

𝑑𝑠 

Residue at s= 0 is given by 
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lim𝑠→0

𝑠[ 2𝛼 − 𝛽𝜆 𝑒
−𝜆+𝛽𝑥

2 −  2𝛼 + 𝛽𝜆 𝑒
−𝜆−𝛽𝑥

2 + 2𝛽𝑒
−𝜆

2  𝜆 − 𝛼𝑥 ] 𝑒𝑠𝑡

2𝛼𝛽𝑠𝑒
−𝜆

2

 

= lim𝑠→0

(2𝛼 − 𝛽𝜆)𝑒
−𝜆+𝛽𝑥

2 −  [2𝛼 + 𝛽𝜆]𝑒
−𝜆−𝛽𝑥

2 + 2𝛽𝑒
−𝜆

2 (𝜆 − 𝛼𝑥) 𝑒𝑠𝑡

2𝛼𝛽𝑒
−𝜆

2

 

=
(𝟐𝛼−𝛽𝜆)𝒆

−𝝀+𝜷𝒙
𝟐 − [𝟐𝜶+𝜷𝝀]𝒆

−𝝀−𝜷𝒙
𝟐 +𝟐𝜷𝒆

−𝝀
𝟐 (𝝀−𝜶𝒙) 

𝟐𝜶𝜷𝒆
−𝝀
𝟐

. 

This implies that; 

u(x,t) = 
(𝟐𝛼−𝛽𝜆)𝒆

−𝝀+𝜷𝒙
𝟐 − [𝟐𝜶+𝜷𝝀]𝒆

−𝝀−𝜷𝒙
𝟐 +𝟐𝜷𝒆

−𝝀
𝟐 (𝝀−𝜶𝒙) 

𝟐𝜶𝜷𝒆
−𝝀
𝟐

.    (4.11) 

Also applying transformed boundary conditions (4.1) to(4.7), we have: 

𝑢 (o,s) = 𝑐1 𝑠 +
𝜆

𝛼𝑠
 = 0 

𝑢 ′ 𝑜, 𝑠 =
𝛽

2
𝑐2 𝑠 −

𝜆

2
𝑐1 𝑠 −

1

𝑠
= 0, 

solving , we have : 

𝑐1 𝑠 =  −
𝜆

𝛼𝑠
𝑎𝑛𝑑𝑐2 𝑠 =

2𝛼−𝜆2

𝛼𝛽𝑠
, 

substituting in (4.8) we have: 

𝑢  𝑥, 𝑠 = 𝑒
−𝜆𝑥

2  
−𝜆

𝛼𝑠
𝑐𝑜𝑠

𝛽𝑥

2
+  
 2𝛼 − 𝜆2 

𝛼𝛽𝑠
𝑠𝑖𝑛

𝛽𝑥

2
 +

𝜆 − 𝛼𝑥

𝛼𝑠
 

𝑢  𝑥, 𝑠 =
𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽(𝜆−𝛼𝑥)

𝛼𝛽𝑠
. 

The inversion is  

u(x, t) = 
1

2𝜋𝑖
 

𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽(𝜆−𝛼𝑥)

𝛼𝛽𝑠
𝑒𝑠𝑡

𝜎+𝑖∞

𝜎−𝑖∞
ds 

To evaluate this, we find the residue at s =0 

= lim𝑠→0

𝑠{𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽 𝜆−𝛼𝑥  }𝑒𝑠𝑡

𝛼𝛽𝑠
 

= lim𝑠→0

𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽 𝜆−𝛼𝑥  𝑒𝑠𝑡

𝛼𝛽
 

=
𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽 𝜆−𝛼𝑥  

𝛼𝛽
. 

This implies that; 

𝑢(𝑥, 𝑡) = 
𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽 𝜆−𝛼𝑥  

𝛼𝛽
.     (4.12) 

Combining (4.10), (4.11), (4.12) we have: 

𝑢 𝑥, 𝑡 =

 
 
 
 

 
 
 [

−2𝜆𝑒
−
−𝜆𝑥

2 + 2𝛼−𝜆2 𝑥𝑒
−
−𝜆𝑥

2 +𝜆−𝛼𝑥

2𝛼
] , 𝜆2 − 4𝛼 = 0

(𝟐𝛼−𝛽𝜆)𝒆
−𝝀+𝜷𝒙

𝟐 − [𝟐𝜶+𝜷𝝀]𝒆
−𝝀−𝜷𝒙

𝟐 +𝟐𝜷𝒆
−𝝀
𝟐 (𝝀−𝜶𝒙) 

𝟐𝜶𝜷𝒆
−𝝀
𝟐

, 𝜆2 − 4𝛼 > 0

𝑒
−𝜆𝑥

2  −𝜆𝛽𝑐𝑜𝑠
𝛽𝑥

2
+ 2𝛼−𝜆2 𝑠𝑖𝑛

𝛽𝑥

2
 +𝛽 𝜆−𝛼𝑥  

𝛼𝛽
 , λ2 − 4α < 0

   (4.13) 

5. Conclusion 

 In this paper we considered Laplace Transform method in obtaining the solution of a 

fractional Black-Scholes formula for the price of an option. Furthermore, we demonstrate that the 
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price of an option not only depends on time 𝑇 − 𝑡, but also on the stock price 𝑆(𝑡).The reason is 

based on the fact that the fractional Brownian motion has a long memory. Hence, the growth rate 

𝑉(𝑆, 𝑡) depends largely on how𝑆 → ∞or how𝑆 → 0. 
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