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ABSTRACT 

In this paper, we are concerned with partial convexity of smooth solutions to 

heat equation. We prove that partial convexity of these solutions to the heat 

equation are preserved along the heat equation. Consequently we give a 

proof that some convex cones of these solutions k  (see the definition in 

Section 2) are invariant cones. 
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1.  INTRODUCTİON 

 The convexity has been studied for a long time in partial differential equations and it is 

intimately related to geometric properties of solutions to partial differential equations. There are 

macroscopic and microscopic convexity principle in general to yield convex solutions. The 

macroscopic convexity principle developed from 1980s, which was obtained by Korevaar [1], 

Kennington [2] and for the general nonlinear partial differential equations by Alvarez-Lasry-Lions[3]. 

However this method has difficulties in some geometric partial differential equations on compact 

manifold. The microscopic convexity principle concentrates on establishing the constant rank 

theorem for convex solutions to partial differential equations. It is a powerful tool in producing 

convex solutions to partial differential equations via the continuity methods. Caffarelli-Friedman [4] 

proved a constant rank theorem for convex solutions of quasilinear elliptic equations in 2R , a similar 

result was also discovered by Yau [5] at the same time. Korevaar-Lewis [6] generalized these results 

to nR . Convexity plays an important role in geometric flow. For example, Huisken [7] proved that the 

mean curvature flow deforms initial surface with positive curvature into a point, while the curvature 

remains positive along the mean curvature flow. For general geometric flow under some structural 

condition, Bian-Guan [8] proved that the evolving hypersurfaces are strictly convex if the initial 

hypersurface is convex.  

 In addition to convexity, partial convexity is also an interesting and important subject in 

analysis and geometry. So far as partial convexity of solution is concerned, there are usually two 
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definitions of partial convexity for a function u : one is that the sum of the smallest k  eigenvalues of 

the Hessian matrix 2{ }D u  of u  is positive; the other is that there exists a positive integer k , such 

that 2( ) 0(or 0)l D u    for 1 l k  , where 2( )l D u  is the l -th elementary symmetric function 

of the eigenvalues of 2D u . In this paper, we will mainly prove that these partial convexity 

properties are preserved for smooth solutions to the heat equation and therefore we will give a 

direct proof that these convex cones 2{ ( ) ( ) 0 1 }n

k lD u R l k             (see the detail 

definition in Section 2) are invariant cones along the heat equation.  

 We first recall some results concerning partial convexity. For elliptic case, Han-Ma-Wu [9] 

obtained a constant rank theorem for the k-convex solutions to semilinear elliptic partial differential 

equations and obtained an existence theorem for k -convex starshaped hypersurface with 

prescribed mean curvature in 1nR  . For parabolic case, a famous result is that in 1976, Brascamp-

Lieb [10] established the logarithmic concavity of the fundamental solution of diffusion equation 

with convex potential in bounded convex domain in nR . As a consequence, they proved the 

logarithmic concavity of the first eigenfunction of Laplacian equation in convex domain. This 

logarithmic concavity property is reproved by using an ingenious P -function and deformation 

method in a the paper [11]. In geometry, the assumption on the curvature of surface, such as 

positive Ricci curvature or positive curvature operator in some sense can be interpreted as partial 

convexity conditions. For parabolic case, Hu-Ma [12] obtained a constant rank theorem of the space-

time Hessian for the space-time convex solution to standard heat equation. For geometric evolution 

equation, invariant cones play important roles and hence geometric quantities satisfying partial 

convexity properties can be used to construct invariant cones. For example, Huisken-Sinestrari [13] 

classified the compact 2-convex hypersurfaces in nR  using the technique of mean curvature flow. 

They proved that if 1

0

n nF M R    be a smooth immersion of a closed n - dimensional 

hypersurface, with 3n   and if 0 0( )M F M  is two convex, i.e., 1 2 0    everywhere on 0M ; 

then there exists a mean curvature flow with surgeries starting from 0M  which terminates after a 

finite number of steps. As corollary, they classified all closed hypersurface with two positive 

curvature operator. For Ricci flow, there are plenty of such results. For example, Hamilton [14] ([15]) 

proved that if a compact 3-manifold (4-manifold) nM  admits a Riemannian metric 0g  with positive 

Ricci curvature (positive curvature operator), then this metric can be deformed to a metric g  of 

constant positive sectional curvature. In addition to these, Chen [16] and B ohm-Wilking [17] studied 

the classification of compact Riemannian manifolds with 2-positive curvature operator via Ricci flow. 

They proved that if ( )nM g  has 2-positive curvature operator, then the normalized Ricci flow 

evolves the initial metric g  to a constant curvature limit metric. In their proof, they constructed a 

pinching family with initial cone being the cone of 2-positive curvature operator. With the existence 

of such pinching family, they could prove the convergence of the normalized Ricci flow to a constant 

curvature limit metric.  

 As significance and broad applications of the partial convexity as illustrated in the above, the 

partial convexity property of solution to differential equations is well worth studying and hence we 

consider this subject in this paper. We first consider a model of smooth solution to the heat 

equation in nR :  
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 We prove some partial convexity results for solutions of heat equation (1). The first result is 

the following result concerning the preservation of the partial convexity .  

Theorem 1.  Let ( )u x t  be a smooth solution to the heat equation (1) in [0 )nR T  . We denote by 

2D u  the Hessian matrix { }iju  of the solution u  and assume 
2

expD u C . If the initial data 0u  is k  

convex, i.e., the sum of smallest k  eigenvalues of the matrix 2

0D u  is nonnegative (positive), then k  

convexity will be preserved for solutions by the heat equation, i.e., for any 0t  , the sum of 

smallest k  eigenvalues of 2 ( )D u x t  is nonnegative (positive).  

Since the heat equation preserve nonnegativeness of the sum of smallest k  eigenvalues of 

solutions, we may naturally ask whether it preserves the convex cones k . For the case of Euclidean 

space and the cone 2 , we have the following result.  

Theorem 2.  Let u  be a smooth solution to the heat equation (1) in [0 )nR T   and denote by 

2D u  the Hessian matrix { }iju  of solution u . We also assume 
2

expD u C . If  

2( ) ( )0 at 0 for 1 2i D u t i                                                       (2) 

then for any 0t  , we have  

                        2( ) ( )0 for 1 2i D u i                                                                 (3) 

 The paper is organized as follows. We first recall the definitions and some fundamental facts 

concerning the elementary symmetric functions k  in Section 2.  In section 3, we prove Theorem 1 

and Theorem 2 that partial convexity for the smooth solutions of heat equation is preserved for the 

case 2k   on n-dimensional Euclidean space nR . 

2. Preliminary 

In this section, we recall the definition and some basic properties of the elementary symmetric 

functions of 1( )n    .  

Definition 1. For any 1 2k n   , we set  

 
1 2

1 2

1 2

1

( ) ( )
k

k

n

k i i i n

i i i n

R        
   

          

We also set 0( ) 1    and ( ) 0k    for k n .  

 For a symmetric matrix W , we define by letting ( ) ( ( ))k kW W   , where 

1( ) ( ( ) ( ))nW W W     are the eigenvalues of the symmetric matrix.  

In addition, we define  

1 2{ ( ) 0 ( ) 0 ( ) 0}n

k kR                 

 Obviously k  contains the positive cone 1 2{ 0 0 0}n

n nR             . k  is 

symmetric in the sense that if k , then any permutation of   also lies in k .  

Let us denote by ( )k i    the sum of the terms of ( )k   not containing the factor i . We list 

some basic properties of elementary symmetric functions which will be frequently used in the 

following calculation.  
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Proposition 1.  For any 0 1k n   , 1 2i n   , and nR , the following identities hold:  

1 ( ) ( )k
k

i

i


  



  


                                                                       (4) 

1 1( ) ( ) ( )k k i ki i                                                                    (5) 

1

( ) ( ) ( )
n

k k

i

i n k   


                                                                         (6) 

1

1

( ) ( 1) ( )
n

i k k

i

i k   



                                                           (7) 

Proposition 2.  1. If k  for {1 2 }k n   , then we have ( ) 0h i    , for any 

{0 1 1}h k     and {1 2 }i n   . 

2. Let { }ijW W  be a symmetric matrix such that its eigenvalues belong to 1k , and set 

1( ) ( )k kF W W   , then F  is concave on 1k , that is 

2

1

( ) 0 for any{ }
n

n n

ij kl ij

i j k l ij kl

F
W R

W W
   

   


   

 
                                 (8) 

Proposition 1 is standard which can be directly checked. For the proof of Proposition 2, the readers 

can consult [18] for example.  

3.  Partial convexity of heat equation in nR  

 In this section, we consider partial convexity preservation of heat equation in n

dimensional Euclidean space nR . We first note that the Euclidean space is noncompact. For rigorous 

usage of maximum principle, we need to restrict the solution class such that the Hessian of the 

solution
2

expD u C  , i.e., there exists constant A , such that 2 2( )D u Aexp A x    . We demand 

the Hessian of the solution at infinity has no more than exponential growth rate, so that we can 

construct “barrier function” to guarantee that our auxiliary function constructed in the following 

theorems can achieve the corresponding minimum value at an interior point. However this is a 

routine verification by using approximation of the domain and   perturbation of 
2

( )
x

t
exp B

 
  in the 

auxiliary function just as in the proof of the existence of the Cauchy problem of heat equation. 

Therefore we omit the routine process here and just assume the auxiliary functions attain interior 

minimum value.  

 In the following we give a proof of Theorem 1 which states that the nonnegativeness of the 

sum of the smallest k  eigenvalues of 2D u  is preserved along the heat equation in nR .  

 Proof of Theorem 1. The proof is standard. We need to make some simplifications. By 

perturbation argument, we may assume the sum of the smallest k  eigenvalues of Hessian for 2

0D u  

of the initial data 0u  is positive, otherwise we may consider 2( ) ( 2 )u x t x n t      instead and let 

0  .  

 We may assume the sum of the smallest k  eigenvalues of 2 ( )D u x t  vanishes at some 

space-time point, otherwise Theorem 1 naturally holds. We may assume 0t  be the first vanishing 

time and assume the vanishing point be attained at 0 0( )x t . we can also rotate the coordinates such 

that the matrix 2D u  is diagonal and its eigenvalues satisfy 1 1 11nn n nu u u      at this point.  
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Therefore at the space-time point 0 0( )x t , we have  

                          
11 11

11

( ) ( )

( ) ( ) 0

kk kk

kk

u u u u
t

u u
u u

t t


    



 
      

 

                                                  (9) 

where we have used the heat equation (1) in the last equality of (9).  

 From the above calculation and using the maximum principle we know that the sum of the 

smallest k  eigenvalues of 2D u  is non-negative along the heat equation (1). From the strict 

parabolic maximum principle, the case of strict inequality in Theorem 1 follows.                                                    

 Remark 1.  In the above proof, we follow a method of Lions et al. [19], where they used a 

special form of parabolic maximum principle to find necessary and sufficient conditions on 

preservation of convexity along parabolic equations.  

In the following, we will use the maximum principle to prove Theorem 2. 

Proof of Theorem 2. For convenience, we divide the proof into 4 steps. 

Step 1:  For 1i  , we take second derivatives of equation (1) with respect to the variables ix  and 
jx  

to get  

ij

ij

u
u

t


  


 

By taking trace, we see the above equation leads to  

             
2

21
1

( )
( )

D u
D u

t





  


                                                         (10)  

From (10) and the strong maximum principle, we obtain 2

1( )( ) 0D u t   for any 0t   provided 

2

1 0( ) 0D u   but not identically equal to 0.  

Step 2:  For 2i  , we first make some simplifications. From Step 1, we may assume 
2

1( ) 0D u  . We may also assume  

 2

2 0( ) 0D u                                                             (11) 

otherwise we may consider 2( ) ( 2 )u x t x n t      instead and let 0  . Let  

 
2

0 2inf{ 0 inf ( )( ) 0}
nx R

t t D u x


                                            (12) 

We may assume that 00 t    because of (11). By appropriate perturbation arguments which are 

somewhat classical in the use of maximum principle, we may assume without loss of generality that 

there exist n

ox R  such that 2

2 0 0( )( ) 0D u x t    and it is then enough to show that  

 2

2 0 0{ ( )( )} 0D u x t
t



  


                                           (13) 

 

Therefore at the point 0 0( )x t , we have  

 2

2 0 0( )( ) 0D u x t                                                                   (14) 

 2

2 0 0( )( ) 0D u x t   
                                            

 (15) 

 2

2 0 0( )( ) 0D u x t   
                                                

 (16) 
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In the following we denote the eigenvalues of the matrix 2 ( )D u x t  by 2( )D u  . By using 

(14), 

we have for 1 k n  ,  

 
1

1

( ) 0
n

iik

i

i u 


                                                      (17) 

and  

 2 2

2 1

1 1 1

( ) ( ) iikk iik jjk ijk

i k n k n i j k n i j

D u i u u u u  
        

           (18) 

 

We can choose coordinates on a neighborhood of 0 0( )x t , such that the Hessian matrix { }iju  are 

diagonal at 0 0( )x t  and the eigenvalues satisfy  

 11 22 33 nnu u u u     
                                          

 (19) 

We claim that 1( ) 0n    . If this were not true, suppose 1( ) 0n    , we get from (19)  that 

0nnu  . Therefore 2

1 1( ) ( ) 0nnD u n u      , a contradiction to Step 1.  

From (17), we get  

 
1

1 11

1
( )

( )
nnk iik

i n

u i u
n

 
    

   


                 (20) 

 

Combining (18), heat equation (1) and the normal coordinates we chose previously, we obtain  

 

2
2 2

2 1

1

2 2
2

1 1

( )
( ) ( ) ( )

( )

ij

ii

i nij

ijk iik jjk

k n i j k n i j

uD u u
D u i

t u t t

D u u u u


  



 

     

 
    

   

   



   
                                       (21) 

In order to verify the inequality (13), we need to verify that the last term in (21)  

0iik jjk

i j

u u


    

Substituting the expression (20) into above, we conclude that  

 

1 1 1 1

1

1 1 1 1 1 11

11 1 1 11 1 1

1

2 2( )

2
2 ( )( ( ) )

( )

1
( ) ( )

( )

iik jjk iik jjk iik nnk

i j i j n i n

iik jjk iik jjk

i j n i n j n

T

k n n k k n n k

u u u u u u

u u u j u
n

u u A u u
n

 
 

 

       

         

   

   

   


     


  

                     (22) 

where the ( 1) ( 1)n n    matrix A  is  

 

1 1 11 2

2 12 1 2

1 1 11 2

2

2

2

n nn

n nn

n n nn n

a a a a a a a

a a a a a a a

a a a a a a a

 
 
 
 

 
 
 
 
 
 

  

    

    


   

    

 

where and in the following, for convenience of notations, we denote by 1( )ia i    for 1 i n  .  

It is sufficient to verify that the matrix A  is nonnegative definite.  

Let us claim that the eigenvalues of the matrix A  are:  
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1

1 11

1
( )with( 3)multiplicities 0 and ( ),

( )
i

i n

n
n n

n
  

    


    




             

 (23) 

from which we conclude the nonnegative definiteness of the matrix A .  

Step 3: (Proof of the above claim (23).) The matrix A  can be written as 

1 1[ ( ) ] ( )A A n I n I        , where I  is the ( 1) ( 1)n n    identity matrix. We therefore 

turn to consider the eigenvalues of the matrix 1( )A n I   .  

To calculate the rank of the matrix 1( )A n I   , we take elementary transformations. For 

2 1i n   , we subtract the first row from the i -th row, the matrix 1( )A n I    is transformed 

into  

1 1 11 2

2 12 1 2 1

1 1 1 11 1

2 n n nn

n nn

a a a a a a a a

a a a a a a

a a a a a a

 
 
 
 
 
 
 
 
 
 

  

     

   


   

   

 

recalling that we denote 1( )i    by ia  for 1 i n  .  

Therefore Rank 1( ( ) ) 2A n I     and 1( )n    are eigenvalues of the matrix A  with 

1 3n Rank n     multiplicities.  

In the following calculation, we use Vieta’s Formulas in linear algebra to obtain the rest two 

eigenvalues. Denote by 1( )W A n I    , then from Proposition 1, we know that the 

characteristic polynomial of the matrix W  is  

 1 2 3 1

1 2 1( ) ( ) ( 1) ( ) 0n n n n

nx W x W x W     

       

where 

 

1

1 1 1 1 1

1 1

1 1

( ) (2 ( ) ( )) 2 ( ) ( 1) ( )

2( 1) ( ) ( 1) ( )

n n

i i

W i n i n n

n n n

        

   



 

        

     

 
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1 1

2 2

1 1 1 1

1
2

2

1

( ) { ( ) (2 )(2 )}

( ) ( )

( 2) 2 ( )

i j n i n j n

i j n

i j i j

i j n i j n

n

i

i

W a a a a a a a

a a

n n



 

  

   

       





      

     

    



 



 

and  

 ( ) 0 for 3 1i W i n       

Therefore the characteristic polynomial of the matrix W  is  
1

3 2 2

1 1 2

1

{ (2( 1) ( ) ( 1) ( )) ( 2) 2 ( )} 0
n

n

i

i

x x n n n x n n      






              

Since the Discriminant of the polynomial in the bracket is  

 2 2

1( 1) ( ( ) 2 )nn n          
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we obtain the rest two eigenvalues of the matrix W  are 1 1( )x n     and 

2 1( 2) ( ) 2( 1) nx n n n       . It is equivalent that the rest two eigenvalues of the matrix 

1 1( ) ( )A A n I n I         are 1 1( ) 0x n     and 
1 2

2 1 11
( ) ( )

n

ii
x n n    




    .  

Therefore the claim (23) is proved.  

Step 4:  Combining (21) and the claim (23), we conclude that  
2

22
2

( )
( ) 0

D u
D u

t





  


 

and (13) follows. Therefore for any 0t  , 2

2( ) 0D u   by maximum principle for parabolic 

equations. Since we have obtained the nonnegativeness of 2

2 ( )D u  , we conclude the case of 

strict inequality by the strict parabolic maximum principle and finish the proof of Theorem 2.  

Remark 2.  In the above, we prove the case of 2-convexity for the solutions of heat equations. We 

will use the concavity property of the Hessian operator (8) in Proposition 2 to study the general case 

of k-convexity in the future. 
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