Vol.4.Issue.2.2016 (April-June)

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON α REGULAR ω -LOCALLY CLOSED SETS IN TOPOLOGICAL SPACES

R. S. WALI¹, PRABHAVATI S. MANDALAGERI²

¹Department of Mathematics, Bhandari Rathi College, Guledagudd, Karnataka State, India ²Department of Mathematics, K.L.E'S, S.K. Arts College & H.S.K. Science Institute, Hubballi, Karnataka State, India

ABSTRACT

In this paper, we introduce three weaker forms of locally closed sets called $\alpha r \omega$ -LC sets, $\alpha r \omega$ -LC^{*} set and $\alpha r \omega$ -LC^{**} sets each of which is weaker than locally closed set and study some of their properties in topologivcal spaces.

Keywords:– $\alpha r \omega$ -closed sets, $\alpha r \omega$ -open sets, locally closed sets, $\alpha r \omega$ -locally closed sets.

2000 AMS Mathematics Subject Classification: 54A05, 54G65

©KY PUBLICATIONS

1. INTRODUCTION

Kuratowski and Sierpinski [2] introduced the notion of locally closed sets in topological spaces. According to Bourbaki [10], a subset of a topological space (X, τ) is locally closed in (X, τ) if it is the intersection of an open set and a closed set in (X, τ). Stone[9] has used the term FG for locally closed set. Ganster and Reilly [7] have introduced locally closed sets, which are weaker forms of both closed and open sets. After that Balachandran et al [6], Gnanambal [15], Arockiarani et al [5], Pusphalatha [1] and Sheik John[8] have introduced α -locally closed, generalized locally closed, semi locally closed, semi generalized locally closed, regular generalized locally closed, strongly locally closed and w-locally closed sets and their continuous maps in topological space respectively. Recently as a generalization of closed sets $\alpha r \omega$ -closed sets and continuous maps were introduced and studied by R. S. Wali et al [11].

2.Preliminaries: Throughout the paper (X, τ), (Y, σ) and (Z, η)(or simply X,Y and Z) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), Cl(A), Int(A), α Cl(A) and A^c denote the closure of A, the interior of A, the α -closure of A and the compliment of A in X respectively.

We recall the following definitions, which are useful in the sequel.

Definition 2.1: A subset A of topological space (X, τ) is called a

- 1. locally closed (briefly LC or lc) set [7] if $A=U\cap F$, where U is open and F is closed in X.
- 2. rw–closed set [13] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open.
- 3. $\alpha r \omega$ -closed set [11] if $\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\alpha r \omega$ -open.
- 4. α g-locally closed set if A=U \cap F, where U is α g-open and F is α g-closed in X.
- 5. α -locally closed set if A=U \cap F, where U is α -open and F is α -closed in X.
- 6. wg–locally closed set if $A=U\cap F$, where U is wg–open and F wg–closed in X.
- 7. gp-locally closed set if $A=U\cap F$ where U is gp-open and F is gp-closed in X.
- 8. gpr–locally closed set if $A=U\cap F$ where U is gpr–open and F gpr-closed in X.
- 9. g-locally closed set if $A=U\cap F$ where U is g-open and F is g-closed in X.
- 10. rwg-locally closed set if $A=U\cap F$ where U is rwg-open and F is rwg-closed in X.
- 11. gspr-locally closed set if $A=U\cap F$ where U is gspr-open and F is gspr-closed in X.
- 12. $\omega\alpha$ -locally closed set if A=U \cap F where U is $\omega\alpha$ -open and F is $\omega\alpha$ -closed in X.
- 13. α gr-locally closed set if A=U \cap F where U is α gr-open and F α gr-closed in X.
- 14. gs- locally closed set if $A=U\cap F$ where U is gs-open and F is gs-closed in X.
- 15. w-lc set if $A=U\cap F$ where U is w-open and F is w-closed in X.
- 16. gprw-lc set if $A=U\cap F$ where U is gprw-open and F is gprw-closed in X.
- 17. rw-lc set if $A=U\cap F$ where U is rw -open and F is rw -closed in X.

18. rg α -lc set if A=U \cap F where U is rg α -open and F is rg α -closed in X

Definition 2.2: $T_{\alpha r \omega}$ space [32] if every $\alpha r \omega$ -closed set is closed.

Lemma 2.3 [11]:

- 1) Every closed (resp regular-closed, α -closed) set is $\alpha r \omega$ -closed set in X.
- 2) Every $\alpha r \omega$ -closed set is αg -closed set.
- 3) Every αrω-closed set is αgr-closed (resp gs-closed, gspr-closed, wg-closed, rwg-closed, gpr-closed) set in X.

3. $\alpha r \omega$ -locally closed sets in topological spaces.

Definition 3.1: A Subset A of t.s (X, τ) is called $\alpha r \omega$ -locally closed (briefly $\alpha r \omega$ -LC) if A=U \cap F where U is $\alpha r \omega$ -open in (X, τ) and F is $\alpha r \omega$ -closed in (X, τ).

The set of all $\alpha r \omega$ -locally closed sets of (X, τ) is denoted by $\alpha r \omega$ -LC(X, τ).

Example 3.2: Let X={a, b, c, d} and $\tau = {X, \phi, {a}, {c,d}, {a,c,d}}$

- 1. $\alpha r \omega$ -C(X, τ) = { X, ϕ , {b}, {a, b}, {a, b, c}, {b, c, d}, {a, b, d} }
- 2. $\alpha r \omega$ -LC Set = {X, ϕ , {a}, {b}, {c}, {d}, {a, b}, {c, d}, {a, d}, {a, c}, a, b, c}, {b, c, d}, {a, b, d}, {a, c, d} }

Remark 3.3: The following are well known

(i) A Subset A of (X, τ) is $\alpha r \omega$ -LC set iff it's complement X-A is the union of a $\alpha r \omega$ -open set and a $\alpha r \omega$ -closed set.

(ii) Every $\alpha r \omega$ -open (resp. $\alpha r \omega$ -closed) subset of (X, $\tau)~$ is a $\alpha r \omega$ -LC set.

(iii) The Complement of a $\alpha r \omega\text{-LC}$ set need not be a $\alpha r \omega\text{-LC}$ set.

(In Example 3.2 the set {a,c} is $\alpha r \omega$ -LC set , but complement of {a,c} is {b, d} , which is not $\alpha r \omega$ -LC set.)

Theorem 3.4: Every locally closed set is a $\alpha r \omega$ -LC set but not conversely.

Proof: The proof follows from the two definitions [follows from Lemma 2.3] and fact that every closed (resp.open) set is $\alpha r \omega$ -closed ($\alpha r \omega$ -open).

Example 3.5: Let X={a,b,c} and $\tau = \{X, \phi, \{a\}\}$ then {a,b} is $\alpha r \omega$ -LC set but not a locally closed set in (X, τ).

Theorem 3.6: Every α -locally closed set is a $\alpha r \omega$ -LC set but not conversely.

Proof: The proof follows from the two definitions [follows from Lemma 2.3] and fact that every α -closed (resp. α -open) set is $\alpha r \omega$ -closed ($\alpha r \omega$ -open).

Example 3.7: Let X={a, b, c, d} and $\tau = \{X, \phi, \{a\}, \{c,d\}, \{a,c,d\}\}$ then {a,c} is $\alpha r \omega$ -LC set but not a α -locally closed set in (X, τ).

Theorem 3.8: Every r-locally closed set is a $\alpha r \omega$ -LC set but not conversely.

Proof: The proof follows from the two definitons [follows from Lemma 2.3] and fact that every r-closed (resp. r-open) set is $\alpha r \omega$ -closed ($\alpha r \omega$ -open).

Example 3.9: Let X={a,b,c} and $\tau = \{X, \phi, \{a\}\}$ then {c} is $\alpha r \omega$ -LC set but not a r-locally closed set in (X, τ) .

Theorem 3.10: The following holds

- i) Every $\alpha r \omega$ -locally closed set is αg -locally closed set.
- ii) Every αrω-locally closed set is wg-locally closed set (resp gs- locally closed set, rwg-locally closed set, gp-locally closed set, gspr-locally closed set, gpr-locally closed set, αgr-locally closed set).

Proof: (i) The proof follows from the definitions and fact that every $\alpha r \omega$ -closed (resp. $\alpha r \omega$ -open) set is αg -closed (αg -open) set.

(ii) Similarly we can prove (ii).

Remark 3.11: The converse of the above Theorem need not be true, as seen from the following example.

Example 3.12: Let X={a,b,c} and $\tau =$ {X, ϕ , {a},{b,c}} then {a,b} is α g-locally closed set, wg-locally closed set, gs- locally closed set, rwg- locally closed set, gp-locally closed set, gsr- locally closed set, gr- locally closed set, α gr- locally closed set but not a α r ω -LC set in (X, τ).

Definition 3.13: A subset A of (X, τ) is called a $\alpha r \omega - LC^*$ set if there exists a $\alpha r \omega$ -open set G and a closed F of (X, τ) s.t A = G \cap F the collection of all $\alpha r \omega - LC^*$ sets of (X, τ) will be denoted by $\alpha r \omega - LC^*(X, \tau)$.

Definition 3.14: A subset B of (X, τ) is called a $\alpha r \omega - LC^{**}$ set if there exists an open set G and $\alpha r \omega$ -closed set F of (X, τ) s.t B = G \cap F the collection of all $\alpha r \omega$ -LC** sets of (X, τ) will be denoted by $\alpha r \omega$ -LC** (X, τ) .

Theorem 3.15:

- 1. Every locally closed set is a $\alpha r \omega$ -LC* set.
- 2. Every locally closed set is a $\alpha r \omega$ -LC** set.
- 3. Every arm-LC* set is arm-LC set.
- 4. Every αrω-LC** set is αrω-LC set.

Proof: The proof are obivious from the definitions and the relation between the sets.

However the converses of the above results are not true as seen from the following examples.

Example 3.16: Let X={a,b,c} and $\tau =$ {X, ϕ ,{a}}

- (i) The set {b} is $\alpha r \omega\text{-LC}^*$ set but not a locally closed set in (X, $\tau)$.
- (ii) The set {b} is $\alpha r \omega$ -LC** set but not a locally closed set in (X, τ).
- (iii) The set {a,b} is $\alpha r \omega$ -LC set but not a $\alpha r \omega$ -LC* set in (X, τ).

Example 3.17: Let X={a,b,c} and $\tau = \{X, \phi, \{a\}\}$ then the set {a,b} is $\alpha r \omega$ -LC set but not a $\alpha r \omega$ -LC** set in (X, τ).

Remark 3.18: $\alpha r \omega$ -LC* sets and $\alpha r \omega$ -LC** sets are independent of each other as seen from the examples.

Example 3.19: (i) Let X={a,b,c,d} and τ {X, ϕ , {a}, {c,d}, {a,c,d}} then set {a, d} is $\alpha r \omega$ -LC** set but not a $\alpha r \omega$ -LC* set in (X, τ).

(ii) Let X={a,b,c} and $\tau = {X, \phi, {a}}$ then the set {a,b} is $\alpha r \omega - LC^*$ set but not a $\alpha r \omega - LC^{**}$ set in (X, τ).

Remark 3.20 The following examples shows that $\alpha r \omega$ -locally closed sets are independent of ω -locally closed, rw-locally closed, rg α -locally closed, gprw-locally closed sets.

Example 3.21: Let X={a,b,c} and $\tau = {X, \phi, {a}, {b,c}}$ then {a,b} is ω -locally closed set, rw-locally closed set, rg α -locally closed set, gprw-locally closed set but not a $\alpha r \omega$ -LC set in (X, τ).

Example 3.22: Let X={a,b,c,d} and $\tau =$ {X, ϕ , {a},{b},{a,b}{a,b,c}} then {b,c} is $\alpha r \omega$ -LC set but not a rw–locally closed set, rg α –locally closed set, gprw–locally closed set in (X, τ).

Example 3.23: Let X={a,b,c} and $\tau = \{X, \phi, \{a\}\}$ then {a,c} is $\alpha r \omega$ -LC set but not a ω -locally closed set in (X, τ).

Remark 3.24: From the above discussion and known results we have the following implications in the diagram.

regular-locally closed set

R. S. WALİ & PRABHAVATI S. MANDALAGERI

- iii) $\alpha r \omega$ -LC(X, τ) \subseteq GLC (X, τ).
- iv) $\alpha r \omega$ -LC(X, τ) $\subseteq \omega$ -LC (X, τ).
- v) $\alpha r \omega$ -LC(X, τ) \subseteq RW-LC (X, τ).

Proof: (i) For any space (X, τ) , W.K.T $LC(X, \tau) \subseteq \alpha r \omega - LC(X, \tau)$. Since $\alpha r \omega O(X, \tau) = \tau$, that is every $\alpha r \omega$ -open set is open and every $\alpha r \omega$ -closed set is closed in (X, τ) , $\alpha r \omega - LC(X, \tau) \subseteq LC(X, \tau)$; hence $\alpha r \omega - LC(X, \tau) = LC(X, \tau)$.

(ii) For any space (X, τ) , $LC(X, \tau) \subseteq \alpha$ - $LC(X, \tau) \subseteq \alpha$ r ω - $LC(X, \tau)$ From (i) it follows that α r ω - $LC(X, \tau) = \alpha$ - $LC(X, \tau)$.

(iii) For any space (X, τ), LC(X, τ) \subseteq GLC (X, τ) from (i) $\alpha r \omega$ -LC(X, τ) = LC (X, τ) and hence $\alpha r \omega$ -LC(X, τ) \subseteq GLC (X, τ).

(iv) For any space (X, τ), LC(X, τ) $\subseteq \omega$ -LC (X, τ) from (i) $\alpha r \omega$ -LC(X, τ) = LC (X, τ) and hence $\alpha r \omega$ -LC(X, τ) $\subseteq \omega$ -LC (X, τ).

(v) For any space (X, τ) , LC $(X, \tau) \subseteq$ RW-LC (X, τ) from (i) $\alpha r \omega$ -LC (X, τ) = LC (X, τ) and hence $\alpha r \omega$ -LC $(X, \tau) \subseteq$ RW-LC (X, τ) .

Theorem 3.26: If $\alpha r \omega O(X, \tau) = \tau$, then $\alpha r \omega - LC^*(X, \tau) = \alpha r \omega - LC^{**}(X, \tau) = \alpha r \omega - LC(X, \tau)$.

Proof: For any space, (X, τ) LC $(X, \tau) \subseteq \alpha r \omega - LC^*(X, \tau) \subseteq \alpha r \omega - LC(X, \tau)$ and LC $(X, \tau) \subseteq \alpha r \omega - LC^{**}(X, \tau) \subseteq \alpha r \omega - LC(X, \tau)$. since $\alpha r \omega O(X, \tau) = \tau$, $\alpha r \omega - LC(X, \tau) = LC(X, \tau)$ by theorem 3.25, it follows that LC(X, τ) = $\alpha r \omega - LC^{**}(X, \tau) = \alpha r \omega - LC^{**}(X, \tau) = \alpha r \omega - LC(X, \tau)$.

Remark 3.27: The converse of the theorem 3.26 need not be true in general as seen from the following example.

Example 3.28: Let X={a, b, c} with the topology $\tau = \{ X, \phi, \{a\} \}$ then $\alpha r \omega - LC^*(X, \tau) = \alpha r \omega - LC^{**}(X, \tau) = \alpha r \omega - LC(X, \tau)$. However $\alpha r \omega O(X, \tau) = \{ X, \phi, \{a\}, \{a,c\}, \{a,b\} \} \neq \tau$.

Theorem 3.29: If $GO(X, \tau) = \tau$, then $GLC(X, \tau) \subseteq \alpha r \omega$ -LC(X, τ)

Proof: For any space (X, τ) w.k.t LC $(X, \tau) \subseteq$ GLC (X, τ) and LC $(X, \tau) \subseteq \alpha \tau \omega$ -LC (X, τ) (i) GO $(X, \tau) = \tau$, that is every g-open set is open and every g-closed set is closed in (X, τ) and so GLC $(X, \tau) \subseteq$ LC (X, τ) . That is GLC $(X, \tau) =$ LC (X, τ) (ii) , from (i) and (ii) we have GLC $(X, \tau) \subseteq \alpha \tau \omega$ -LC (X, τ) .

Theorem 3.30: If $\omega O(X, \tau) = \tau$, then $\omega - LC(X, \tau) \subseteq \alpha r \omega - LC(X, \tau)$

Proof: For any space (X, τ) , w.k.t $LC(X, \tau) \subseteq \omega$ - $LC(X, \tau)$ and $LC(X, \tau) \subseteq \alpha r \omega$ - $LC(X, \tau)$ (i) $\omega O(X, \tau) = \tau$, that is every ω -open set is open and every ω -closed set is closed in (X, τ) and so ω - $LC(X, \tau) \subseteq LC(X, \tau)$. That is ω - $LC(X, \tau) = LC(X, \tau)$ (ii) from (i) and (ii) we have ω - $LC(X, \tau) \subseteq \alpha r \omega$ - $LC(X, \tau)$ **Theorem 3.31:** If RWO(X, τ) = τ , then RW- $LC(X, \tau) \subseteq \alpha r \omega$ - $LC(X, \tau)$

Proof: For any space (X, τ) w.k.t LC $(X, \tau) \subseteq$ RW-LC (X, τ) and LC $(X, \tau) \subseteq \alpha r \omega$ -LC (X, τ) (i) RWO $(X, \tau) = \tau$, that is every rw-open set is open and every rw-closed set is closed in (X, τ) and so RW-LC $(X, \tau) \subseteq$ LC (X, τ) . That is RW-LC $(X, \tau) =$ LC (X, τ) (ii) from (i) and (ii) we have RW-LC $(X, \tau) \subseteq \alpha r \omega$ -LC (X, τ)

Theorem 3.32: If $\alpha r \omega C(X, \tau) \subseteq LC(X, \tau)$ then $\alpha r \omega - LC(X, \tau) = \alpha r \omega - LC^*(X, \tau)$

Proof: Let $\alpha r \omega C(X, \tau) \subseteq LC(X, \tau)$, For any space (X, τ) , w.k.t $\alpha r \omega - LC^*(X, \tau) \subseteq \alpha r \omega - LC(X, \tau)$...(i) Let $A \in \alpha r \omega C(X, \tau)$, then $A = U \cap F$, where U is $\alpha r \omega$ -open and F is a $\alpha r \omega$ -closed in (X, τ) . Now $F \in \alpha r \omega - LC(X, \tau)$ by hypothesis F is locally closed set in (X, τ) , then $F = G \cap E$, where G is an open set and E is a closed set in (X, τ) .

Now, $A = U \cap F = U \cap (G \cap E) = (U \cap G) \cap E$, where $U \cap G$ is $\alpha r \omega$ -open as the intersection of $\alpha r \omega$ -open sets is $\alpha r \omega$ -open and E is a closed set in (X, τ) . It follows that A is $\alpha r \omega$ -LC* (X, τ) . That is A $\epsilon \alpha r \omega$ -LC* (X, τ) and so, $\alpha r \omega C(X, \tau) \subseteq \alpha r \omega$ -LC* (X, τ) (ii).

From (i) and (ii) we have $\alpha r \omega - LC(X, \tau) = \alpha r \omega - LC^*(X, \tau)$.

Remark 3.33: The converse of the theorem 3.32 need not be true in general as seen from the following example.

Example 3.34: Consider X= {a,b,c} and $\tau = \{ X, \phi, \{a\} \}$, then $\alpha r \omega - LC(X, \tau) = \alpha r \omega - LC^*(X, \tau) = P(X)$. But $\alpha r \omega C(X, \tau) == \{ X, \phi, \{b\}, \{c\}, \{b,c\} \}$ and $LC(X, \tau) = \{ X, \phi, \{a\}, \{b,c\} \}$ That is $\alpha r \omega C(X, \tau) \not\subseteq LC(X, \tau)$.

Theorem 3.35: For a subset A of (X, τ) if A $\epsilon \alpha r \omega$ -LC (X, τ) then A = U $\cap (\alpha r \omega$ -cl(A)) for some open set U.

Proof: Let, $A \in \alpha r \omega$ -LC(X, τ) then there exist a $\alpha r \omega$ -open U and a $\alpha r \omega$ -closed set F s.t. $A = U \cap F$. Since $A \subseteq F$, $\alpha r \omega$ -cl(A) $\subseteq \alpha r \omega$ -cl(F) = F. Now U $\cap (\alpha r \omega$ -cl(A)) $\subseteq U \cap F$ = A, that is U $\cap (\alpha r \omega$ -cl(A)) $\subseteq A$.

and $A \subseteq U$ and $A \subseteq \alpha r \omega$ -cl(A) implies $A \subseteq U \cap (\alpha r \omega$ -cl(A)) and therefore $A = U \cap (\alpha r \omega$ -cl(A)) for some $\alpha r \omega$ -open set U.

Remark 3.36: The converse of the theorem 3.35 need not be true in general as seen from the following example.

Example 3.37: Consider X={a, b, c, d} and $\tau = {X, \phi, {a}, {c,d}, {a,c,d}}$

- 1. $\alpha r \omega$ -C(X, τ) = { X, ϕ , {b}, {a, b}, {a, b, c}, {b, c, d}, {a, b, d} }
- 2. $\alpha r \omega$ -LC Set = {X, ϕ , {a}, {b}, {c}, {d}, {a, b}, {c, d}, {a, d}, {a, c}, a, b, c}, {b, c, d}, {a, b, d}, {a, c, d} }

Take A= {b,d}, $\alpha r \omega$ -cl(A)= {b,d} now, A = X $\cap (\alpha r \omega$ -cl(A)) for some $\alpha r \omega$ -open set X but {b,d} $\notin \alpha r \omega$ -LC (X, τ).

Theorem 3.38: For a subset A of (X, τ) , the following are equivalent.

(i) A $\epsilon \alpha r \omega$ -LC^{*}(X, τ).

(ii) $A = U \cap (cl(A) \text{ for some } \alpha r \omega \text{-open set } U.$

(iii) cl(A)-A is $\alpha r \omega$ -closed.

(iv) A U (cl(A)^c is $\alpha r \omega$ -open.

Proof : (i) implies (ii) Let $A \in \alpha r \omega - LC^*(X, \tau)$ then there exists a $\alpha r \omega$ -open set U and a closed set F s.t A = U \cap F. Since A \subseteq F, cl(A) \subseteq cl(F)= F. Now U \cap cl(A) \subseteq U \cap F = A that is U \cap cl(A)= A. Conversely A \subseteq U, and A \subseteq cl(A) implies A \subseteq U \cap cl(A) and therefore A = U \cap cl(A) for some $\alpha r \omega$ -open set U.

(ii) implies (i) since U is a $\alpha r \omega$ -open set and cl(A) is a closed set, A= U \cap (cl(A) $\epsilon \alpha r \omega$ -LC^{*}(X, τ).

(iii) implies (iv) let F=cl(A)-A, then F is $\alpha r \omega$ -closed by the assumption and X-F=X-[cl(A)-A] = X \cap [cl(A)-A]^c = A \cup (X-cl(A)) = A \cup (cl(A))^c. But X- F is $\alpha r \omega$ -open. This shows that A \cup (cl(A))^c is $\alpha r \omega$ -open. (iv) implies (iii) Let U = A \cup (cl(A)^c then U is $\alpha r \omega$ -open ,this implies X-U is $\alpha r \omega$ -closed and X-U =

 $X - (A \cup cl(A)^{c}) = cl(A) \cap (X - A) = cl(A) - A$ is $\alpha r \omega$ -closed.

(iv) imples (ii) Let U = A U (cl(A)^c then U is $\alpha r \omega$ -open .hence we prove that A =U \cap (cl(A)cfor some $\alpha r \omega$ -open set U.

Now $A = U \cap (cl(A) = [A \cup (cl(A)^c] \cap cl(A) = A \cap [cl(A)] \cup cl(A)^c \cap cl(A) = A \cup \phi = A.$

Therefore $A = U \cap (cl(A) \text{ for some } \alpha r \omega \text{ -open set } U.$

(ii) implies (iv) Let $A = U \cap (cl(A) \text{ for some } \alpha \omega \text{-open set then we } P.T \quad A \cup (cl(A)^c \text{ is } \alpha r \omega \text{-open } . Now A \cup (cl(A)^c = (U \cap (cl(A)) \cup [cl(A))^c = U \cap (cl(A)) \cup [cl(A))^c = U \cap X = U, \text{ which is } \alpha r \omega \text{-open.}$ Thus $A = (cl(A))^c \text{ is } \alpha r \omega \text{-open.}$

Theorem 3.39: For a subset A of (X, τ) , the following are equivalent.

(i) A $\epsilon \alpha r \omega$ -LC(X, τ).

(ii) $A = U \cap (cl(A) \text{ for some } \alpha r \omega \text{-open set } U$.

(iii) cl(A)-A is αrω-closed.

(iv) A U (cl(A)^c is $\alpha r \omega$ -open.

Proof: Similar to Theorem 3.38

Theorem 3.40: For a subset A of (X, τ) if $A \epsilon \alpha r \omega - LC^{**}(X, \tau)$, then there exists an open set U s.t $A = U \cap \alpha r \omega - cl(A)$.

Proof: Let $A \in \alpha r \omega$ -LC**(X, τ), then there exist an open set U and a $\alpha r \omega$ -closed set F s.t $A = U \cap F$. Since $A \subseteq U$ and $A \subseteq \alpha r \omega$ -cl(A) we have $A \subseteq \alpha r \omega$ -cl(A).

And since $A \subseteq F$ and $\alpha r \omega - cl(A) \subseteq \alpha r \omega - cl(F) = F$, as F is $\alpha r \omega - closed$. Thus $U \cap \alpha r \omega - cl(A) \subseteq U \cap F = A$. That is $U \cap \alpha r \omega - cl(A) \subseteq A$; hence $A = U \cap \alpha r \omega - cl(A)$, for some open set U.

Remark 3.41: The converse of the theorem 3.40 need not be true in general as seen from the following example.

Example 3.42: Consider X={a, b, c, d} and $\tau = {X, \phi, {a}, {c,d}, {a,c,d}}$

- 1. $\alpha r \omega C(X, \tau) = \{ X, \phi, \{b\}, \{a, b\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\} \}$
- 2. $\alpha r \omega$ -LC Set = {X, ϕ , {a}, {b}, {c}, {d}, {a, b}, {c, d}, {a, d}, {a, c}, a, b, c}, {b, c, d}, {a, b, d}, {a, c, d} }

Take A= {b,d}, $\alpha r \omega$ -cl(A)= {b,d} now, A = X $\cap (\alpha r \omega$ -cl(A)) for some $\alpha r \omega$ -open set X but {b,d} $\epsilon \alpha r \omega$ -LC**(X, τ).

Theorem 3.43: For A and B in (X, τ) the following are true.

(i) if $A \in \alpha r \omega - LC^*(X, \tau)$ and $B \in \alpha r \omega - LC^*(X, \tau)$, then $A \cap B \in \alpha r \omega - LC^*(X, \tau)$.

(ii) if $A \epsilon \alpha r \omega - LC^{**}(X, \tau)$ and B is open, then $A \cap B \epsilon \alpha r \omega - LC^{**}(X, \tau)$.

(iii) if $A \epsilon \alpha r \omega$ -LC(X, τ) and B is $\alpha r \omega$ -open, then $A \cap B \epsilon \alpha r \omega$ -LC(X, τ).

(iv)) if $A \in \alpha r \omega - LC^*(X, \tau)$ and B is $\alpha r \omega$ -open, then $A \cap B \in \alpha r \omega - LC^*(X, \tau)$.

(v)) if $A \in \alpha r \omega - LC^*(X, \tau)$ and B is closed, then $A \cap B \in \alpha r \omega - LC^*(X, \tau)$.

Proof:(i) Let A , B $\epsilon \alpha r \omega$ -LC*(X, τ) , it follows from theorem 3.38 that there exist $\alpha r \omega$ -open sets P and Q s.t A =P \cap cl(A) and B=Q \cap cl(B).

Therefore $A \cap B = P \cap cl(A) \cap Q \cap cl(B) = P \cap Q \cap [cl(A) \cap cl(B)]$ where $P \cap Q$ is $\alpha r \omega$ -open and $cl(A) \cap cl(B)$ is closed. This shows that $A \cap B \in \alpha r \omega$ -LC*(X, τ).

(ii)Let A $\epsilon \alpha r \omega$ -LC**(X, τ) and B is open. Then there exist an open set P and $\alpha r \omega$ -closed set F s.t A = P \cap F. Now, A \cap B = P \cap F \cap B = (P \cap B) \cap F, Where (P \cap B) is open and F is $\alpha r \omega$ -closed. This implies A \cap B $\epsilon \alpha r \omega$ -LC**(X, τ).

(iii) Let $A \epsilon \alpha r \omega$ -LC(X, τ) and B is $\alpha r \omega$ -open then there exists a $\alpha r \omega$ -open set P and a $\alpha r \omega$ -closed set F s.t A = P \cap F. Now, A \cap B = P \cap F \cap B = (P \cap B) \cap F, Where (P \cap B) is $\alpha r \omega$ -open and F is $\alpha r \omega$ -closed .This shows that A \cap B $\epsilon \alpha r \omega$ -LC(X, τ).

(iv) Let $A \in \alpha r \omega - LC^*(X, \tau)$ and B is $\alpha r \omega$ -open then there exists a $\alpha r \omega$ -open set P and a $\alpha r \omega$ -closed set F s.t A = P \cap F. Now, A \cap B = (P \cap F) \cap B = (P \cap B) \cap F, Where $(P \cap B)$ is $\alpha r \omega$ -open and F is closed. This implies that A \cap B $\in \alpha r \omega$ -LC*(X, τ).

(v) A $\epsilon \alpha r \omega$ -LC*(X, τ) and B is closed. Then there exist an $\alpha r \omega$ -open set P and a closed set F s.t A = P \cap F. Now, A \cap B = (P \cap F) \cap B = P \cap (F \cap B), Where (F \cap B) is closed and P is $\alpha r \omega$ -open. This implies A \cap B $\epsilon \alpha r \omega$ -LC*(X, τ).

Definition 3.44

A topological space (X, τ) is called $\alpha r \omega$ -submaximal if every dense subset is $\alpha r \omega$ -open.

Theorem 3.45 If (X, τ) is submaximal space then it is $\alpha r \omega$ -submaximal space but converse need not be true in general.

Proof: Let (X, τ) be submaximal space and A be a dense subset of (X, τ) . Then A is open. But every open set is $\alpha r \omega$ -open and so A is $\alpha r \omega$ -open. Therefore (X, τ) is a $\alpha r \omega$ -submaximal space.

Example 3.46 Let X = {a, b, c} and $\tau = \{\phi, \{a\}, X\}$. Then Topological space (X, τ) is $\alpha r \omega$ -submaximal but set A={a,b} is dense in (X, τ) but not open therefore (X, τ) is not submaximal.

Theorem 3.47 A topological space (X, $\tau)$ $\alpha r \omega \text{-submaximal}$ if and only if

 $P(X) = \alpha r \omega - LC^*(X, \tau).$

Proof:

Necessity: Let $A \in P(X)$ and $U = A \cup (X-cl(A))$. Then it follows $cl(U) = cl(A \cup (X-cl(A))) = cl(A) \cup (X-cl(A)) = X$. Since (X, τ) is $\alpha \tau \omega$ -sub maximal, U is $\alpha \tau \omega$ -open, so $A \in \alpha \tau \omega LC^*(X, \tau)$ from the Theorem 3.38 Hence $P(X) = \alpha \tau \omega LC^*(X, \tau)$.

Sufficiency: Let A be dense sub set of (X, τ) . Then by assumption and Theorem 3.38 (iv) that $A \cup (X-cl(A)) = A$ holds, $A \epsilon \alpha r \omega LC^*(X, \tau)$ and A is $\alpha r \omega$ -open. Hence $(X, \tau) \alpha r \omega$ -sub maximal.

Theorem 3.48: If (X, τ) T_{arw}-space then arw-LC(X, τ) = LC(X, τ).

Proof: Straight Forward.

Theorem 3.49: Let (X, τ) and (Y, σ) be toplogical spaces.

- i) If $A \in \alpha r \omega LC(X, \tau)$ and $B \in \alpha r \omega LC(Y, \sigma)$ then $A \times B \in \alpha r \omega LC(X \times Y, \tau \times \sigma)$.
- ii) If A $\epsilon \alpha r \omega$ -LC*(X, τ) and B $\epsilon \alpha r \omega$ -LC*(Y, σ) then A × B $\epsilon \alpha r \omega$ -LC*(X × Y, $\tau \times \sigma$).

iii) If A ϵ arw-LC**(X, τ) and B ϵ arw-LC**(Y, σ) then A×B ϵ arw-LC**(X×Y, $\tau \times \sigma$).

Proof: i) If A $\alpha r \omega$ -LC(X, τ) and B $\alpha r \omega$ -LC(Y, σ). Then there exist $\alpha r \omega$ -open sets U and V of (X, τ) and (Y, σ) and $\alpha r \omega$ -clos d sets G and F of X and Y respectively such that A= U \cap G and B= V \cap F. Then A × B= (U × V) \cap (G × F) holds.

Hence $A \times B$ arw-LC($X \times Y$, $\tau \times \sigma$).

ii) and iii) Similarly the follow from the definition.

References

- [1]. A. Pushpalatha (2000), Studies on generalizations of mappings in topological spaces, Ph.D., thesis, Bharathiar University, Coimbatore.
- [2]. C. Kuratowski and W. Sierpinski(1921), Sur les differences deux ensembles fermes, Tohoku Math .Jl., 20 22-25
- [3]. H. P. Perk and J. K.Perk, on locally δg closed sets, $l\delta gc$ -continuous functions, solitions and fractals 19 (2004), 995-1002.
- [4]. I. Arockiarani and K. Balachandran , on θ -g locally closed set (pre print).
- [5]. I. Arockiarani and K.Balachandran and M. Ganster, Regular generalized locally closed sets and rgl-continuous functions, Indian J. Pure . Appl. Math , 28(1997), 661-669.
- [6]. K. Balachandran, P. sundaram, and H. Maki, g-lc and glc-continuous function, indian j pure appp Math, 27 (1966), 235-244.
- [7]. M. Ganster and I.L.Reilly, locally closed sets ad lc-continuous function internret, j, math, sci, 12(1989),417-424.
- [8]. M. Sheik john, a study on generalization of closed sets on continuous maps in topological & bitopological spaces, Ph.D thesis, Bharathiar university,Coimbatore (2002).
- [9]. M. Stone , Absolutly FG spaces , proc,Amer.math, soc 80(1980) 515-520.
- [10]. N. Bourkbaki, General topology ,part I adison-wesley,reading mass.,1966
- [11]. R. S. Wali &, Mandalgeri P. S , On α Regular ω -closed sets in topological spaces, Int. J ofMath Archive. 2014; 5(10):68-76
- [12]. R. S. Wali & P.S. Mandalgeri, On α Regular ω-open sets in topological spaces, J. of comp & Math Sci., Vol 5(6), 2014, pp 490-499
- [13]. S. S. Benchalli and R.S Wali on rw-Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110
- [14]. Y. Gnanambal , On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360
- [15]. Y. Gnanambal , On generalized pre-regular Closed sets and generalized of locally closed sets in Topological Spaces , Ph.D thesis, Bharathiar university, Coimbatore (1998)