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Abstract:In this paper we defined the associated graph constructed to a 
cellular folding defined on regular CW-complexes. These graphs declare 
the effect of a cellular folding on the complex.Besides we studied the 
properties of this graph and we proved that it is connected and vertex 
transitive if the cellular folding is neat.Finally, by using chain maps and 
homology groups we obtained the necessary and sufficient conditions for 
a cellular map to be cellular folding and neat cellular folding respectively. 
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1.INTRODUCTION 

 The study of foldings of a manifold into anther manifold began with S.A. Robertson's work 

on isometric folding of Riemannian manifolds [11]. After several attempts of generalizing the notion 

of isometric foldings, regular foldings were first studies by S.A. Robertson, H.R. Forran and E.El-Kholy 

[2]. The notion of cellular foldings are invented by E.El-Kholy and H.A.AL-Khurassani [1].  Different 

types of foldings are introduced by E.EL-Kholy and others 

 [4, 5, 2]. 

a) A cell decomposition of a topological space X is a decomposition of  𝑋  into disjoint     open 

cells such that for each cell e of the decomposition, the boundary 𝜕 𝑒 =  𝑒  - e is a union of lower 

dimensional cells of the decomposition. The set of cells of a cell decomposition of a topological 

space is called cell complex, [ 10 ]. 

 A pair (x, 𝜁 ) consisting of a Hausdorff space X and a cell – decomposition 𝜁 of X is called CW – 

complex if the following three axioms are satisfied: 

1– (Characteistic Maps): For each n – cell e є 𝜁 there is a continuous map  Φ𝑒|𝑖𝑛𝑡 (𝐷𝑛 ) → int(Dn)  e 

and taking 𝑆𝑛−1 into 𝑋𝑛−1. 

2 – (Closure Finiteness) : For any cell e є 𝜁 the closure 𝑒  intesects only a finite number of othe cells 

in 𝜁. 

3 – (Weak Topology):A subset A⊆ X is closed iff A ∩ 𝑒  is closed in X for each e є 𝜁, [9]. 

 A CW – complex is said to be regula if all its attaching maps are homemorphisms. If each closed n – 

cell is homeomorphic to a closed Euclidean n – cell [ 9 ]. A topological space that admits the 
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structure of a regular CW – complex is temed a regular CW – space. 

( b ) Let K and L be cellular complexes and f : K  L is a cellular map if  

(i) for each cell 𝜎 є K,  f( 𝜎 ) is a cell in L,  

(ii) dim f( 𝜎 ) ≤ dim ( 𝜎 ), [ 8 ]. 

(c) Let K and L be regular CW – complexes of the same dimension and K be equipped with finite 

cellular subdivision such that each closed n- cell. A cellular map f : K  L is a cellular folding iff: ( i ) 

for each i-cell 𝜎𝑖  є K, f( 𝜎𝑖  ) is an i-cell in L, i.e., f maps i-cells to i-cells. 

       (ii) if 𝜎  contains n vertices, then 𝑓(𝜎)       must contains n distinct vertices. 

 In the case of directed complexes it is also required that f maps diected i-cells of k to i-cells 

of L but of the same diection, [ 6 ]. 

A cellular folding  f : K  L is neat if 𝐿𝑛  - 𝐿𝑛−1 consists of a single n – cell, interior L. The set of all 

cellular foldings of K into L is donated by C(K,L) and the set of all neat foldings of K into L by𝒩(K,L). 

(d) If f є C(K,L), then x є K is said to be a singularity of  f iff f is not a local homeomorphism at x. The 

set of all singularities of f corresponds to the “folds” of the map. This set associates a cell 

decomposition 𝐶𝑓  of M. if M is a surface, then the edges and vertices of 𝐶𝑓  from a graph Γ𝑓  

embedded in M, [ 7 ]. 

(e) Let f : K  L be a continuous function. If, for each k – chain C in K , f (C) is a k – chain in L and if 

the diagram 

 
 Commutes, then f : K  L is a chain function from K to L, [ 8 ]. 

(f) The set 𝑆𝑛  of all permutations on n objects forms a group of order n!, called the symmetric goup 

of degee n, the law of compositionbeing that fo maps of the objects onto themselves. A group of 

permutations is said to be transitive if, given any pair of letters a, b  (which need not be distinct), 

there exists at least one permutation in the group which transforms a into b, [12]. Otherwise the 

group is called in transitive. And is said to be 1 – transitive if for any pair of letters a, b, there exists a 

unique element x of the group such that a ∗ x = b. 

2- The associated graph: 

Let f : K  L be a cellular folding. By using the cell subdivision 𝐶𝑗  of K we can define the 

associated graph 𝐺𝑗  are just the n – cells of 𝐶𝑗  and the cellular folding f as follos: 

The vertices of 𝐺𝑗  are just the n – cells of 𝐶𝑗   𝑎𝑛𝑑 𝑖𝑓  𝜎 and 𝜎′  are distinct n – cells of 𝐶𝑗   such 

that 𝑓 (𝜎 ) = f ( 𝜎′), then there exists an edge E with end points 𝜎 and 𝜎′ . We then say that E is an 

edge in 𝐺𝑗    𝑤𝑖𝑡ℎ 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠  𝜎 and 𝜎′ . 

The graph 𝐺𝑗  can be realized as a 𝐺𝑗  
  embedded in 𝑅3 as follows. For each n – cells    𝜎 ,  𝜎′  choose 

any points 𝔳 є 𝜎, 𝔳′   є  𝜎′ . If 𝜎 and  𝜎′  are end points of an edge E, then we can join 𝔳 𝑡𝑜 𝔳′  by an arc e 

in 𝑅3 that runs from v through 𝜎  and  𝜎′  to  𝔳′  crossing E transversely at a single point [3].  The 

corespondence 𝜎  ↔  v, E  ↔ 𝑒 is trivially a graph isomorphism from 𝐺𝑗  to 𝐺𝑗  
  . 

It should be noted that the graph 𝐺𝑗   has no multiple edges, no loops and generally 

disconnected. 

In this paper by a complex we mean a regula CW – complex. 

Examples(2-1): 

(a) Let K be a complex with the cellular subdivisions gien in Fig.(1-a).Let  f : K  K be cellular foldings 

defined by: f(𝑣2 , 𝑣2 , 𝑣5 , 𝑣8  , 𝑣11 ) = ( 𝑣4 , 𝑣7 , 𝑣10 𝑣13 ),  

f( 𝑒1 ,  𝑒4 ,  𝑒6 .  𝑒9 ,  𝑒11 ,  𝑒14 ,  𝑒16 ,  𝑒19 ,  𝑒21 ) 
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= ( 𝑒3,  𝑒5 ,  𝑒8 .  𝑒10 ,  𝑒13 ,  𝑒15 ,  𝑒18 ,  𝑒20 ,  𝑒23 ) and f( 𝜎𝑖) =  𝜎𝑖+1, I = 1,3,5,7,, whee the omitted 

0,1,2- cells through this paper will be mapped to themselves.The graph  𝐺𝑗  in this case has ten 

vertices and five edges as shown in Fig. ( 1 – b). 

 

 
      Fig. (1) 

(b)Consider that complex K shown in Fig.(2), which consists of one 2 –cell, seen 1-cells and seven 0-

cells. Let f : K  K be a cellular folding defined as follow: f (𝑣5 , 𝑣6 , 𝑣7 ) = (𝑣2 , 𝑣3 , 𝑣2 ), f( 𝑒𝑖 ) =   𝑒2 , 

i=5,6,7 and 𝑓 (𝜎 ) = 𝜎. The graph  𝐺𝑓 in this case consists of a vertex only with no edges. 

 
     Fig. (2) 

(c) Let K be a complex such that |K| is a cylindrical surface with a cellular subdivision consists of 

eight 0-cells, sixteen 1-cells and eight 2-cells, see Fig.(3). Let f : K  K be a cellular folding defined by 

: f(𝑣5 , 𝑣6 , 𝑣7 , 𝑣8 ) = ( 𝑣1 , 𝑣3 , 𝑣3 𝑣3 ),  

f( 𝑒1 ,  𝑒2 ,  𝑒3 .  𝑒4 ,  𝑒5 ,  𝑒6 ,  𝑒8 ,  𝑒11 ,  𝑒13 ,  𝑒14 ) 

= ( 𝑒9,  𝑒9 ,  𝑒9 .  𝑒9 ,  𝑒9 ,  𝑒15 ,  𝑒7 ,  𝑒9 ,  𝑒10 ,  𝑒16 ,  𝑒15 ) and  

f( 𝜎1 ,  𝜎2 ,  𝜎3 ,  𝜎4 ,  𝜎5 ,  𝜎8) =  (𝜎6,  𝜎6,  𝜎7 ,  𝜎7 ,  𝜎6 ,  𝜎7). 

This can be done by the composition of the following two cellular foldings:  𝑓1( 𝑣5 , 𝑣8 ) =

 (𝑣1 , 𝑣3 ), f( 𝑒1 ,  𝑒2 ,  𝑒6 .  𝑒8 , 𝑒11 ,  𝑒13 ,  𝑒14 ) 

= ( 𝑒3,  𝑒4 ,  𝑒7 .  𝑒9 ,  𝑒10 ,  𝑒15 ,  𝑒16 ) and  

f( 𝜎1 ,  𝜎2 ,  𝜎3 ,  𝜎4) =  (𝜎6,  𝜎6,  𝜎7 ,  𝜎7 ,  𝜎6 ,  𝜎7). 

The graph 𝐺𝑗   in this case has eight vertices and twelve edges see Fig (3-b). 

 
(d) Consider a complex K such that |K| is a tous with four 0-cells, eight 1 – cells, eight 1-cells 

and four 2-cells, see Fig (4-a). Let f :  K  K be a cellular folding gien by  𝑓1( 𝑣𝑖 ) = ( 𝑣𝑖 ),  i=1,2,3,4 

f( 𝑒3 ,  𝑒4 ) =  (𝑒2 .  𝑒1 ) and f( 𝜎2 , 𝜎4) =  (𝜎1,  𝜎3). The graph  𝐺𝑓 in this case has four vertices and two 

edges, see Fig. (4-b). 
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3-Properties of the associated graph: 

 Some of the properties of the associated graph can be characterized by the following 

theorems: 

Theorem(3-1): 

Let K and L be complexes of the dimensions n, f є C (K, L). The associated graph  𝐺𝑓 is disconnected 

unless f is a neat cellular folding. 

Proof: 

Let  𝜎1 and   𝜎2 be distinct n – cells of 𝐾(𝑛), and let  𝜎1 ~   𝜎2 means  𝑓 (𝜎1) =   𝑓 ( 𝜎2). It is 

clear that the relation ~ is an equivalence relation. Hence the quotient set 𝐾(𝑛)/~ =  { [ 𝜎 ] }, 𝜎 є 

𝐾(𝑛) is a partitionon 𝐾(𝑛), where [ 𝜎 ] is the equivalence class of any  

n – cells 𝜎. It follows that  𝐺𝑓  has more than one component otherwise all the n – cells of K will be 

mapped to the same n-cells of L which in fact is the case of cellular neat folding. In the last case 

there will be a unique equivalence class [ 𝜎 ] and hence the graph  𝐺𝑓  is connected. 

It follows fom the aboe theorem that the components of the graph  𝐺𝑓  𝑖𝑠 equal to the number of 

the equivalence classes generated by the relation ~ . 

Theorem (3.2): 

Let K and L be complexes of the same dimension n, f є C(K,L) a cellular folding. Then each component 

of  𝐺𝑓  𝑖𝑠 vetex transitive on itself. 

Proof: 

 From Theorem (3.1) the equivalence relation defined on the n – cells 𝐾(𝑛) of K defines a 

partition { [ 𝜎 ] } ,  𝜎 є  𝐾(𝑛) on 𝐾(𝑛), where each equivalence class represents a component of  𝐺𝑓 . 

Now, consider one of these components 𝐺𝑓
𝑖 , with say r vertices, i.e., | | 𝑉(𝐺𝑓

𝑖 )| = r. Each vertex of 𝐺𝑓
𝑖  

is adjacent to the other vertices in the component, then any permutation of the set 𝑉(𝐺𝑓
𝑖 ) is an 

automorphisms of 𝐺𝑓
𝑖 . Thus the set of all permutations  (automorphisms) form a group which is the 

symmetric group  𝑆𝑟  acting on the 𝑉(𝐺𝑓
𝑖 ). The orbit of any  𝜎 є 𝑉(𝐺𝑓

𝑖 ) under  𝑆𝑟  is the whole set 

𝑉(𝐺𝑓
𝑖 ). i.e., 𝑉(𝐺𝑓

𝑖 ) has a single orbit and hence the automorphism group  𝑆𝑟 is transitive on 𝑉(𝐺𝑓
𝑖 ). 

Results(3-3): 

 Let f : KL be a neat cellular folding: 

1) The sysmmetic group  𝑆𝑟 ,  = | 𝐾(𝑛)| acts 1-transitively on the graph  𝐺𝑓 . 

2)  𝐺𝑓  is vertex transitive. 

3) 𝐹𝑟𝑜𝑚 the above results we conclude that the graph  𝐺𝑓  𝑜𝑓  a neat cellular folding is a 

complex graph. 

Example (3 -4): 

Consider the complex K shown in Fig.(5-a), which consists of four 2-cells, eight 1-cells and fie 0-cells. 

Let f : K  K be a cellular folding defined as follows :  f( 𝑣4 ,  𝑣5 ) =  (𝑣3 .  𝑣2 ),  
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f( 𝑒4,  𝑒5 ,  𝑒6 .  𝑒7 , 𝑒8 )  = ( 𝑒3,  𝑒1 ,  𝑒2 .  𝑒2 ,  𝑒2 ) and f( 𝜎𝑖) =  𝜎𝑖  , i= 1,2,3,4. The graph  𝐺𝑓 in this case is 

complete, see Fig. (5-b). 

 
     Fig.(5) 

(4) Chain maps and cellular  folding: 

 The following theorem gives the necessary and sufficient condition for a cellular map to be a 

cellular folding.  

Theorem( 4-1 ): 

 Let K and L be complexes of the same dimension n and f : K  L be a cellular map such that  

f( K )= L + K. Then f is a cellula folding if and only if the map  𝑓𝑝 :   𝐶𝑝 (K)   𝐶𝑝 (L), between chain 

complexes  (𝐶𝑝 (M),  𝜕𝑝 ),  (𝐶𝑝 (M),  𝜕′
𝑝 ) is a chain map. 

Proof: 

 Let f : K  L be a cellular n it is a cellular map and for each p-cell 𝜎 є K we can define a 

homomorphism  𝑓𝑝 :   𝐶𝑝 (K)   𝐶𝑝 (L) by 

 

 𝑓𝑝 =   
𝑓 𝜎 ,        𝑖𝑓 𝑓 𝜎 𝑖𝑠 𝑎 𝑝 − 𝑐𝑒𝑙𝑙 𝑖𝑛 𝐿

𝜑         𝑖𝑓 dim  𝑓  𝜎   < 𝑝 
  

 

 And since cellular foldings map p-cells to p-cells [2],  𝑓𝑝 ( 𝜎𝜆  ) is Thus for a p-chain where and 

are p-cells in L for all 𝜆. Thus for a p - chain C =  𝑎1  𝜎
𝑝

1 +  𝑎2 𝜎𝑝
2 +…………….+  𝑎𝑘  𝜎

𝑝
𝑘 є  𝐶𝑝 (K), where 

 𝑎′𝜆 S є Z and   𝜎′
𝜆 s are p – cells in M,  𝑓𝑝 (C ) = 𝑓𝑝 ( 𝑎1 𝜎

𝑝
1 +  𝑎2 𝜎𝑝

2 +……….+  𝑎𝑘  𝜎
𝑝
𝑘 ) = 

 𝑎1   𝑓𝑝 (𝜎
𝑝

1 
)+  𝑎2 𝑓𝑝 ( 𝜎𝑝

2 )+……….+  𝑎𝑘  𝑓𝑝  (𝜎
𝑝
𝑘 

) є  𝐶𝑝 (L). 

 Now, since the closures of  𝜎𝑝
𝜆 and  𝑓 (𝜎𝑝

𝜆 
) have the same number of distinct vertices, the 

 𝑓𝑝−1 o  𝜕𝑝 =  𝜕′
𝑝  𝑜 𝑓𝑝 , where  𝜕𝑝 :  𝐶𝑝 (K) 𝐶𝑝−1 (K) and 𝜕′

𝑝 :  𝐶𝑝 (K)   𝐶𝑝−1 (L) are the boundary 

operators, that is to say that following diagram commutes 

 

                                                        
and hence  𝑓𝑝  is a chain map. Conversely, suppose f is not a cellular folding then there exists a j-cells 

𝜎 in  K such that 𝑓 𝜎  is an m – cell in L, where j ≠m. Since  𝑓𝑝  is a homomorphism from the 𝑝𝑡ℎ  - 

chain of K to the 𝑝𝑡ℎ  - chain of L, then 

                                                
But 𝑓 𝜎  is not a j-cell, then   𝑓𝑗   can not be a j-chain map and hence our assumption is false, and we 

have the result. 

Examples (4-2) 
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Let K be a complex such that |K| is the infinite strip {(x,y): -∞< x< ∞, 0 ≤ 𝑦 ≤ 𝑙 } equipped with an 

infinite numbe of 2-cells such that the closure of each 2-cell consists of four 0-cells and fou 1cells, 

 𝑃4 . Let L be a complex with 0-cells, seen 1-cells and two 2-cells, Fig.(6). The cellular map f: K  L 

defined by : f  (𝑣𝑖 ) =  𝑣/
𝑖  where I = 1,2,…,6, f  (𝑣𝑖 ) =  𝑣/

𝑗 , whee j = 1,2,…6 and (i-j) is a multiple of 6, f 

 (𝑒𝑖 ) =  𝑒/
𝑖 , i=1,11,21,….., f  (𝑒𝑖 ) =  𝑒/

𝑖 , I = 2,12,22,…..,  f  (𝑒𝑖 ) =  𝑒/
3, i=3,8,13,……..…., f  (𝑒𝑖 ) =  𝑒/

6, 

i=6,16,26,………….., f  (𝑒𝑖 ) =  𝑒/
7, I = 7,17,27,…………  

and   𝑓𝑝 =   
 𝜎/

1 ,                          𝑖𝑓  𝑖  𝑖𝑠 𝑜𝑑𝑑,

 𝜎/
2                     𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

  

is a cellular folding. 

 
(a) Consider a complex K such that |K| = 𝑆2, with cellular subdivision consisting of two 0-cells, four 

1-cells and four 2-cells. Let f : K  K be a cellular by : f( 𝑒2 ,  𝑒4 ) =  (𝑒1 .  𝑒3 ), f( 𝜎𝑖) =  𝜎𝑖  , i= 1,2,3,4. 

This map is a cellula folding with image consisting of to 0-cells, two 1-cellsand a single 2-cell, see 

Fig.(7) 

 
(b) Consider a complex K such that |K| is a tours with cellula subdivision consisting of three 0-cells, 

six 1-cells, six 1-cells and three 2-cells. Any cellular map f :K K which has two vertices in the 

image is not a cellula folding since  𝑓1 in this case is not a chain map, see Fig.(8). 

                         
(c) Consider a complex K such that |K| = 𝑆2 , with cellular subdivision consisting of four 0-cells, six 1-

cells, four 2-cells, see Fig.(9). 

Let be  f :K K be a cellular map defined by :  f( 𝑣𝑖 ) =  𝑣𝑖 ,   𝑖 = 1,… . . ,4,  

f( 𝑒2 ,  𝑒3 ) =  (𝑒1 .  𝑒4  ), f( 𝜎1) =  𝜎2 , i= 1,2,3,4. This map is not a cellular folding since 𝜎1    and 𝑓(𝜎1
      ) 

do not containthe same number of vertices. 
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Result (4-3): 

Let f : K L, be a cellular folding. Then the induced homomorphism 𝑓𝑝
∗ : 𝐻𝑝 ( K )  𝐻𝑝 ( L ) 

with maps the generators of 𝐻𝑝 ( K ) to either the generators of L or  to zeroes. This follows directly 

from the fact the chain map  𝑓𝑗  : 𝐶𝑝  ( K )  𝐶𝑝  ( L ) defines a homomorphism which has this property 

[2]. 

(5)Homology groups and neat cellular foldings: 

The following theorem gives the necessary and sufficient condition for a cellular map to be a 

neat cellular folding. 

Theoem (5.1): 

 Let K and L be complexes of the same dimension n. If f є C ( K , L ), then f is neat if and only if 

the map  𝑓𝑝 : 𝐶𝑝  ( K )  𝐶𝑝  ( L ) between chain complexes  (𝐶𝑝  ( M ),  𝜕𝑝 ), (𝐶𝑝  ( M ), 𝜕𝑝
′ ) is a chain 

map and 𝐻𝑝  ( L ) ≅ Ker  𝑓∗ : 𝐻𝑝  ( K )  𝐻𝑝  ( L ), p ≥ 1 is the induced homomorphisms. 

Proof:  

Assuming that f is a neat folding, then it is a cellula folding and hence the map  𝑓𝑝 : 𝐻𝑝  ( K )  𝐻𝑝  ( L ) 

 between the chain complexes (𝐶𝑝  ( M ),  𝜕𝑝 ), (𝐶𝑝  ( M ), 𝜕𝑝
′ ) is a chain map. Now consider the 

induced homomorphism  𝑓𝑝 : 𝐻𝑝  ( K )  𝐻𝑝  ( L ), there is a shot exact sequence 

                       0 ker  𝑓∗   
    𝑖  ∗   

     𝐻𝑝  ( K ) 
     𝑓 ∗  
     Im   𝑓∗  

Where   𝑖∗   is the induced homomorphism by the inclusion. Since f surjective, we have Im  

 𝑓∗ ≅ 𝐻𝑝  ( L ) but 𝐻𝑝  ( L ) = 0, for neat cellular foldings, hence the aboe sequence will take the form 

                       0 ker  𝑓∗   
    𝑖  ∗   

     𝐻𝑝  ( K ) →  0  

 The exactness of this sequence implies that 𝐻𝑝  ( K ) ≅  ker  𝑓∗ . 

Conversely, suppose f is a chain map between chain complexes, and 𝐻𝑝  ( K ) ≅  ker  𝑓∗ , but f is not 

neat,     𝐿 𝑛   -      𝐿 𝑛−1    consists of more than one n-cell. Thus  𝐻𝑜( K ) ≅   𝑍 𝑗   , 𝐻𝑝  ( L ) = 0 

For p = 1,2,…..,n and 𝐻𝑝  ( K ) ≅  𝐻𝑝  ( K )  ⊕ ker  𝑓∗ ≅  ker  𝑓∗ for p = 0, and hence the assumption is 

false and f is neat. 
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