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ABSTRACT 

Aghajani et. al. [2] introduced 𝐺𝑏 -metric space and established common 

fixed point of generalized weak contractive mapping in partially ordered 𝐺𝑏 -

metric spaces. In the present paper, we prove some fixed point theorems for 

onto mappings satisfying various expansive type conditions in the setting of 

a generalized b-metric space.  The presented theorems extend, generalize 

and improve many existing results in the literature. 

Keywords: 𝐺𝑏 -metric spaces, onto mapping, expansive mapping, and fixed 

point. 
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1.  INTRODUCTION 

 The fixed point theorems in metric spaces are playing major role to construct methods in 

mathematics to solve problems in applied mathematics and sciences. So the attraction of metric 

spaces to a large numbers of mathematicians is understandable. Some generalizations of the notion 

of a metric space have been proposed by some authors.  

 In 1992, Dhage [5] introduced the concept of a D-metric space. Mustafa and Sims [22, 24] 

have shown that most of the results concerning Dhage’s D-metric spaces are invalid. Therefore, they 

introduced an improved version of the generalized metric space structure, which they called G-

metric spaces.  Aghajani et. al. [2] introduced 𝐺𝑏 -metric space and established common fixed point 

of generalized weak contractive mapping in partially ordered 𝐺𝑏 -metric spaces. The study of 

expansive mappings is very interesting research area of fixed point theory. The study of expansive 

mappings is a very interesting research area in fixed point theory. In 1984, Wang et.al [19] 

introduced the concept of expanding mappings and proved some fixed point theorems in complete 

metric spaces. In 1992, Daffer and Kaneko [8] defined an expanding condition for a pair of mappings 

and proved some common fixed point theorems for two mappings in complete metric spaces. Aage 

and Salunke [1] introduced several meaningful fixed point theorems for one expanding mapping. 
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Daheriya et al. [9] proved some fixed point theorems for Expansive Type Mapping in dislocated 

metric space. 

 In the present paper, we prove some fixed point theorems for self-mappings satisfying 

expansive condition in 𝐺𝑏 -metric spaces. These results improve and generalized some important 

known results. 

2. PRELIMINARIES 

Following definitions and fundamental results are required for our further use. 

Definition 2.1 [2] Let 𝑋 be a non-empty set and 𝑠 ≥ 1 be a given real number. Suppose that a 

mapping𝐺: 𝑋 × 𝑋 × 𝑋 → 𝑅+ satisfies: 

(GB1). 𝐺 𝑥, 𝑦, 𝑧 = 0 if 𝑥 = 𝑦 = 𝑧, 

(GB2). 0 < 𝐺 𝑥, 𝑥, 𝑦 , ∀ 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦, 

(GB3). 𝐺 𝑥, 𝑥, 𝑦 ≤ 𝐺 𝑥, 𝑦, 𝑧 , ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑦 ≠ 𝑧, 

(GB4). 𝐺 𝑥, 𝑦, 𝑧 = 𝐺{𝑝 𝑥, 𝑦, 𝑧 } (Symmetry), 

(GB5). 𝐺 𝑥, 𝑦, 𝑧 ≤ 𝑠(𝐺 𝑥, 𝑎, 𝑎 + 𝐺 𝑎, 𝑦, 𝑧 ), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 (Rectangle inequality). 

 Then the pair (𝑋, 𝐺) is called a generalized 𝐺𝑏 -metric space or, more specifically, a 𝐺𝑏 -metric 

space. Obverse that if  𝑠 = 1 the ordinary rectangle inequality in a generalized metric space is 

satisfied; however, it does not hold true when  𝑠 > 1. Thus the class of 𝐺𝑏 -metric spaces are 

effectively larger than that of ordinary G- metric spaces. That is, every G-metric space is a 𝐺𝑏 -metric 

space, but the converse need not be true. Therefore, it is obvious that 𝐺𝑏 -metric spaces generalize 

𝐺𝑏 -metric spaces. 

Example 2.2[2]  Let (𝑋, 𝐺) be a 𝐺-metric space, and 𝐺∗ 𝑥, 𝑦, 𝑧 = 𝐺𝑝 𝑥, 𝑦, 𝑧 , where 𝑝 > 1 is a real 

number. Note that 𝐺∗ is a 𝐺𝑏 - metric with 𝑠 = 2𝑝−1. In [], it is prove that (𝑋, 𝐺∗) is not necessarily a 

𝐺-metric space 

Example 2.3[2]  Let X = ℝ and   𝑑 𝑥, 𝑦 =  𝑥 − 𝑦 2. We know that  𝑋, 𝑑  is a b-metric space with 

𝑠 = 2. Let  G x, y, z = 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 + 𝑑 𝑧, 𝑥 ∀ x, y, z ∈ X, then  𝑋, 𝐺  is not a 𝐺𝑏 - metric space. 

If we define G x, y, z = max 𝑑 𝑥, 𝑦 , 𝑑 𝑦, 𝑧 , 𝑑 𝑧, 𝑥   ∀ x, y, z ∈ X.Then  𝑋, 𝐺  is a 𝐺𝑏 -metric space 

with 𝑠 = 2. 

Definition 2.4 [2] Let (𝑋, 𝐺) be a 𝐺𝑏 -metric space. A sequence  𝑥𝑛 𝑛=1
∞ in 𝑋 is said to be: 

1) a 𝐺𝑏 - Cauchy sequence if, for each 𝜖 > 0 there exists 𝑛0 ∈ 𝑁 such that for all 𝑛, 𝑚, 𝑙 > 𝑛0, 

𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙 < 𝜖. 

2) a 𝐺𝑏 - convergent sequence if, for each 𝜖 > 0 there exists 𝑛0 ∈ 𝑁 such that for all 𝑛, 𝑚 > 𝑛0, 

𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥 < 𝜖.for some fixed 𝑥 in 𝑋. Here 𝑥 is called 𝐺𝑏 -limit of  𝑥𝑛 𝑛=1
∞  and is denoted by 

𝐺𝑏 − lim𝑛→∞ 𝑥𝑛 = 𝑥 or 𝑥𝑛 → 𝑥 as 𝑛 → ∞. 

Definition 2.5 [2] A 𝐺𝑏 - metric space 𝑋 is said to be 𝐺𝑏 -complete metric space, if every 𝐺𝑏 - Cauchy 

sequence in 𝑋 is 𝐺𝑏 - convergent in 𝑋. 

Proposition 2.6[2] Let (𝑋, 𝐺) be a 𝐺𝑏 -metric space. Then the following are equivalent: 

(1).  𝑥𝑛 𝑛=1
∞  is 𝐺𝑏 -Cauchy in 𝑋, 

(2). For every 𝜖 > 0, there exists 𝑛0 ∈ ℕ such that for all 𝑛, 𝑚 > 𝑛0, 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  < 𝜖. 

Proposition 2.7 [2] Let (𝑋, 𝐺) be a 𝐺𝑏 - metric space. Then the function 𝐺(𝑥, 𝑦, 𝑧) is not jointly 

continuous in all three variables. 

3. MAIN RESULT 

We begin with following some lemmas. 

Lemma 3.1 Let (𝑋, G, s) be a 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1 and let  xn n=1
∞  be a 

sequence in 𝑋. If  xn n=1
∞  converges to 𝑥 and also  xn n=1

∞  converges to 𝑦, then 𝑥 = 𝑦. That is, the 

limit of  xn n=1
∞  is unique. 
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Proof: Since 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 as 𝑛 → +∞, that is, lim𝑛→+∞ G 𝑥𝑛 , 𝑥, 𝑥 = 0 and 

lim𝑛→+∞ G 𝑥𝑛 , 𝑦, 𝑦 = 0. By using rectangle inequality, we have 

                             G 𝑥, 𝑦, 𝑦 ≤ 𝑠 G 𝑥, 𝑥𝑛 , 𝑥𝑛 + G 𝑥𝑛 , 𝑦, 𝑦   

By taking limit as 𝑛 → +∞, we get 𝐺(𝑥, 𝑦, 𝑦) = 0 and so 𝑥 = 𝑦. 

Lemma 3.2 Let (𝑋, G, s) be a 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1 and let  xn n=1
∞  be a 

sequence in 𝑋. If  xn n=1
∞  converges to x. Then  

                              
1

𝑠
G 𝑥, 𝑦, 𝑦 ≤ lim𝑛→+∞ G 𝑥𝑛 , 𝑦, 𝑦 ≤ 𝑠G 𝑥, 𝑦, 𝑦                                           (3.1) 

∀ 𝑦 ∈ 𝑋. 

Proof From rectangle inequality, we have 

       
1

𝑠
G 𝑥, 𝑦, 𝑦 − lim𝑛→+∞ G 𝑥, 𝑥𝑛 , 𝑥𝑛  

                              ≤ lim𝑛→+∞ G 𝑥𝑛 , 𝑦, 𝑦  

                              = lim𝑛→+∞ G 𝑦, 𝑦, 𝑥𝑛  

≤ 𝑠 G 𝑦, 𝑦, 𝑥 + lim𝑛→+∞ G 𝑥, 𝑥, 𝑥𝑛                                                                             (3.2) 

and so 
1

𝑠
G 𝑥, 𝑦, 𝑦 ≤ lim

𝑛→+∞
G 𝑥𝑛 , 𝑦, 𝑦 ≤ 𝑠G 𝑥, 𝑦, 𝑦  

∀ 𝑦 ∈ 𝑋. 

Lemma 3.3 Let (𝑋, G, s) be a 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1 and let  xk k=0
n ⊂ X. Then 

        G x0 , xn , xn ≤ sG x0 , x1 , x1 + s2G x2 , x3 , x3 + ⋯ + sn−1G xn−2, xn−1 , xn−1  

                             +sn−1G xn−1, xn , xn                                                                                         (3.3) 

From Lemma 3.3, we deduce the following result. 

Lemma 3.4 Let  𝑋, 𝐺, 𝑠  be a 𝐺𝑏 -metric metric space with the coefficient 𝑠 ≥ 1. Let  xn n=1
∞ be a 

sequence of points of 𝑋such that 

                                  𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ⪯  𝜆𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                  (3.4) 

where𝜆 ∈   0  ,
1

𝑠
   and 𝑛 =  1, 2, . . .. Then  xn n=1

∞  is a 𝐺𝑏 -Cauchy sequence in  𝑋, 𝐺, 𝑠 . 

Proof Let 𝑚 > 𝑛. It follows that 

  𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  ≤ 𝑠 𝐺 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1 + 𝐺 𝑥𝑛+1 , 𝑥𝑚 , 𝑥𝑚    

                          ≤ 𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2 𝐺 𝑥𝑛+1 , 𝑥𝑛+2 , 𝑥𝑛+2 + 𝐺 𝑥𝑛+2, 𝑥𝑚 , 𝑥𝑚    

                          ≤ 𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2𝐺 𝑥𝑛+1 , 𝑥𝑛+1, 𝑥𝑛+2 + ⋯ 

                          +𝑠𝑚−𝑛 𝐺 𝑥𝑚−2, 𝑥𝑚−1 , 𝑥𝑚−1 + 𝐺 𝑥𝑚−1, 𝑥𝑚 , 𝑥𝑚    

                          ≤ 𝑠𝑘𝑛𝐺 𝑥0 , 𝑥1 , 𝑥1 + 𝑠2𝑘𝑛+1𝐺 𝑥0 , 𝑥1 , 𝑥1 + ⋯ 

                          +𝑠𝑚−𝑛𝑘𝑚−2𝐺 𝑥0 , 𝑥1 , 𝑥1 + 𝑠𝑚−𝑛𝑘𝑚−1𝐺 𝑥0 , 𝑥1 , 𝑥1  

                          =  𝑠𝑘𝑛 + 𝑠2𝑘𝑛+1 + ⋯ + 𝑠𝑚−𝑛𝑘𝑚−2 + 𝑠𝑚−𝑛𝑘𝑚−1 𝐺 𝑥0 , 𝑥1 , 𝑥1  

                          = 𝑠𝑘𝑛 1 +  𝑠𝑘 2 + ⋯…… . .  𝐺 𝑥0 , 𝑥1 , 𝑥1  

                          ≤
𝑠𝑘𝑛

1−𝑠𝑘
𝐺 𝑥0 , 𝑥1 , 𝑥1                                                                                                               (3.5) 

It is noted that 𝑠𝜆 < 1. Assume that 𝐺 𝑥0 , 𝑥1 , 𝑥1 > 0. By taking limit as m, n → +∞ in above 

inequality we get 

                                        limn,m→+∞ G xn , xm , xm = 0.                                                                     (3.6) 

For 𝑛, 𝑚, 𝑙 ∈ ℕ,  𝐺𝑏  implies that  

                          𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙 ≤ 𝑠 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  + 𝐺 𝑥𝑙 , 𝑥𝑚 , 𝑥𝑚                                        (3.7) 

Taking limit as 𝑛, 𝑚, 𝑙 → +∞, we get 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙 → 0. So  𝑥𝑛  is a 𝐺𝑏 -Cauchy sequence. Also, if 

G x0 , x1 , x1 = 0, then G xn , xm , xm = 0 for all 𝑚 >  𝑛 and hence  xn n=1
∞  is a 𝐺𝑏 -Cauchy sequence 

in 𝑋. 

Now, our first main results as follows. 
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Theorem 3.5 Let (𝑋, 𝐺) be a complete 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1. Assume that the 

mapping 𝑇 ∶ 𝑋 → 𝑋 is onto and satisfies the condition 

       𝐺 𝑇𝑥, 𝑇𝑦, 𝑇𝑧 ≥ 𝑎𝐺 𝑥, 𝑦, 𝑧 + 𝑏𝐺 𝑥, 𝑥, 𝑇𝑥 + 𝑐𝐺 𝑦, 𝑦, 𝑇𝑦 + 𝑑𝐺(𝑧, 𝑧, 𝑇𝑧)   (3.8) 

where 𝑎, 𝑏, 𝑐, 𝑑 are non-negative constants with 𝑎 + 𝑠𝑏 + 𝑐 + 𝑑 > 𝑠. Then 𝑇 has a fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Since 𝑇 is onto, there is an element 𝑥1 ∈ 𝑋 satisfying  𝑥1 ∈ 𝑇−1 𝑥0 . 

By the same way, we can find  𝑥𝑛 ∈ 𝑇−1 𝑥𝑛−1  for 𝑛 = 2,3,4, ….. If 𝑥𝑚−1 = 𝑥𝑚  for some 𝑚, then 

  𝑥𝑚 ∈ 𝑇−1 𝑥𝑚−1  implies   𝑇𝑥𝑚 = 𝑥𝑚−1 = 𝑥𝑚  and so  𝑥𝑚  is a fixed point of 𝑇. Without loss of 

generality, we can suppose that 𝑥𝑛 ≠ 𝑥𝑛−1 for every 𝑛. From (3.8), we have  

    𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 = 𝐺 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 , 𝑇𝑥𝑛+1  

                              ≥ 𝑎𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑏𝐺 𝑥𝑛 , 𝑥𝑛 , 𝑇𝑥𝑛 + 𝑐𝐺 𝑥𝑛+1, 𝑥𝑛+1 , 𝑇𝑥𝑛+1  

                              +𝑑𝐺 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑇𝑥𝑛+1  

                              = 𝑎𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑏𝐺 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛−1 + 𝑐𝐺 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑛  

                              +𝑑𝐺 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑛  

So, it must be the case that 

           1 − 𝑏 𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 ≥ (𝑎 + 𝑐 + 𝑑)𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1                                            (3.9) 

If 𝑎 + 𝑐 + 𝑑 = 0, then 𝑏 ≤ 1, which is contradiction, since 𝑎 + 𝑠𝑏 + 𝑐 + 𝑑 > 𝑠. Hence 𝑎 + 𝑐 + 𝑑 ≠

0 and from  

                        𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ≤
1−𝑏

𝑎+𝑐+𝑑
𝐺  𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                            (3.10) 

where 0 <
1−𝑏

𝑎+𝑐+𝑑
<

1

𝑠
. 

Let 𝑘 =
1−𝑏

𝑎+𝑐+𝑑
. Then 0 < 𝑘 < 1 and  

                                 𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ≤ 𝑘𝐺  𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                      (3.11) 

By Lemma 3.4,  xn n=1
∞  is a 𝐺𝑏 -Cauchy sequence. By completeness of  𝑋, 𝐺 , there exists 𝑥∗ ∈ 𝑋 

such that 𝑥𝑛 → 𝑥∗. Now 𝑇 is onto mapping. So there exists a point 𝑝 ∈ 𝑋 such that 𝑝 ∈ 𝑇−1 𝑥∗  and 

so 𝑥∗ = 𝑇𝑝. Consider from (3.8), we have 

  𝐺 𝑥𝑛 , 𝑥∗, 𝑥∗ = 𝐺 𝑇𝑥𝑛+1 , 𝑇𝑝, 𝑇𝑝  

                        ≥ 𝑎𝐺 𝑥𝑛+1 , 𝑝, 𝑝 + 𝑏𝐺 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑇𝑥𝑛+1 + 𝑐𝐺 𝑝, 𝑝, 𝑇𝑝  

                       +𝑑𝐺 𝑝, 𝑝, 𝑇𝑝  

                        ≥ 𝑎𝐺 𝑥𝑛+1 , 𝑝, 𝑝 + 𝑏𝐺 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑛 + 𝑐𝐺 𝑝, 𝑝, 𝑥∗  

                       +𝑑𝐺 𝑝, 𝑝, 𝑥∗                                                                                                                          (3.12) 

Taking the limit as 𝑛 → +∞, we have 

               0 ≥ 𝑎𝐺 𝑥∗, 𝑝, 𝑝 + 𝑏𝐺 𝑥∗, 𝑥∗, 𝑥∗ + 𝑐𝐺 𝑝, 𝑝, 𝑥∗ + 𝑑𝐺 𝑝, 𝑝, 𝑥∗  

So, 

                                         0 ≥  𝑎 + 𝑐 + 𝑑 𝐺 𝑝, 𝑝, 𝑥∗ .                                                                               (3.13) 

which implies that 𝐺 𝑝, 𝑝, 𝑥∗ = 0, since 𝑎 + 𝑐 + 𝑑 ≠ 0. Therefore 𝑝 =  𝑥∗ and hence 𝑇𝑥∗ =  𝑥∗. 

Theorem 3.6 Let (𝑋, 𝐺) be a complete 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1, and let 𝑇 ∶ 𝑋 →

𝑋 be onto 𝐺𝑏 - continuous mapping satisfying the condition 

                                𝐺 𝑇 𝑥 , 𝑇2 𝑥 , 𝑇2 𝑥  ≥ 𝑎𝐺 𝑥, 𝑇 𝑥 , 𝑇 𝑥                                            (3.14) 

for all 𝑥 ∈ 𝑋, where 𝑎 > 𝑠.Then 𝑇 has a fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Since 𝑇 is onto, there is an element 𝑥1 ∈ 𝑋 satisfying  𝑥1 ∈ 𝑇−1 𝑥0 . 

By the same way, we can find  𝑥𝑛 ∈ 𝑇−1 𝑥𝑛−1  for 𝑛 = 2,3,4, ….. If 𝑥𝑚−1 = 𝑥𝑚  for some 𝑚, then 

  𝑥𝑚 ∈ 𝑇−1 𝑥𝑚−1  implies   𝑇𝑥𝑚 = 𝑥𝑚−1 = 𝑥𝑚  and so  𝑥𝑚  is a fixed point of 𝑇. Without loss of 

generality, we can suppose that 𝑥𝑛 ≠ 𝑥𝑛−1 for every 𝑛. From (3.14), we have 

𝐺 𝑇 𝑥𝑛+1 , 𝑇2 𝑥𝑛+1 , 𝑇2 𝑥𝑛+1  ≥ 𝑎𝐺 𝑥𝑛+1 , 𝑇 𝑥𝑛+1 , 𝑇 𝑥𝑛+1   

So, 

𝐺 𝑥𝑛 , 𝑥𝑛−1 , 𝑥𝑛−1 ≥ 𝑎𝐺 𝑥𝑛+1 , 𝑥𝑛 , 𝑥𝑛  
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this implies that 

                                      𝐺 𝑥𝑛+1 , 𝑥𝑛 , 𝑥𝑛 ≤ 𝑘𝐺 𝑥𝑛 , 𝑥𝑛−1 , 𝑥𝑛−1                                                             (3.15) 

where 𝑘 =
1

𝑎
<

1

𝑠
. By repeated application of (3.15), we have 

                                      𝐺 𝑥𝑛+1 , 𝑥𝑛 , 𝑥𝑛 ≤ 𝑘𝑛𝐺 𝑥1 , 𝑥0 , 𝑥0                                                                   (3.16) 

Then for all 𝑛, 𝑚 ∈ ℕ;  𝑛 < 𝑚, we have by repeated use of the rectangle inequality and (3.16) that 

  𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  ≤ 𝑠 𝐺 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1 + 𝐺 𝑥𝑛+1 , 𝑥𝑚 , 𝑥𝑚    

                          ≤ 𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2 𝐺 𝑥𝑛+1 , 𝑥𝑛+2 , 𝑥𝑛+2 + 𝐺 𝑥𝑛+2, 𝑥𝑚 , 𝑥𝑚    

                          ≤ 𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2𝐺 𝑥𝑛+1 , 𝑥𝑛+2, 𝑥𝑛+2 + ⋯ 

                          +𝑠𝑚−𝑛 𝐺 𝑥𝑚−2, 𝑥𝑚−1 , 𝑥𝑚−1 + 𝐺 𝑥𝑚−1, 𝑥𝑚 , 𝑥𝑚    

                          ≤ 2𝑠2𝐺 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 + 2𝑠3𝐺 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑛+2 + ⋯ 

                          +2𝑠𝑚−𝑛+1 𝐺 𝑥𝑚−2 , 𝑥𝑚−2 , 𝑥𝑚−1 + 𝐺 𝑥𝑚−1 , 𝑥𝑚−1 , 𝑥𝑚    

                          ≤ 2𝑠2𝑘𝑛𝐺 𝑥1 , 𝑥0 , 𝑥0 + 2𝑠3𝑘𝑛+1𝐺 𝑥1 , 𝑥0 , 𝑥0 + ⋯ 

                          +2𝑠𝑚−𝑛+1𝑘𝑚−2𝐺 𝑥1 , 𝑥0 , 𝑥0 + 2𝑠𝑚−𝑛+1𝑘𝑚−1𝐺 𝑥1 , 𝑥0 , 𝑥0  

                        = 2𝑠 𝑠𝑘𝑛 + 𝑠2𝑘𝑛+1 + ⋯ + 𝑠𝑚−𝑛𝑘𝑚−2 + 𝑠𝑚−𝑛𝑘𝑚−1 𝐺 𝑥1 , 𝑥0 , 𝑥0  

                        = 2𝑠2𝑘𝑛 1 +  𝑠𝑘 2 + ⋯…… . .  𝐺 𝑥1 , 𝑥0 , 𝑥0  

                        ≤
2𝑠2𝑘𝑛

1−𝑠𝑘
𝐺 𝑥1 , 𝑥0 , 𝑥0                                                                                             (3.17) 

Then 𝑙𝑖𝑚 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  = 0, as 𝑛, 𝑚 → ∞, since  𝑙𝑖𝑚
2𝑠2𝑘𝑛

1−𝑠𝑘
𝐺 𝑥1 , 𝑥0 , 𝑥0 = 0, as 𝑛, 𝑚 → ∞. For 

𝑛, 𝑚, 𝑙 ∈ ℕ,  𝐺𝑏  implies that  

𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙 ≤ 𝑠 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  + 𝐺 𝑥𝑙 , 𝑥𝑚 , 𝑥𝑚    

Taking limit as 𝑛, 𝑚, 𝑙 → ∞, we get 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙 → 0. So  𝑥𝑛  is a 𝐺𝑏 -Cauchy sequence. By 

completeness of  𝑋, 𝐺 , there exists 𝑥∗ ∈ 𝑋 such that 𝑥𝑛 → 𝑥∗. By the 𝐺𝑏 -continuity of 𝑇, we have  

𝑇 𝑥𝑛 = 𝑥𝑛−1 → 𝑇 𝑥∗  

this implies that 𝑇 𝑥∗ = 𝑥∗. 

As an application of Theorem 3.6, we have the following results. 

Theorem 3.7 Let (𝑋, 𝐺) be a complete 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1, and let 𝑇 ∶ 𝑋 →

𝑋 be onto 𝐺𝑏 - continuous mapping satisfying the condition 

      𝐺 𝑇 𝑥 , 𝑇 𝑦 , 𝑇 𝑧   

      ≥ 𝑎 min 𝐺 𝑥, 𝑦, 𝑧 , 𝐺 𝑥, 𝑇 𝑥 , 𝑇 𝑥  , 𝐺 𝑦, 𝑇 𝑦 , 𝑇 𝑦  , 𝐺 𝑦, 𝑇 𝑦 , 𝑇 𝑦                             (3.18) 

for all 𝑥 ∈ 𝑋, where 𝑎 > 𝑠.Then 𝑇 has a fixed point in 𝑋. 

Proof: Replacing 𝑦 and 𝑧 by 𝑇 𝑥  in (3.18), we obtain 

    𝐺 𝑇 𝑥 , 𝑇2 𝑥 , 𝑇2 𝑥  ≥ 𝑎 min 𝐺 𝑥, 𝑇 𝑥 , 𝑇 𝑥  , 𝐺 𝑇 𝑥 , 𝑇2 𝑥 , 𝑇2 𝑥                        (3.19) 

Without loss of generality, we may assume that 𝑇 𝑥 ≠ 𝑇2 𝑥 . For, otherwise, 𝑇 has a fixed point. 

Then 𝑇 𝑥 ≠ 𝑇2 𝑥  and condition (3.19) imply that 

                              𝐺 𝑇 𝑥 , 𝑇2 𝑥 , 𝑇2 𝑥  ≥ 𝑎𝐺 𝑥, 𝑇 𝑥 , 𝑇 𝑥   

which is Condition (3.14). Hence the result follows from Theorem 3.6. 

Theorem 3.8 Let (𝑋, 𝐺) be a complete 𝐺𝑏 -metric space with the coefficient 𝑠 ≥ 1, and let 

𝑆, 𝑇 ∶ 𝑋 → 𝑋 be onto 𝐺𝑏 - continuous. If there exists 𝑎 with  

          𝑚𝑖𝑛  𝐺 𝑆 𝑥 , 𝑇 𝑦 , 𝑇 𝑦  , 𝐺 𝑇 𝑦 , 𝑆 𝑥 , 𝑆 𝑥    

                                                 ≥ 𝑎 𝐺 𝑆 𝑥 , 𝑥, 𝑥 + 𝐺  𝑇 𝑦 , 𝑦, 𝑦                                         (3.20) 

for all 𝑥 ∈ 𝑋, where  1 + 𝑠 𝑎 > 𝑠.Then 𝑇 has a fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Since 𝑆 is onto, there is an element 𝑥1 ∈ 𝑋 satisfying  𝑥1 ∈ 𝑆−1 𝑥0 . 

Since T is also onto, there is an element 𝑥2 ∈ 𝑋 satisfying  𝑥2 ∈ 𝑇−1 𝑥1 . Proceeding in the same 

way, we can find  𝑥2𝑛+1 ∈ 𝑆−1 𝑥2𝑛  and   𝑥2𝑛+2 ∈ 𝑇−1 𝑥2𝑛+1  for  𝑛 = 1,2,3,4, ….. Therefore 

𝑆𝑥2𝑛+1 =   𝑥2𝑛  and 𝑇𝑥2𝑛+2 =   𝑥2𝑛+1. Now, if 𝑛 = 2𝑚, from (3.20), we have 
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  𝐺  𝑥𝑛−1 ,  𝑥𝑛 ,  𝑥𝑛 = 𝐺  𝑥2𝑚−1 ,  𝑥2𝑚 ,  𝑥2𝑚   

             = 𝐺 𝑇  𝑥2𝑚  , 𝑆  𝑥2𝑚+1 , 𝑆  𝑥2𝑚+1   

             = 𝑚𝑖𝑛  𝐺 𝑆  𝑥2𝑚+1 , 𝑇  𝑥2𝑚  , 𝑇  𝑥2𝑚   , 𝐺 𝑇  𝑥2𝑚  , 𝑆  𝑥2𝑚+1 , 𝑆  𝑥2𝑚+1    

             ≥ 𝑎  𝐺 𝑆 𝑥2𝑚+1 , 𝑥2𝑚+1, 𝑥2𝑚+1 + 𝐺 𝑇 𝑥2𝑚  , 𝑥2𝑚 , 𝑥2𝑚   

             = 𝑎  𝐺 𝑥2𝑚 , 𝑥2𝑚+1 , 𝑥2𝑚+1 + 𝐺 𝑥2𝑚−1 , 𝑥2𝑚 , 𝑥2𝑚   

             = 𝑎  𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                                               (3.21) 

Therefore, 

                      𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ≤
1−𝑎

𝑎
𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                                          (3.22) 

If 𝑛 = 2𝑚 + 1, then by the same argument used in above, we obtain 

                      𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ≤
1−𝑎

𝑎
𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                                    (3.23) 

Thus for any positive integer 𝑛, 

                      𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 ≤
1−𝑎

𝑎
𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                                      (3.24) 

Let 𝑘 =
1−𝑎

𝑎
<

1

𝑠
. Hence 

                            𝐺 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1 ≤ 𝑘𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛                                                            (3.25) 

By Lemma 3.4,  xn n=1
∞  is a 𝐺𝑏 -Cauchy sequence. By completeness of  𝑋, 𝐺 , there exists 𝑥∗ ∈ 𝑋 

such that 𝑥𝑛 → 𝑥∗. By the 𝐺𝑏 -continuity of 𝑆 and  𝑇, we have  

𝑆𝑥2𝑛+1 =   𝑥2𝑛 → 𝑆 𝑥∗ , 

                                                 𝑇𝑥2𝑛+2 =   𝑥2𝑛+1 → 𝑇 𝑥∗                                                                         (3.26) 

as 𝑛 → ∞. This implies that 𝑆 𝑥∗ = 𝑥∗ and 𝑇 𝑥∗ = 𝑥∗, which means that 𝑥∗ is a common fixed 

point of 𝑆 and 𝑇. 

Now, motivated by the work in [13], we give the following. 

Let Ψℬ
𝐿  denote the class of those function ℬ:  0,∞ → (𝐿2 ,∞) which satisfy the condition ℬ 𝑡𝑛 →

 𝐿2 + ⇒ 𝑡𝑛 → 0, where 𝐿 > 0. 

Theorem 3.9 Let (𝑋, 𝐺, 𝑠) be a complete 𝐺𝑏 -metric space. Assume that the mapping 𝑇: 𝑋 → 𝑋 is 

surjection and satisfies  

                                   𝐺 𝑇𝑥, 𝑇𝑦, 𝑇𝑧 ≥ ℬ 𝐺 𝑥, 𝑦, 𝑧  𝐺 𝑥, 𝑦, 𝑧                            (3.26) 

∀𝑥, 𝑦, 𝑧 ∈ 𝑋, where ℬ ∈ Ψℬ 
s . Then 𝑇 has a fixed point. 

Proof Let 𝑥0 ∈ 𝑋. Since T is surjection, choose 𝑥1 ∈ 𝑋 such that 𝑇𝑥1 = 𝑥0. Inductively, we can define 

a sequence  𝑥𝑛 𝑛=1
∞ ∈ 𝑋 such that 

                                         𝑥𝑛 = 𝑇𝑥𝑛+1 , ∀ 𝑛 ∈ ℕ ∪  0 .                                                                            (3.27) 

In case 𝑥𝑛0
= 𝑥𝑛0+1 for some 𝑛0 ∈ ℕ ∪  0 , then it is clear that 𝑥𝑛0

 is a fixed point of 𝑇. Now assume 

that 𝑥𝑛 ≠ 𝑥𝑛−1 for all 𝑛.Consider 

                                        𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 = 𝐺 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 , 𝑇𝑥𝑛+1                                                        (3.28) 

Now by (3.26) and definition of the sequence 

          𝐺 𝑥𝑛−1 , 𝑥𝑛 , 𝑥𝑛 = 𝐺 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1, 𝑇𝑥𝑛+1  

                                    ≥ ℬ 𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1  𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1  

                                    ≥ 𝑠2𝐺 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1  

                                    ≥ 𝐺 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1                                                                                            (3.29) 

Thus the sequence  𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1  𝑛=1
∞  is a decreasing sequence in ℝ+ and so there exists 𝑟 ≥ 0 

such that 

                                        lim𝑛→∞ 𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 = 𝑟                                                                          (3.31) 

Let us prove that 𝑟 = 0. Suppose to the contrary that 𝑟 > 0. By (3.26) we can deduce that 

        𝑠2 𝐺 𝑥𝑛−1 ,𝑥𝑛 ,𝑥𝑛  

𝐺 𝑥𝑛 ,𝑥𝑛+1 ,𝑥𝑛+1 
≥

𝐺 𝑥𝑛−1 ,𝑥𝑛 ,𝑥𝑛  

𝐺 𝑥𝑛 ,𝑥𝑛+1 ,𝑥𝑛+1 
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                                   ≥ ℬ 𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1  ≥ 𝑠2                                                                (3.32) 

By taking limit as 𝑛 → +∞ in the above inequality, we have 

                                    lim𝑛→+∞ ℬ 𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1  = 𝑠2                                                            (3.33) 

Hence by definition of ℬ, we have 

                                     𝑟 = lim𝑛→+∞ 𝐺 𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1 = 0                                 (3.34) 

which is a contradiction. That is 𝑟 = 0. Now, we shall show that 

                                        lim𝑛,𝑚→+∞ sup 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  = 0                                                     (3.35) 

Suppose to the contrary that lim𝑛,𝑚→∞ sup 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  > 0. 

By (3.26), we have  

        𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  = 𝐺 𝑇𝑥𝑛+1 , 𝑇𝑥𝑚+1 , 𝑇𝑥𝑚+1  

                             ≥ ℬ 𝐺 𝑥𝑛+1 , 𝑥𝑚+1 , 𝑥𝑚+1  𝐺 𝑥𝑛+1 , 𝑥𝑚+1 , 𝑥𝑚+1  

That is, 

                              
𝐺 𝑥𝑛 ,𝑥𝑚 ,𝑥𝑚  

ℬ 𝐺 𝑥𝑛+1 ,𝑥𝑚 +1 ,𝑥𝑚 +1  
≥ 𝐺 𝑥𝑛+1 , 𝑥𝑚+1 , 𝑥𝑚+1                                              (3.36) 

By triangular inequality, we have  

         𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  ≤ 𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2𝐺 𝑥𝑛+1 , 𝑥𝑚+1 , 𝑥𝑚+1  

                                 +𝑠2𝐺 𝑥𝑚+1, 𝑥𝑚 , 𝑥𝑚   

                                 ≤ 𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2 𝐺 𝑥𝑛 ,𝑥𝑚 ,𝑥𝑚  

ℬ 𝐺 𝑥𝑛+1 ,𝑥𝑚 +1 ,𝑥𝑚 +1  
     

                                 +𝑠2𝐺 𝑥𝑚+1, 𝑥𝑚 , 𝑥𝑚                                                                (3.37) 

Therefore, 

                𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  ≤  1 −
𝑠2

ℬ 𝐺 𝑥𝑛+1 ,𝑥𝑚 +1 ,𝑥𝑚 +1  
 
−1

 

                                         𝑠𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 + 𝑠2𝐺 𝑥𝑚+1 , 𝑥𝑚 , 𝑥𝑚                                                  (3.38) 

By taking limit as 𝑛, 𝑚 → +∞ in the above inequality, since lim𝑛,𝑚→+∞ sup 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  > 0 and 

𝑟 = 0 = lim𝑛→+∞ 𝐺 𝑥𝑛 , 𝑥𝑛+1 , 𝑥𝑛+1 , then we obtain 

                               lim𝑛,𝑚→+∞  1 −
𝑠2

ℬ 𝐺 𝑥𝑛+1 ,𝑥𝑚 +1 ,𝑥𝑚 +1  
 
−1

= +∞                      (3.39) 

which implies that 

                              lim𝑚,𝑛→+∞supℬ 𝐺 𝑥𝑛+1, 𝑥𝑚+1 , 𝑥𝑚+1  =  𝑠2 +                   (3.40) 

and so by definition of ℬ, we have 

                              lim𝑚,𝑛→+∞supℬ 𝐺 𝑥𝑛+1, 𝑥𝑚+1 , 𝑥𝑚+1  = 0                          (3.41) 

which is a contradiction. Hence, 

                               lim𝑚,𝑛→+∞supℬ 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚   = 0                                    (3.42) 

Since  lim𝑚,𝑛→+∞sup 𝐺 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  = 0. So,  𝑥𝑛 𝑛=1
∞  is a 𝐺𝑏 -Cauchy sequence. Since 𝑋 is a complete 

𝐺𝑏 -metric space, the sequence  𝑥𝑛 𝑛=1
∞  in 𝑋 𝐺𝑏 -converges to 𝑥⋆ ∈ 𝑋. so that  

                               lim𝑛→+∞ 𝐺 𝑥𝑛 , 𝑥⋆, 𝑥⋆ = 0                                                      (3.43) 

As 𝑇 is surjective, so there exists 𝑝 ∈ 𝑋 such that 𝑥⋆ = 𝑇𝑝. Let us prove that 𝑥⋆ = 𝑝. Suppose to the 

contrary that 𝑥⋆ ≠ 𝑝.Then by (3.26), we have 

        𝐺 𝑥𝑛 , 𝑥⋆, 𝑥⋆ = 𝐺 𝑇𝑥𝑛+1 , 𝑇𝑝, 𝑇𝑝  

                              ≥ ℬ  𝐺 𝑥𝑛+1 , 𝑝, 𝑝  𝐺 𝑥𝑛+1 , 𝑝, 𝑝                                             (3.44) 

By Taking limit as 𝑛 → +∞ in the above inequality and applying Lemma 3.2, we obtain 

                            0 = lim𝑛→+∞ 𝐺 𝑥𝑛 , 𝑥⋆, 𝑥⋆  

                               ≥ lim𝑛→+∞ ℬ  𝐺 𝑥𝑛+1 , 𝑝, 𝑝  lim𝑛→∞ 𝐺 𝑥𝑛+1 , 𝑝, 𝑝  

                               ≥
1

𝑠
lim𝑛→+∞ ℬ  𝐺 𝑥𝑛+1 , 𝑥⋆, 𝑥⋆  𝐺 𝑥⋆, 𝑝, 𝑝                          (3.45) 

and hence,   
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                                      lim𝑛→+∞ ℬ  𝐺 𝑥𝑛+1 , 𝑥⋆, 𝑥⋆  = 0                                    (3.46) 

which is a contradiction. Indeed,  

                                       lim𝑛→+∞ ℬ 𝐺 𝑥𝑛+1 , 𝑥𝑛 , 𝑥𝑛  ≥ 𝑠2.  

Since ℬ 𝑡 > 𝑠2 for all 𝑡 ∈  0,∞ , therefore 𝑥⋆ = 𝑝. Hence 𝑥⋆ = 𝑇𝑝 = 𝑇𝑥⋆. 
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