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ABSTRACT
The 22 factorial experiment using Trapezoidal Fuzzy Numbers (tfns.) is
proposed here.  And the proposed test is analysed under various types of
trapezoidal fuzzy models such as Alpha Cut Interval, Membership Function,
Ranking Function, Total Integral Value and Graded Mean Integration
Representation.  Finally a comparative view of the conclusions obtained from
various test is given.  Moreover, two numerical examples having different
conclusions have been illustrated for a concrete comparative study.
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1. INTRODUCTION
Statistical analysis in traditional form is based on crispness of data, random variables, point

estimations, hypotheses and so on.  There are many different situations in which such concepts are
imprecise.  On the other hand, the theory of fuzzy sets [30] is a well-known tool for the formulation
and the analysis of imprecise and subjective concepts.  Therefore, testing hypotheses with fuzzy data
can be important.  In traditional statistical testing [11], the observations of sample are crisp and a
statistical test leads to a binary decision.  However, in the real life, the data sometimes cannot be
recorded or collected precisely.  The statistical hypotheses testing under fuzzy environments has
been studied by many authors using the fuzzy set theory concepts introduced by Zadeh [30].  Viertl
[24] investigated some methods to construct confidence intervals and statistical tests for fuzzy data.
Wu [28] proposed some approaches to construct fuzzy confidence intervals for the unknown fuzzy
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parameter.  A new approach to the problem of testing statistical hypotheses is introduced by Chachi
et al. [8].  Mikihiko Konishi et al. [15] proposed a method of ANOVA for the fuzzy interval data by
using the concept of fuzzy sets.  Hypothesis testing of one factor ANOVA model for fuzzy data was
proposed by Wu [27, 29] using the h-level set and the notions of pessimistic degree and optimistic
degree by solving optimization problems. Gajivaradhan and Parthiban analysed one-way ANOVA test
using alpha cut interval method for trapezoidal fuzzy numbers [16] and they presented a
comparative study of 2-factor ANOVA test [17] under fuzzy environments using various methods also
they proposed a comparative study of LSD under fuzzy environments using trapezoidal fuzzy
numbers [18].

Liou and Wang ranked fuzzy numbers with total integral value [14].  Wang et al. presented
the method for centroid formulae for a generalized fuzzy number [26].  Iuliana Carmen BĂRBĂCIORU
dealt with the statistical hypotheses testing using membership function of fuzzy numbers [12].  Salim
Rezvani analysed the ranking functions with trapezoidal fuzzy numbers [21].  Wang arrived some
different approach for ranking trapezoidal fuzzy numbers [26].  Thorani et al. approached the
ranking function of a trapezoidal fuzzy number with some modifications [22].  Salim Rezvani and
Mohammad Molani presented the shape function and Graded Mean Integration Representation for
trapezoidal fuzzy numbers [20].  Liou and Wang proposed the Total Integral Value of the trapezoidal
fuzzy number with the index of optimism and pessimism [14].

In this paper, we propose a new statistical fuzzy hypothesis test for 22 factorial experiment in
which the designated samples are in terms of fuzzy (trapezoidal fuzzy numbers) data.  The main idea
in the proposed approach is, when we have some vague data about an experiment, what can be the
result when the centroid point/ranking grades of those imprecise data are employed in the
hypothesis test?  For this reason, we use the centroid point /ranking grades of trapezoidal fuzzy
numbers (tfns.) in the hypothesis testing.

Suppose the observed samples are in terms of tfns., we can evenhandedly use the centroid
point/ranking grades of tfns. for statistical hypothesis testing.  In arriving the centroid point/ranking
grades of tfns., various methods are used to test which could be the best fit.  Therefore, in the
proposed approach, the centroid point point/ranking grades of tfns. are used in 22 factorial design.
Moreover we provide the decision rules which are used to accept or reject the fuzzy null and
alternative hypotheses.  In fact, we would like to counter an argument that the alpha cut interval
method can be general enough to deal with 22 factorial experiment under fuzzy environments.  In
the decision rules of the proposed testing technique, degrees of optimism, pessimism and h-level
sets are not used but they are used in Wu [27].  For better understanding, the proposed fuzzy
hypothesis testing technique for 22 factorial experiment using tfns., two different kinds of numerical
examples are illustrated at each models.  And the same concept can also be used when we have
samples in terms of triangular fuzzy numbers [5, 27].
2. Preliminaries
Definition 2.1.

Generalized fuzzy number

A generalized fuzzy number A (a, b, c, d; w) is described as any fuzzy subset of the real

line , whose membership function   A
μ x satisfies the following conditions:

i.   A
μ x is a continuous mapping from  to the closed interval  0, ω ,  0 ω 1  ,

ii.     A
μ x  = 0, for all x - , a  ,

iii.     L A
μ x L x is strictly increasing on  a, b ,
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iv.     A
μ x ω,  for all b, c ,  as ω is a constant and 0 < ω 1  ,

v.     R A
μ x R x is strictly decreasing on  c, d ,

vi.     A
μ x 0,  for all x d,   where a, b, c, d are real numbers such that a < b c < d .

Definition 2.2. A fuzzy set A is called normal fuzzy set if there exists an element (member) ‘x’ such

that   A
μ x 1 . A fuzzy set A is called convex fuzzy set if    1 2A

μ αx + 1 - α x

      1 2A A
min μ x , μ x where  1 2x , x X and α 0, 1  .  The set     α

A
A x X μ x α   is

said to be the  - cut of a fuzzy set A .

Definition 2.3. A fuzzy subset A of the real line  with membership function   A
μ x such that

    A
μ x : 0, 1 , is called a fuzzy number if A is normal, A is fuzzy convex,   A

μ x is upper

semi-continuous and  Supp A is bounded where      A
Supp A cl x : μ x 0   and ‘cl’ is

the closure operator.

It is known that for a normalized tfn. A (a, b, c, d; 1) , there exists four numbers a, b, c, d

and two functions        A A
L x ,  R x : 0, 1 , where      A A

L x  and R x are non-decreasing

and non-increasing functions respectively.  And its membership function is defined as follows:

     A A
μ x {L x =(x-a)/(b-a) for a x b;  1 for b x c;       A

 R x =(x-d)/(c-d) for c x d 

and 0 otherwise}.  The functions   A
L x and   A

R x are also called the left and right side of the

fuzzy number A respectively [9].  In this paper, we assume that   A x dx < +




 and it is known

that the α - cut of a fuzzy number is 
     α
A

A x μ x α ,  for α 0, 1    and

 
 

0 α
α 0, 1

A = cl A


 
  
 
 , according to the definition of a fuzzy number, it is seen at once that every

α - cut of a fuzzy number is a closed interval.  Hence, for a fuzzy number A , we have
        L UA α A α ,  A α    where      L A

A α inf x :  μ x α   and

     U A
A α sup x :  μ x α   .  The left and right sides of the fuzzy number A are strictly

monotone, obviously, LA and UA are inverse functions of   A
L x and   A

R x respectively.

Another important type of fuzzy number was introduced in [6] as follows:

Let a, b, c, d such that a < b c < d . A fuzzy number A defined as     A
μ x :  0, 1 ,

  
n n

A

x - a d - xμ x for a x b; 1 for b x c;  for c x d; 0     otherwise
b - a d - c
            
   

where

n > 0, is denoted by   nA a, b, c, d .  And  
n

x - a
L x

b - a
   
 

and  
n

d - x
R x

d - c
   
 

can also be

termed as left and right spread of the tfn. [Dubois and Prade in 1981].

If   nA a, b, c, d , then[1-4],
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            n n
α L UA A α ,  A α a + b - a α,  d - d - c α ;  α 0, 1        .

When n = 1 and b = c , we get a triangular fuzzy number.  The conditions r = 1, a = b and c = d

imply the closed interval and in the case r = 1, a = b = c = d = t (some constant), we can get a crisp

number ‘t’.  Since a trapezoidal fuzzy number is completely characterized by n = 1 and four real

numbers a b c d   , it is often denoted as   A a, b, c, d .  And the family of trapezoidal fuzzy

numbers will be denoted by  TF  .  Now, for n = 1 we have a normal trapezoidal fuzzy number

  A a, b, c, d and the corresponding α - cut is defined by

      αA a + α b - a ,  d - α d - c ;  α 0, 1 (2.4)       .  And we need the following results

which can be found in [11, 13].
Result 2.1. Let D = {[a, b], ab and a, b }, the set of all closed, bounded intervals on the real line

.
Result 2.2. Let A = [a, b] and B = [c, d] in D.  Then A = B if a = c and b = d.
3. 22 Factorial Design:

A major conceptual advancement in experimental design is exemplified by factorial design.
Factorial designs are frequently used in experiments involving several factors where it is necessary to
study the joint effect of the factors on a response.  In factorial designs, an assessment of each
individual factor effect is based on the whole set of measurements so that a more efficient
utilization of experimental resources is achieved in these designs.  The most importance of these
special cases is that of ‘k’ factors, each at only two levels.  These levels may be quantitative such as
two values of temperature, time or pressure or they may be qualitative such as two machines, two
operators, the ‘high’ and ‘low’ level of a factor or perhaps the presence and absence of a factor.

But in the experimental designs either in CRD or RBD or LSD, we are primarily concerned
with the comparison and the estimation of the effects of a single set of treatments like varieties of
wheat, manure or different methods of cultivation etc.  Such experiment which deal with one factor
only, called as simple experiments.
3.1. Definition

symmetrical factorial experiment
Suppose that there are factors with s1, s2, …, sn levels respectively which may affect the

characteristic in which we are interested.  Then we have to estimate (i) the effects of each of the
factors (ii) how the effect of one factor varies over the different levels of other factors.  To study
these effects, we investigate all possible replicate of the experiment.  Thus there are s1, s2, …, sk

treatment combinations (or composite treatments) to be assigned to the different experimental
units.  Such an arrangement is called 1 2 ks s s  factorial experiment.  A factorial experiment in

which each of the ‘k’ factors is at ‘s’ levels is called a symmetrical factorial experiment and is often
known as sk factorial design.  In a symmetrical factorial experiment if each of the k-factors is at two
levels is called 2k factorial experiment. And 22 factorial experiment means a symmetrical factorial
experiment where each of the two factors is at two levels.
3.2. Definition

22 Factorial Experiment
Suppose there are 2 factors with 2 levels each which may affect the characteristic in which

we are interested.  To study their effects, we investigate the 4 possible combinations of the levels of
these factors in each complete trial or in the replicate of the experiments.  This experiment is called
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a 22 factorial experiment and can be performed in the form of CRD, RBD and LSD or in other designs
as well.
3.3. Definition

22 Factorial Design.
A factorial design with two factors, each at two levels is called a 22 – factorial design.

3.4. Definition
Yate’s Notations
The two factors are denoted by the letters A and B.  The letters ‘a’ and ‘b’ denote one of the

two levels of each of the corresponding factors and this will be called the second level.  The first
level of A and B is generally expressed by the absence of the corresponding letter in the treatment
combinations.  The four treatment combinations can be enumerated as follows:

a0b0 or (1) : Factors A and B, both at first level.
a1b0 or a : A at second level and B at first level.
a0b1 or b : A at first level and B at second level.
a1b1 or ab : A and B both at second levels.

These four treatment combinations can be compared by laying out the experiment in (i) RBD with ‘r’
replicates (say), each replicate containing 4 units or (ii) 4 4 LSD and ANOVA can be carried out
accordingly.  In the above cases, there are 3 degrees of freedom associated with treatment effects.
In factorial experiment, our main objective is to carry out separate tests for the main effects A, B and
the interaction AB, splitting the treatment S.S. with 3 degrees of freedom into three orthogonal
components, each with 1 degree of freedom and each associated with the main effects A and B or
the interaction AB.
3.5.Yate’s method of computing factorial effect totals

For the calculation of various factorial effect totals for 22 factorial experiments, the following
table provides a special computational rule for the totals of the main effects or the interactions
corresponding to the treatment combinations.

3.6. Definition
Contrast and Orthogonal Contrast

A linear combination
k

i i
i=1

c t of ‘k’ treatments means it (i=1, 2. ..., k) is called a contrast (or

a comparison) of treatment means it (i=1, 2. ..., k) if
k

i
i=1

c 0 .  In other words, contrast is a linear

combination of treatment means, such that the sum of the coefficients is zero.  Two contrasts of ‘k’

treatment means it (i=1, 2. ..., k) namely
k

i i
i=1

c t with
k

i
i=1

c 0 and
k

i i
i=1

d t with
k

i
i=1

d 0 are

Treatment
combination (1)

Total yield
from all

replicates (2)
(3) (4) Effect totals

1 [1] [1] + [a] [1]+[a]+[b]+[ab] Grand total
a [a] [b] + [ab] [ab]-[b]+[a]-[1] [A]
b [b] [a] - [1] [ab]+[b]-[a]-[1] [B]

ab [ab] [ab] - [b] [ab]-[b]-[a]+[1] [AB]
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said to be orthogonal if
k

i i
i=1

c d 0 .  In other words, the contrasts are orthogonal, if the sum of the

product of coefficients of corresponding treatment means is zero.
3.7. Definition

Sign Table
The main effects and interactions in terms of individual and composite treatment means in

case of 22 factorial experiment can be shown in the following table which contains the divisors also
where M=(1/4)([1]+[a]+[b]+[ab]) =General Mean.

Factorial
Effect

Treatment Combinations
Divisor-1 (a) (b) (ab)

M + + + + 4
A - + - + 2
B - - + + 2

AB + - - + 2

To find any effect, simply multiply the sign in the column of the table by the corresponding
treatment combination and add and then divide by the corresponding divisor.  For main effects give
a plus sign where the corresponding factor is at the second level and a minus sign whenever the
factor is at first level.  The algebraic signs of the two factor interaction are obtained by multiplying
the corresponding signs of the two levels.  It is to be noted that two similar signs will give plus sign
and the opposite signs will give a minus sign.  That is, for A: ab(+), b(-), a(+), 1(-); for B: ab(+), b(+),
a(), 1(-); for AB: ab(+), b(-), a(-), 1(+).

4. Statistical Analysis of 22 Factorial Design
Factorial experiments are conducted either in CRD or RBD or LSD and they can be analysed

in the usual manner except that in this case the treatment S.S. is split into three orthogonal
components each with 1 degree of freedom.  And the main effects of A, B and the interaction AB are
mutually orthogonal contrasts of treatment means [10, 11].  Now, using Yate’s method, we would
average the observations on the right side of the square in the above figure (1) where A is at the
high level and subtract from this the average of the observations on the left side of the square

where A is at the low level that is, A+ A-A=Y -Y (([a]+[ab])/2r) - (([b]+[1])/2r) that is,

1
A= ([a]+[ab]-[b]-[1])

2r
similarly,

1
B= ([b]+[ab]-[a]-[1]) ;

2r
1

AB= ([ab]+[1]-[a]-[b])
2r

.

Here, ContrastA = ([a]+[ab]-[b]-[1]) ; ContrastB = ([b]+[ab]-[a]-[1]) ; ContrastAB = ([ab]+[1]-[a]-[b])

and 2
ASS =[A] / 4r ; 2

BSS =[B] / 4r ; 2
ABSS =[AB] / 4r each with 1 degree of freedom where ‘r’ is

the common replication number and SS means sum of squares.

5. 22 Factorial design conducted in a CRD
Let xij = jth observation of ith treatment combination, i = 1, 2, 3, 4; j = 1, 2, …, r (say).  That is

1x [1]  ; 2x [a]  ; 3x [b]  ; 4x [ab]  where ix  = total of ith treatment combination.  Grand

total ij
i j

G = x and total number of observation n = 4r.  Then 2 2
T ijSS x (G /4r)  and

SSE=SST-(SSA+SSB+SSAB).
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The ANOVA table for 22 Factorial design conducted in CRD

6. 22Factorial experiment conducted in RBD
Let xij be the observation in jth block for ith treatment i = 1, 2, 3, 4 and j = 1, 2, …, r (say).  And

ix  = total of ith treatment combination, jx is the total of jth block.  Grand total ij
i j

G = x .

Total number of observations n = 4r where ‘r’ is the common replication number.  Then
2 2

T ijSS x (G /4r)  ; 2 2
blocks j

j

SS (1/ 4) x (G /4r)  and SSA, SSB, SSAB can be obtained as in

CRD.  Now SSE = SST – (SSBlocks + SSA + SSB + SSAB).
The ANOVA table for 22 factorial experiment in RBD with r-replicates

7. 22 Factorial experiment under fuzzy data
The fuzzy test of hypotheses of 22 factorial experiment in which the sample data are

trapezoidal fuzzy numbers is given here.  Using the relation (2.4), we transform the fuzzy 22 factorial
model to interval 22 factorial model.  Having the upper limit of the fuzzy interval, we construct upper
level crisp 22 factorial model and using the lower limit of the fuzzy interval, we construct the lower
level crisp 22 factorial model.  Thus, in this approach, two crisp 22 factorial models are designated in

Source of
Variation (S.V.)

Sum of Squares
(S.S.)

Degrees of
freedom (d.f.)

Means Sum Square
(M.S.S.)

F-Ratio

A SSA 1 A
A

SS
MSS =

d.f.
A

A
E

MSS
F =

MSS

B SSB 1 B
B

SS
MSS =

d.f.
B

B
E

MSS
F =

MSS

AB SSAB 1 AB
AB

SS
MSS =

d.f.
AB

AB
E

MSS
F =

MSS

Error SSE 4(r-1) E
E

SS
MSS =

d.f.
--

Total SST 4r-1 -- --

Source of
Variation (S.V.)

Sum of
Squares

(S.S.)

Degrees of
freedom (d.f.)

Means Sum Square
(M.S.S.)

F-Ratio

Blocks SSBlocks r-1 Blocks
Blocks

SS
MSS =

d.f.
Blocks

Blocks
E

MSS
F =

MSS

Main Effect A SSA 1 A
A

SS
MSS =

d.f.
A

A
E

MSS
F =

MSS

Main Effect B SSB 1 B
B

SS
MSS =

d.f.
B

B
E

MSS
F =

MSS

Main Effect AB SSAB 1 AB
AB

SS
MSS =

d.f.
AB

AB
E

MSS
F =

MSS

Error SSE 3(r-1) E
E

SS
MSS =

d.f.
--

Total SST 4r-1 -- --
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terms of upper and lower levels.  Finally, we analyse the lower and upper level models using crisp 22

factorial experiment technique.  For lower level model, from α-cut intervals of tfns. we have,

ij ij ij[a  + α(b - a )] where i = 1, 2, 3, 4; j = 1, 2, …, r and for upper level model, ij ij ij[d  - α(d - c )] where

i = 1, 2, 3, 4; j = 1, 2, …, r.  The required formulae of 22 factorial experiment for CRD and RBD are
given below:
7.1. 22 Factorial design in CRD using alpha cut interval method.

Let  ij ij ij ij ij ij ijx [a + α(b - a ), d - α(d - c )]; 0 α 1   , i = 1, 2, 3, 4; j = 1, 2, …, r; we split the

above interval into two parts namely lower level data and upper level data viz. 
L
ij ij ij ijx [a + α(b -a )]

and 
U
ij ij ij ijx [d - α(d - c )] .

Setting hypotheses: Let ‘k’ be the level of significance now, the null hypothesis:
   

0 1 2 iH : μ μ μ    against the alternative hypothesis:    
A 1 2 iH : μ μ μ    .

    
0 1 2 iH : μ μ μ                   against    

A 1 2 iH : μ μ μ                   .

 L U L U L U L U
0 0 1 1 2 2 i iH ,  H : μ ,  μ  μ ,  μ   = μ ,  μ                  against

L U L U L U L U
A A 1 1 2 2 i iH ,  H : μ ,  μ  μ ,  μ   μ ,  μ                 

 The following two set of hypotheses can be obtained.

(i) The null hypothesis L L L L
0 1 2 iH : μ μ μ   against the alternative hypothesis

L L L L
A 1 2 iH :μ μ μ   .

(ii) The null hypothesis U U U U
0 1 2 iH : μ μ μ   against the alternative hypothesis

U U U U
A 1 2 iH :μ μ μ    .

For lower level model (l.l.m.): Let 
L
ij ij ij ijx [a +α(b -a )] be the jth observation of ith treatment

combination i = 1, 2, 3, 4; j = 1, 2, …, r (say).  Then 
L
1* 1j 1j 1jx [1] [a +α(b -a )]  ;

 L
2* 2j 2j 2jx [a] [a +α(b -a )]  ; 

L
3* 3j 3j 3jx [b] [a +α(b -a )]  ; 

L
4* 4j 4j 4jx [ab] [a +α(b -a )]  where 

L
i*x =

total of ith treatment combination; Grand total  L
ijL

i j

G x ; total number of observations n = 4r;

 2L 2
ijT LSS  = x (G / 4r) .

For upper level model (u.l.m.): Let 
U
ij ij ij ijx [d - α(d -c )] be the jth observation of ith treatment

combination i = 1, 2, 3, 4; j = 1, 2, …, r (say).  Then 
U
1* 1j 1j 1jx [1] [d -α(d -c )]  ;

U
2* 2j 2j 2jx [a] [d -α(d -c )]  ; 

U
3* 3j 3j 3jx [b] [d -α(d -c )]  ; 

U
4* 4j 4j 4jx [ab] [d -α(d -c )]  where 

U
i*x =

total of ith treatment combination; Grand total U
ijU

i j

G x ; total number of observations n = 4r;

 2U 2
ijT USS  = x (G / 4r) .



Bull .Math.&Stat.Res

Vol.4.Issue.1.2016(Jan-Feb) 54

S.PARTHIBAN, P. GAJIVARADHAN

Decision Rules
Lower Level Model:

(i) If L
A tF F at ‘k’ level of significance with (1, 4(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

(ii) If L
B tF F at ‘k’ level of significance with (1, 4(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

(iii) If L
AB tF F at ‘k’ level of significance with (1, 4(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

Upper Level Model:

(i) If U
A tF F at ‘k’ level of significance with (1, 4(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

(ii) If U
B tF F at ‘k’ level of significance with (1, 4(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

(iii) If U
AB tF F at ‘k’ level of significance with (1, 4(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

8. 22 Factorial experiment in RBD using alpha cut interval method.

Let  ij ij ij ij ij ij ijx [a + α(b - a ), d - α(d - c )]; 0 α 1   , i = 1, 2, 3, 4; j = 1, 2, …, r; we split the

above interval into two parts namely lower level data and upper level data viz. 
L
ij ij ij ijx [a + α(b -a )]

and 
U
ij ij ij ijx [d - α(d - c )] .

For lower level model (l.l.m.): Here, 
L
i* i* i* i*x [a +α(b -a )] = total of ith treat combination;

 L
*j *j *j *jx [a +α(b -a )] = total of jth block; i = 1, 2, 3, 4; j = 1, 2, …, r; Grand total  L

ijL
i j

G x ; total

no. of observations n = 4r ;  2L 2
ijT LSS  = x (G / 4r) ;  2L 2

Blocks j L
j

SS =(1/4) x (G / 4r); 

 2L 2
Treat. i L

j

SS =(1/4) x (G / 4r)  ; SSA, SSB and SSAB can be obtained as in CRD.  And SSE = SST -

(SSBlocks + SSA + SSB + SSAB).
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For upper level model (u.l.m.): Here, 
U
i* i* i* i*x [d -α(d -c )] = total of ith treat combination;

U
*j *j *j *jx [d -α(d -c )] = total of jth block; i = 1, 2, 3, 4; j = 1, 2, …, r; Grand total U

ijU
i j

G x ; total

no. of observations n = 4r ;  2U 2
ijT USS  = x (G / 4r) ;  2U 2

Blocks j U
j

SS =(1/4) x (G / 4r)  ;

 2U 2
Treat. i U

j

SS =(1/4) x (G / 4r)  ; SSA, SSB and SSAB can be obtained as in CRD.  And SSE = SST -

(SSBlocks + SSA + SSB + SSAB).
Decision Rules
Lower Level Model:

(i) If L
Blocks tF F at ‘k’ level of significance with ((r-1), 3(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

(ii) If L
Treat. tF F at ‘k’ level of significance with ((r-1), 3(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

(iii) If L
A tF F at ‘k’ level of significance with (1, 3(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

(iv) If L
B tF F at ‘k’ level of significance with (1, 3(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

(v) If L
AB tF F at ‘k’ level of significance with (1, 3(r-1)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

L
AH is accepted.

Upper Level Model:

(i) If U
Blocks tF F at ‘k’ level of significance with ((r-1), 3(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

(ii) If U
Treat. tF F at ‘k’ level of significance with ((r-1), 3(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

(iii) If U
A tF F at ‘k’ level of significance with (1, 3(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.
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(iv) If U
B tF F at ‘k’ level of significance with (1, 3(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

(v) If U
AB tF F at ‘k’ level of significance with (1, 3(r-1)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis

U
AH is accepted.

Conclusion table:

Partial acceptance of null hypothesis H0 at the intersection of certain level of  at both upper level

and lower level models can be taken into account for the acceptance of the null hypothesis  0H .

Example-1
The following table gives the plan and yield of a 22-factorial experiment conducted in CRD.  The
observed data are unavoidably trapezoidal fuzzy numbers due to some work fluctuations.

We now analyse the 22-factorial design for the above tfns.

Null hypothesis  0H : The difference between the main effect A and B is not significant.

Example-2
An experiment was planned to study the effect of sulphates of potash and super phosphate on the
yield of potatoes.  All the combinations of 2 levels of super phosphate [0 cent (b0) and 5 cent (b1) per
acre] and two levels of sulphate of potash [0 cent (a0) and 5 cent (a1) per acre] were studied in a
randomized block design with 4 replications for each.  But unexpectedly the observed data are in
terms of trapezoidal fuzzy numbers due to some work congestion and they are tabulated below (lb:
per plot = 1/70 acre).

Acceptance of null hypotheses  0H
Lower Level Model Upper Level Model Conclusion

If H0 is accepted for all 
α [0,1]

and H0 is accepted for all 
α [0,1]

then  0H is accepted for all 
α [0,1]

If H0 is accepted for all 
α [0,1]

and H0 is rejected for all 
α [0,1]

then  0H is rejected for all 
α [0,1]

If H0 is rejected for all 
α [0,1]

and H0 is accepted for all 
α [0,1]

then  0H is rejected for all 
α [0,1]

If H0 is rejected for all 
α [0,1]

and H0 is rejected for all 
α [0,1]

then  0H is rejected for all 
α [0,1]

(1) (17,  19, 20, 23) a (24,  25, 26, 28)
 a (20,  23, 24, 25)

 b (7,  10, 11, 13)
ab (20,  23, 24, 26)

b (7,  8, 11, 13)
ab (20,  22, 25, 27) (1) (14,  16, 17, 20)

a (20,  21, 24, 26)
 b (12,  14, 15, 17)

ab (17,  19, 21, 22) (1) (15,  18, 19, 21)



Bull .Math.&Stat.Res

Vol.4.Issue.1.2016(Jan-Feb) 57

S.PARTHIBAN, P. GAJIVARADHAN

We now analyse the observed data for conclusion.

Null hypothesis  0H : The data is homogeneous with respect to the blocks and treatments.

22-Factorial design using alpha cut interval method
Example 8.1. Let us consider example-1, the interval form of given tfns. using α-cut method is given
below:

L
0H , U

0H : The difference between the main effect A and B is not significant.

The upper and lower level data [16, 17] can be tabulatedseparately as per the description in
section-7. Here we have noted only calculated results by omitting repeated tables and surplus
explanations.

For lower level model (l.l.m.) : 2
ASS =(α -98α+2401)/12 ; 2

BSS =(α -54α+729)/12 ;
2

ABSS =(9α +78α+169)/12 ; 2
TSS =(83α -122α+3755)/12 ; 2

ESS =(6α -4α+38) ; Main effect A :
L 2 2
AF 2(α -98α+2401) / 3(6α -4α+38),  0 α 1   . Here t(1%)F (1,8) 11.26 and L

A t(1%)F F α, 

0 α 1  . Main effect B : L 2 2
BF 2(α -98α+2401) / 3(6α -4α+38),  0 α 1   . Here

t(1%)F (1,8) 11.26 and L
B t(1%)F F α,  0 α 1  . Main effect AB :

L 2 2
ABF 2(9α +78α+169) / 3(6α -4α+38),  0 α 1   . Here t(1%)F (1,8) 11.26 and L

AB t(1%)F < F α,

0 α 1  .

For upper level model (u.l.m.) : 2
ASS =(16α +376α+2209)/12 ; 2

BSS =(4α -100α+625)/12 ;
2

ABSS =(4α -68α+289)/12 ; 2
TSS =(16α +32α+1177)/4 ; 2

ESS =(6α -28α+102)/3 ; Main effect A:
U 2 2
AF 2(16α +376α+2209) / 6α -28α+102,  0 α 1   . Here t(1%)F (1,8) 11.26 and U

A t(1%)F F α, 

0 α 1  . Main effect B : U 2 2
BF 2(4α -100α+625) / 6α -28α+102,  0 α 1   . Here

t(1%)F (1,8) 11.26 and U
B t(1%)F F α,  0 α 1  . Main effect AB :

U 2 2
ABF 2(4α -68α+289) / 6α -28α+102,  0 α 1   . Here t(1%)F (1,8) 11.26 and U

AB t(1%)F < F α,

0 α 1  .
Conclusion 8.1. : From the decision obtained from both l.l.m. and u.l.m., the calculated value of F >
tabulated value of F for the main effects A and B. Hence, we conclude that the main effects A and B
both are significantly different at 1% level of significant α, 0 α 1   .

(1) (20,  23, 25, 26) a (24,  25, 27, 29)
 b (20,  22, 24, 25)

ab (34,  37, 38, 40)
b (37,  40, 42, 44) (1) (22,  23, 25, 27) a (30,  33, 34, 36)

 ab (36,  38, 41, 42)
(1) (26,  29, 30, 32) a (19,  20, 22, 24)

 ab (28,  30, 33, 34)
b (19,  20, 21, 24)

ab (33,  34, 36, 39) a (29,  31, 33, 35)
 b (21,  24, 25, 26) (1) (25,  28, 30, 32)

(1) (17+2α, 23-3α) a (24+α, 28-2α) a (20+3α, 25-α) b (7+3α, 13-2α)
ab (20+3α, 26-2α)

b (7+α, 13-2α) ab (20+2α, 27-2α) (1) (14+2α, 20-3α)
a (20+α, 26-2α) b (12+2α, 17-2α) ab (17+2α, 22-α) (1) (15+3α, 21-2α)



Bull .Math.&Stat.Res

Vol.4.Issue.1.2016(Jan-Feb) 58

S.PARTHIBAN, P. GAJIVARADHAN

Example 8.2. Let us consider example-2, the interval form of given tfns. using α-cut method is given
below:

L
0H , U

0H : The data is homogeneous with respect to the blocks and treatments.

For lower level model (l.l.m.) : 2
TSS =(188α +740α+9215)/16 ; 2

BlocksSS =(12α +220α+2499)/16 ;
2

Treat.SS =(20α -244α+3563)/16 ; 2
ASS =(16α -344α+1849)/16 ; 2

BSS =33 /16 ;
2

ABSS =(4α +100α+625)/16 ; 2
ESS =(156α +764α+3153)/16 .

Between Blocks : L 2 2
BlocksF 3(12α +220α+2499) /156α +764α+3153; 0 α 1   . Here,

t(5%)F (3,9) 3.86 and L
Blocks t(5%)F < F α, 0 α 1  .

Between Treatments : L 2 2
Treat.F 3(20α -244α+3563) /156α +764α+3153;  0 α 1  . Here,

t(5%)F (3,9) 3.86 and L
Treat. t(5%)F < F α, 0 α 1. 

Main effect  A : L 2 2
AF 9(16α -344α+1849) /156α +764α+3153,  0 α 1   Here t(5%)F (1,9) 5.12

and L
A t(5%)F < F α, 0 α 1  .

Main effect B : L 2
BF 9801/156α +764α+3153,  0 α 1   . Here t(5%)F (1,9) 5.12 and

L
B t(5%)F < F α, 0 α 1  .

Interaction effect AB : L 2 2
ABF 9(4α +100α+625) /156α +764α+3153, 0 α 1  . Here,

t(5%)F (1,9) 5.12 and L
AB t(5%)F < F α, 0 α 1  .

For upper level model (u.l.m.) : 2
TSS =(103α -210α+10695)/16 ; 2

BlocksSS =(11α +22α+2859)/16 ;
2

Treat.SS =(3α +38α+3779)/16 ; 2
ASS =(α -86α+1849)/16 ; 2

BSS =(α +66α+1089) /16 ;
2

ABSS =(α +58α+841)/16 ; 2
ESS =(89α -270α+4057)/16 .

Between Blocks : U 2 2
BlocksF 3(11α +22α+2859) / 89α -270α+4057; 0 α 1   . Here,

t(5%)F (3,9) 3.86 and U
Blocks t(5%)F < F α, 0 α 1  .

Between Treatments : U 2 2
Treat.F 9(3α +38α+3779) / 89α -270α+4057;  0 α 1  . Here,

t(5%)F (3,9) 3.86 and U
Treat. t(5%)F > F α, 0 α 1  .

Main effect A : U 2 2
AF 9(α -86α+1849) / 89α -270α+4057,  0 α 1   . Here t(5%)F (1,9) 5.12 and

U
A t(5%)F < F α, 0 α 1  .

Main effect B : U 2 2
BF 9(α +66α+1089) / 89α -270α+4057,  0 α 1   . Here t(5%)F (1,9) 5.12 and

U
B t(5%)F < F α, 0 α 1  .

Interaction effect AB : U 2 2
ABF 9(α +58α+841) / 89α -270α+4057, 0 α 1  . Here,

t(5%)F (1,9) 5.12 and U
AB t(5%)F < F α, 0 α 1  .

(1) (20+3α, 26-α) a (24+α, 29-2α) b (20+2α, 25-α) ab (34+3α, 40-2α)
b (37+3α, 44-2α) (1) (22+α, 27-2α) a (30+3α, 36-2α) ab (36+2α, 42-α)
(1) (26+3α, 32-2α) a (19+α, 24-2α) ab (28+2α, 34-α)

b (19+α, 24-3α)
ab (33+α, 39-3α) a (29+2α, 35-2α) b (21+3α, 26-α) (1) (25+3α, 32-2α)
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Conclusion 8.2. : Here Blocks t(5%)F F α  at both l.l.m. and u.l.m.  The blocks do not differ

significantly.  Also A tF < F for the partial level of α [0.1,  1] at both l.l.m. and u.l.m.  The main

effect A does not differ significantly at 0.1 α 1  .  And B t AB tF < F ,  F < F , α  The effect B and

the interaction effect AB do not differ significantly.  Moreover, Treat. tF F , α  at l.l.m. on the other

hand Treat. tF > F , α at u.l.m.  The null hypothesis  0H is rejected in this case.  Therefore, the

treatment differs significantly for all α .
Now, we provide here another new technique in 22-factorial design for a comparative study

when the test is performed under fuzzy environments.  More generally, the CRD, RBD and LSD are
independent of origin which implies that the arithmetic operations such as
addition/subtraction/multiplication or division by non-zero quantity can be performed among the
observed data uniformly for all entries in order to simplify the large numerical calculations while the
observed data are numerically large.  This indicates that ANOVA test stands on the magnitude ratio
among each data of the sample observations.  Another idea in this paper is, when the test is
conducted using natural and vague observations such as fuzzy numbers for instance, we may use
ranking grades for all observed fuzzy numbers by using unique method without damaging the
magnitude ratios among the fuzzy samples.  In fact, the ranking grades of all fuzzy numbers using
fuzzy analytic method are crisp in nature and we perform the hypotheses test as usual and better
decisions can be obtained.

9. Wang’s centroid point and ranking method
Wang et al. [26] found that the centroid formulae proposed by Cheng are incorrect and have

led to some misapplications such as by Chu and Tsao.  They presented the correct method for

centroid formulae for a generalized fuzzy number   A= a, b, c, d; w as

           
0 0

1 dc - ab w c - b
x , y a + b + c + d , 1 (9.1)

3 d + c - a + b 3 d + c - a + b

                                    

And the ranking function associated with A is   2 2
0 0R A x  + y (9.2) 

For a normalized tfn, we put w = 1 in equations (9.1) so we have,

           
0 0

1 dc - ab 1 c - b
x , y a + b + c + d , 1 (9.3)

3 d + c - a + b 3 d + c - a + b

                                    

And the ranking function associated with A is   2 2
0 0R A x  + y (9.4)  .

Let  
i jA  and A be two fuzzy numbers,      

i j i j(i) R A R A  then A A     i j(ii) R A R A

 
i jthen A A and      

i j i j(iii) R A =R A  then A A .

Example 9.1. Let we consider example 1, using the above relations (9.3) and (9.4), we obtain the
ranks of tfns. which are tabulated below:

(1)19.8132 a 25.8031
 a 22.8922

 b10.1976
ab 23.1936

b 9.7879
ab 23.5040 (1)16.8138

a 22.7821
 b14.5052

ab19.7189 (1)18.1945
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The ANOVA table values using Wang’s rank of tfns. :

ASS =196.682 ; BSS =53.7282 ; ABSS =19.4308 ; TSS =302.71; ESS =32.8691; Main effect A:

AF 47.8708 and t(1%)F (1,8) 11.26 , here A t(1%)F F . Main effect B: BF 13.0770 and

t(1%)F (1,8) 11.26 , here B t(1%)F F . Interaction effect AB: ABF 4.7293 and t(1%)F (1,8) 11.26 ,

here AB t(1%)F < F .

Conclusion 9.1. :Here, the calculated value of F > tabulated value of F for the main effects A and B.
Hence, we conclude that the main effects A and B both are significantly different at 1% level of
significant.
Example 9.2. Let we consider example 2, using the above relations (9.3) and (9.4), we obtain the
ranks of tfns. which are tabulated below:

The ANOVA table values using Wang’s rank of tfns. :

ASS =110.054 ; BSS =69.2016 ; ABSS =47.7218 ; TSS =629.29 ; BlocksSS =170.31;

Treat.SS =226.98; ESS =232 .  Between Blocks : BlocksF 2.2023 and t(5%)F (3,9) 3.86 here,

Blocks t(5%)F F . Between Treatments : Treat.F 2.9351 and t(5%)F (3,9) 3.86 here, Treaat. t(5%)F F .

Main effect A : AF 4.2693 ; and t(5%)F (1,9) 5.12 here, A t(5%)F < F . Main effect B : BF 2.6845

and t(5%)F (1,9) 5.12 here, B t(5%)F < F . Interaction effect AB : ABF 1.8513 and t(5%)F (1,9) 5.12

here, AB t(5%)F < F .

Conclusion 9.2. : In each of the cases, the computed value of F is less than the tabulated value of F at
5% level of significance.  Therefore, there are no significant main or interaction effects present in the
experiment.  The blocks as well as treatments do not differ significantly.  Since the blocks do not
differ significantly, we conclude that there is no special contribution from fluctuations in soil fertility
and thus the division of the whole experimental area into blocks does not result in any gain in
accuracy.
10. Rezvani’s ranking function of tfns.

The centroid of a trapezoid is considered as the balancing point of the trapezoid.  Divide the
trapezoid into three plane figures.  These three plane figures are a triangle (APB), a rectangle (BPQC)
and a triangle (CQD) respectively.  Let the centroids of the three plane figures be 1 2 3G , G  and G

respectively.  The incenter of these centroids 1 2 3G , G  and G is taken as the point of reference to

define the ranking of generalized trapezoidal fuzzy numbers. The reason for selecting this point as a
point of reference is that each centroid point are balancing points of each individual plane figure
and the incenter of these centroid points is much more balancing point for a generalized trapezoidal
fuzzy number. Therefore, this point would be a better reference point than the centroid point of the
trapezoid.

(1) 23.4204 a 26.2892
 b 22.7183

ab 37.1924
b 40.7057 (1) 24.2895 a 33.1927

 ab 39.2247
(1) 29.1930 a 21.2900

 ab 31.2254
b 21.1147

ab 35.5858 a 32.0027
 b 23.8921 (1) 28.7066
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Consider a generalized trapezoidal fuzzy number   A= a, b, c, d; w .  The centroids of the three

plane figures are:

1 2 3

a+2b w b+c w 2c+d w
G , ,  G ,  and G , (10.1)

3 3 2 2 3 3
               
     

Equation of the line 1 3G G is
w

y =
3

and 2G does not lie on the line 1 3G G .  Therefore,

1 2 3G , G  and G are non-collinear and they form a triangle.  We define the incenter  0 0I x , y of the

triangle with vertices 1 2 3G , G  and G of the generalized fuzzy number   A= a, b, c, d; w as [21]

  0 0A

a+2b b+c 2c+d w w wα β γ α β γ
3 2 3 3 2 3

I x , y ,  (10.2)
α + β + γ α + β + γ

                                          
 
  

     2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w
where α ,β ,γ

6 3 6

 
  

And ranking function of the trapezoidal fuzzy number   A= a, b, c, d; w which maps the set of all

fuzzy numbers to a set of all real numbers i.e. R: A      is defined as

  2 2
0 0R A x  + y (10.3)    which is the Euclidean distance from the incenter of the centroids.

For a normalized tfn, we put w = 1 in equations (1), (2) and (3) so we have,

1 2 3

a+2b 1 b+c 1 2c+d 1
G , ,  G ,  and G , (10.4)

3 3 2 2 3 3
               
     

  0 0A

a+2b b+c 2c+d 1 1 1α β γ α β γ
3 2 3 3 2 3

I x , y ,  (10.5)
α + β + γ α + β + γ

                                          
 
  

     2 2 2
c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1

where α ,β  and γ
6 3 6

 
  

And ranking function of the trapezoidal fuzzy number   A= a, b, c, d; 1 is defined as

  2 2
0 0R A x  + y (10.6)    .
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22-Factorial experiment using Rezvani’s ranking function
We now analyse the 22-factorial experiment by assigning rank for each normalized trapezoidal fuzzy
numbers and based on the ranking grades, the decisions are observed.
Example 10.1. Let we consider example 1, using the above relations (10.4), (10.5) and (10.6), we
obtain the ranks of tfns. which are tabulated below:

The ANOVA table values using Rezvani’s rank of tfns. :

ASS =204.032 ; BSS =49.9959 ; ABSS =20.0015 ; TSS =305.514 ; ESS =31.4849 ; Main effect A :

AF 51.8427 and t(1%)F (1,8) 11.26 , here A t(1%)F F . Main effect B : BF 12.7035 and

t(1%)F (1,8) 11.26 , here B t(1%)F F . Interaction effect AB : ABF 5.0822 and t(1%)F (1,8) 11.26 ,

here AB t(1%)F < F .

Conclusion 10.1. :Here, the calculated value of F > tabulated value of F for the main effects A and B.
Hence, we conclude that the main effects A and B both are significantly different at 1% level of
significant.
Example 10.2. Let we consider example 2, using the above relations (10.4), (10.5) and (10.6), we
obtain the ranks of tfns. which are tabulated below:

The ANOVA table values using Rezvani’s rank of tfns. :

ASS =102.517 ; BSS =70.1276 ; ABSS =50.7439 ; TSS =646.03 ; BlocksSS =175.61;

Treat.SS =223.39; ESS =247.03 . Between Blocks : BlocksF 2.1327 and t(5%)F (3,9) 3.86 here,

Blocks t(5%)F F . Between Treatments : Treat.F 2.7129 and t(5%)F (3,9) 3.86 here, Treaat. t(5%)F F .

Main effect A : AF 3.7350 ; and t(5%)F (1,9) 5.12 here, A t(5%)F < F . Main effect B : BF 2.5549

and t(5%)F (1,9) 5.12 here, B t(5%)F < F .Interaction effect AB : ABF 1.8487 and t(5%)F (1,9) 5.12

here, AB t(5%)F < F .

Conclusion 10.2. : In each of the cases, the computed value of F is less than the tabulated value of F
at 5% level of significance.  Therefore, there are no significant main or interaction effects present in
the experiment.  The blocks as well as treatments do not differ significantly.  Since the blocks do not
differ significantly, we conclude that there is no special contribution from fluctuations in soil fertility
and thus the division of the whole experimental area into blocks does not result in any gain in
accuracy.

(1)19.5058 a 25.5057
 a 23.5

 b10.5069
ab 23.5024

b 9.5097
ab 23.5037 (1)16.5066

a 22.5044
 b14.506

ab 20.0033 (1)18.5034

(1) 24.0019 a 26.0044
 b 23.0027

ab 37.501
b 41.0014 (1) 24.0046 a 33.5013

 ab 39.5016
(1) 29.5016 a 21.0052

 ab 31.5022
b 20.5079

ab 35.0042 a 32.0027
 b 24.4999 (1) 29.0023
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11. Graded mean integration representation (GMIR)

Let   A= a, b, c, d; w be a generalized trapezoidal fuzzy number, then the GMIR [20] of A

is defined by      -1 -1w w

0 0

L h R h
P A h dh /  hdh

2

 
  

 
  .

Theorem 11.1. Let   A= a, b, c, d; 1 be a tfn. with normal shape function, where a, b, c, d are real

numbers such that a < b c < d .  Then the graded mean integration representation (GMIR) of A is

     a + d n
P A b - a - d + c

2 2n + 1
  .

Proof : For a trapezoidal fuzzy number   nA= a, b, c, d; 1 , we have  
n

x - a
L x

b - a
   
 

and

 
n

d - x
R x

d - c
   
 

Then,

   
n

1-1 n
x - a

h = L h a + b - a h
b - a
    
 

;    
n

1-1 n
d - x

h = R h d - d - c h
d - c
    
 

       
     

1 1
1 1

n n

0 0

1
P A h a + b - a h d - d - c h dh / hdh

2

a + d1 n 1             = b - a - d + c / 22 2 2n + 1

       
  

     

  

     a + d n
Thus, P A b - a - d + c

2 2n + 1
  Hence the proof.

Result 11.1. If n =1 in the above theorem, we have   a + 2b + 2c + d
P A

6


22-Factorial experiment using GMIR of tfns.
Example 11.1. Let we consider example 1, using the result-11.1 from above theorem-11.1, we get
the GMIR of each tfns. which are tabulated below:

The ANOVA table values using GMIR of tfns. :

ASS =200.083 ; BSS =52.0842 ; ABSS =19.5923 ; TSS =303.741; ESS =31.9818 ; Main effect A :

AF 50.0495 and t(1%)F (1,8) 11.26 , here A t(1%)F F . Main effect B : BF 13.0285 and

t(1%)F (1,8) 11.26 , here B t(1%)F F . Interaction effect AB : ABF 4.9009 and t(1%)F (1,8) 11.26 ,

here AB t(1%)F < F .

Conclusion 11.1. : Here, the calculated value of F > tabulated value of F for the main effects A and B.
Hence, we conclude that the main effects A and B both are significantly different at 1% level of
significant.

(1)19.6667 a 25.6667
 a 23.1667

 b10.3333
ab 23.3333

b 9.6667
ab 23.5 (1)16.6667

a 22.6667
 b14.5

ab19.8333 (1)18.3333
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Example 11.2. Let we consider example 2, using the result-11.1 from above theorem-11.1, we get
the GMIR of each tfns. which are tabulated below:

The ANOVA table values using GMIR of tfns. :

ASS =106.778 ; BSS =69.4435 ; ABSS =48.9997 ; TSS =636.22 ; BlocksSS =172.72 ;

Treat.SS =225.22; ESS =238.28 . Between Blocks : BlocksF 2.1746 and t(5%)F (3,9) 3.86 here,

Blocks t(5%)F F . Between Treatments : Treat.F 2.8356 and t(5%)F (3,9) 3.86 here, Treaat. t(5%)F F .

Main effect A : AF 4.0331 ; and t(5%)F (1,9) 5.12 here, A t(5%)F < F . Main effect B : BF 2.6229

and t(5%)F (1,9) 5.12 here, B t(5%)F < F .Interaction effect AB : ABF 1.8507 and t(5%)F (1,9) 5.12

here, AB t(5%)F < F .

Conclusion 11.2. : In each of the cases, the computed value of F is less than the tabulated value of F
at 5% level of significance.  Therefore, there are no significant main or interaction effects present in
the experiment.  The blocks as well as treatments do not differ significantly.  Since the blocks do not
differ significantly, we conclude that there is no special contribution from fluctuations in soil fertility
and thus the division of the whole experimental area into blocks does not result in any gain in
accuracy.
12. 22-Factorial experiment using total integral value (TIV) of tfns.

The TIV for a normalized tfn.   A a, b, c, d; 1 is calculated by the relation [12]


 

b c d

A
a b cSupp A

x - a x - dμ xdx = dx + dx + dx (12.1)
b - a c - d
         
      

Example 12.1. Let us consider example 1, the TIV for the first member is calculated as follows


 

 
i

i

19 20 23

A
17 19 20Supp A

x - 17 x - 23μ x dx = dx + dx + dx =3.5 I
2 3

             

Similarly we can calculate the TIV of all other entries using 
 

 
i

i

A
Supp A

μ x dx = I for the given tfns.

which has been tabulated below.

The ANOVA table values using TIV of tfns. :

ASS =0.02083 ; BSS =0.52083 ; ABSS =0.1875 ; TSS =5.5625 ; ESS =4.83334 ; Main effect A :

AF 0.0345 and t(1%)F (1,8) 11.26 , here A t(1%)F < F . Main effect B : BF 0.8621 and

(1) 23.6667 a 26.1667
 b 22.8333

ab 37.3333
b 40.8333 (1) 24.1667 a 33.3333

 ab 39.3333
(1) 29.3333 a 21.1667

 ab 31.3333
b 20.8333

ab 35.3333 a 32
 b 24.1667 (1) 28.8333

(1) 3.5 a 2.5
 a 3

 b 3.5
ab 3.5

b 4.5
ab 5 (1) 3.5

a 4.5
 b 3

ab 3.5 (1) 3.5
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t(1%)F (1,8) 11.26 , here B t(1%)F F . Interaction effect AB : ABF 0.3103 and t(1%)F (1,8) 11.26 ,

here AB t(1%)F < F .

Conclusion 12.1. :Here, the calculated value of F < tabulated value of F for the main effects A and B.
Hence, we conclude that the main effects A and B both are homogeneous at 1% level of
significant.
Example 12.2. Let we consider example 2, using the relation (12.1) the TIV of tfns. are tabulated
below:

The ANOVA table values using TIV of tfns. :

ASS =0.14063 ; BSS =0.01563 ; ABSS =0.76563 ; TSS =3.9844 ; BlocksSS =0.4219 ;

Treat.SS =0.9219; ESS =2.6406 . Between Blocks : BlocksF 0.4792 and t(5%)F (3,9) 3.86 here,

Blocks t(5%)F F . Between Treatments : Treat.F 1.0474 and t(5%)F (3,9) 3.86 here, Treaat. t(5%)F F .

Main effect A : AF 0.4793 ; and t(5%)F (1,9) 5.12 here, A t(5%)F < F . Main effect B : BF 0.0533

and t(5%)F (1,9) 5.12 here, B t(5%)F < F .Interaction effect AB : ABF 2.6095 and t(5%)F (1,9) 5.12

here, AB t(5%)F < F .

Conclusion 12.2. : In each of the cases, the computed value of F is less than the tabulated value of F
at 5% level of significance.  Therefore, there are no significant main or interaction effects present in
the experiment.  The blocks as well as treatments do not differ significantly.  Since the blocks do not
differ significantly, we conclude that there is no special contribution from fluctuations in soil fertility
and thus the division of the whole experimental area into blocks does not result in any gain in
accuracy.

13. Liou and Wang’s centroid point method
Liou and Wang [14] ranked fuzzy numbers with total integral value.  For a fuzzy number

defined by definition (2.3), the total integral value is defined as
       α

T R LI A αI A 1 - α I A (13.1)    

    
 

    
 

d b

R LA A
c aSupp A Supp A

x-d x-a
I A R x dx= dx---(13.2)  & I A L x dx= dx ---(13.3)

c-d b-a
       
      

are the right and left integral values of A respectively and 0 α 1  .

(i)  α 0,1 is the index of optimism which represents the degree of optimism of a decision maker.

(ii) If α 0 , then the total value of integral represents a pessimistic decision maker’s view point
which is equal to left integral value.  (iii) If α 1 , then the total integral value represents an
optimistic decision maker’s view point and is equal to the right integral value. (iv)If α 0.5 then
the total integral value represents a moderate decision maker’s view point and is equal to the mean
of right and left integral values.  For a decision maker, the larger the value of α is, the higher is the
degree of optimism.

(1) 4 a 3.5
 b 3.5

ab 3.5
b 4.5 (1) 3.5 a 3.5

 ab 4.5
(1) 3.5 a 3.5

 ab 4.5
b 3

ab 4 a 4
 b 3 (1) 4.5
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22-Factorial experiment using Liou and Wang’s centroid point method:
Example 13.1. Let us consider example 1, using the above equations (13.1), (13.2) and (13.3), we get
the centroid point of first member as follows:

   
19 23

L R

17 20

x-17 x - 23
I A dx 1;    I A dx 1.5

2 3
               α

TTherefore I A (1+0.5α) .

Similarly we can find the centroid point for all other members and the calculated values are
tabulated below:

The ANOVA table values using Liou and Wang’s centroid point of tfns. :
2

ASS =(2.25α +1.5α+0.25)/12 ; 2
BSS =(2.25α -1.5α+0.25)/12 ; 2

ABSS =(0.25α -1.5α+2.25)/12 ;
2

TSS =(155α -190α+83)/48 ; 2
ESS =(17α -23α+9)/6 ; Main effect A :

2 2
AF (9α +6α+1)/(17α -23α+9) and t(1%)F (1,8) 11.26 , here A t(1%)F < F . Main effect B :

2 2
BF (9α -6α+1)/(17α -23α+9) and t(1%)F (1,8) 11.26 , here B t(1%)F F . Interaction effect AB :

2 2
ABF (α -6α+9)/(17α -23α+9) and t(1%)F (1,8) 11.26 , here AB t(1%)F < F α, 0 α 1   .

Conclusion 13.1. : Here, the calculated value of F < tabulated value of F for the main effects A and B.
Hence, we conclude that the main effects A and B both are homogeneous at 1% level of
significant.
Example 13.2. Let us consider example 2, using the above equations (13.1), (13.2) and (13.3), we get
the centroid points of tfns. as follows:

The ANOVA table values using Liou and Wang’s centroid point of tfns. :
2

ASS =(25α -30α+9)/64 ; 2
BSS =α /64 ; 2

ABSS =(9α -12α+4)/64 ; 2
TSS =(407α -492α+188)/64 ;

2
BlocksSS =(35α -36α+12)/64 ; 2

Treat.SS =(35α -52α+20)/64 ; 2
ESS =(346α -426α+167)/64 .

Between Blocks : 2 2
BlocksF 3(35α -36α+12)/346α -426α+167 and t(5%)F (3,9) 3.86 here,

Blocks t(5%)F F . Between Treatments : 2 2
Treat.F 3(35α -52α+20)/346α -426α+167 and

t(5%)F (3,9) 3.86 here, Treaat. t(5%)F F . Main effect A : 2 2
AF 9(25α -30α+9)/346α -426α+167 ;

and t(5%)F (1,9) 5.12 here, A t(5%)F < F . Main effect B : 2 2
BF 9α /346α -426α+167 and

t(5%)F (1,9) 5.12 here, B t(5%)F < F . Interaction effect AB : 2 2
ABF 9(9α -12α+4)/346α -426α+167

and t(5%)F (1,9) 5.12 here, AB t(5%)F < F α, 0 α 1   .

(1) (1 0.5α) a (0.5 0.5α)
 a (1.5 α) b (1.5 0.5α)

ab (1.5 0.5α)
b (0.5 0.5α) ab1

(1) (1 0.5α)
a (0.5 0.5α)
 b1

ab (1 0.5α) (1) (1.5 0.5α)

(1) (1.5-α) a (0.5+0.5α) b (1-0.5α) ab (1.5-0.5α)
b (1.5-0.5α) (1) (0.5+0.5α) a (1.5-0.5α) ab (1-0.5α)

(1) (1.5-0.5α) a (0.5+0.5α) ab (1-0.5α)
b (0.5+α)

ab (0.5+α) a1
 b (1.5-α) (1) (1.5-0.5α)
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Conclusion 13.2. : In each of the cases, the computed value of F is less than the tabulated value of F
at 5% level of significance.  Therefore, there are no significant main or interaction effects present in
the experiment.  The blocks as well as treatments do not differ significantly.  Since the blocks do not
differ significantly, we conclude that there is no special contribution from fluctuations in soil fertility
and thus the division of the whole experimental area into blocks does not result in any gain in
accuracy.

14. 22-Factorial experiment using Thorani’s ranking method of tfns.
As per the description in Salim Rezvani’s ranking method, we presented a different kind of

centroid point and ranking function of tfns.  The incenter   0 0A
I x , y of the triangle [Fig. 2] with

vertices 1 2 3G , G  and G of the generalized tfn.   A= a, b, c, d; w is given by,

  0 0A

a+2b b+c 2c+d w w wα β γ α β γ
3 2 3 3 2 3

I x , y ,  (14.1)
α + β + γ α + β + γ

                                          
 
  

     2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w
where α ,β  ,γ

6 3 6

 
  

And the ranking function of the generalized tfn.   A= a, b, c, d; w which maps the set of all fuzzy

numbers to a set of real numbers is defined as   0 0R A x y (14.2)     .  For a normalized tfn.,

we put w = 1 in equations (1) and (2) so we have,

  0 0A

a+2b b+c 2c+d 1 1 1α β γ α β γ
3 2 3 3 2 3

I x , y ,  (14.3)
α + β + γ α + β + γ

                                          
 
  

     2 2 2
c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1

where α ,β  and γ
6 3 6

 
  

And for   A= a, b, c, d; 1 ,   0 0R A x y (14.4)    

The ANOVA table values using Thorani’s ranking method of tfns. :
Example 14.1. Let us consider example 1, using the above relations (14.3) and (14.4), we get the
ranks of each tfns. which are tabulated below:

The ANOVA table values using Thorani’s ranking method of tfns. :

ASS =35.3891; BSS =8.6525 ; ABSS =3.4827 ; TSS =52.9691; ESS =5.4448 ; Main effect A

AF 51.9969 and t(1%)F (1,8) 11.26 , here A t(1%)F > F . Main effect B : BF 12.7130 and

t(1%)F (1,8) 11.26 , here B t(1%)F F . Interaction effect AB : ABF 5.1171 and t(1%)F (1,8) 11.26 ,

here AB t(1%)F < F .

(1)8.1192 a10.611
 a 9.7794

 b 4.3710
ab 9.7834

b 3.9572
ab 9.7888 (1) 6.8701

a 9.3720
 b 6.0356

ab8.3277 (1) 7.7017
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Conclusion 14.1. : Here, the calculated value of F > tabulated value of F for the main effects A and B.
Hence, we conclude that the main effects A and B both are significantly different at 1% level of
significant.
Example 14.2. Let us consider example 2, using the above relations (14.3) and (14.4), we get the
ranks of each tfns. which are tabulated below:

The ANOVA table values using Thorani’s ranking method of tfns. :

ASS =17.8014 ; BSS =12.1635 ; ABSS =8.8225 ; TSS =112.15 ; BlocksSS =30.491; Treat.SS =38.787 ;

ESS =42.872 . Between Blocks : BlocksF 2.1336 and t(5%)F (3,9) 3.86 here, Blocks t(5%)F F .

Between Treatments : Treat.F 2.7141 and t(5%)F (3,9) 3.86 here, Treaat. t(5%)F F . Main effect A :

AF 3.7370 ; and t(5%)F (1,9) 5.12 here, A t(5%)F < F . Main effect B : BF 2.5534 and

t(5%)F (1,9) 5.12 here, B t(5%)F < F .Interaction effect AB : ABF 1.8521 and t(5%)F (1,9) 5.12 here,

AB t(5%)F < F .

Conclusion 14.2. : In each of the cases, the computed value of F is less than the tabulated value of F
at 5% level of significance.  Therefore, there are no significant main or interaction effects present in
the experiment.  The blocks as well as treatments do not differ significantly.  Since the blocks do not
differ significantly, we conclude that there is no special contribution from fluctuations in soil fertility
and thus the division of the whole experimental area into blocks does not result in any gain in
accuracy.

15. General conclusion
The decisions obtained from various methods are tabulated below for the acceptance of null

hypothesis.

(1) 9.9941 a10.827
 b 9.5770

ab15.6122
b17.076 (1) 9.9942 a13.9468

 ab16.4524
(1)12.2814 a 8.745

 ab13.1202
b 8.5338

ab14.5765 a13.3267
 b10.1956 (1)12.078

S.V.

Acceptance of null hypotheses  0H
 cut method Wang Rezvani GMIR TIV L & W Thorani
Eg.1 Eg.2

Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2
L U L U

Between
Blocks

- -   --  --  --  --  --  -- 

Between
Treat.

- -   --  --  --  --  --  -- 

Main
effect A

               

Main
effect B

               

Int. act.
effect AB

               



Bull .Math.&Stat.Res

Vol.4.Issue.1.2016(Jan-Feb) 69

S.PARTHIBAN, P. GAJIVARADHAN

For example-1, from the decision obtained from both l.l.m. and u.l.m., the calculated value of F >
tabulated value of F for the main effects A and B. Hence, we conclude that the main effects A and B
both are significantly different at 1% level of significant α, 0 α 1   .

For example-2, we see that Blocks t(5%)F F α  at both l.l.m. and u.l.m.  The blocks do not differ

significantly.  Also A tF < F for the partial level of α [0.1,  1] at both l.l.m. and u.l.m.  The main

effect A does not differ significantly at 0.1 α 1  .  And B t AB tF < F ,  F < F , α  The effect B and

the interaction effect AB do not differ significantly.  Moreover, Treat. tF F , α  at l.l.m. on the other

hand Treat. tF > F , α at u.l.m.  The null hypothesis  0H is rejected in this case.  Therefore, the

treatment differs significantly for all α .
Moreover, the decisions obtained from the ranking grades of Wang’s method, Rezvani’s method,
GMIR and Thorani’s method provide parallel and reliable discussions.  And the decisions obtained
from TIV and Liou & Wang’s method (L & W) do not provide a reliable decisions as they accept the
null hypothesis in all the cases.
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