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ABSTRACT 

A mathematical model to describe the effect of elicitor interaction with 

plants to manage the final disease has been developed. This model contains 

a non-linear term related to susceptible populations. The analytical 

expressions pertaining to the resistance, diseased and elicitor 

concentrations were reported for all potential practical values of β, γ, θand

cs0 . In this work, we report the theoretically evaluated non-steady state 

effectiveness factor for optimal strategy systems. These analytical results 

were found to be in good agreement with numerical results. Moreover, 

herein we employ homotopy perturbation method to solve non-linear 

reaction/ diffusion equations. 

Key words: optimal strategy, non-linear equations, simulation, Diffusion, 

Induced resistance. 
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1.  INTRODUCTION 

 When constructing a mathematical model, there are many factors influencing the 

mechanism, such as natural biological processes, that can be realistically implemented into the 

model and that can mimic the dynamic behavior within the biological system. However, a decision 

must be made about what to include in the model and what to exclude. While it is true that large, 

detailed models are easier to sell to a biological audience since it is more biologically realistic- the 

level of complexity in such a detailed model poses many problems. For instance, with a large number 

of parameters, it is not possible to determine the accuracy of the parameter values, and a study of 

the parameter sensitivity is also a very difficult task. Recall that parameter values must be chosen 

carefully so that the model exhibits realistic behavior. 

 Although simple models contain the essential mechanism of the interested process, they can 

often provide unforeseen insight into the biological process. With simple models, it is easier to see 
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what mechanisms are driving the models behavior. Consequently, models can feed back directly into 

the biological understanding of a process. In this study, a mathematical model to describe the effect 

of elicitor interaction with plants to manage the final disease has been proposed and analyzed. 

 Previously, the efficacy of induced resistance to control plant diseases has typically been 

studied experimentally, whether in the field or in greenhouses. The building on the approach of 

jeger et al.and Xu et al. in previous modeling of biological control systems, the compartmental SIR 

model was applied for the potential of using a plant-defence elicitor to induce resistance to plant 

disease. Several assumptions on the biological background were made in order to simplify the 

biological process associated with IR. The developed model was generic and can be used for any 

combination of plant-elicitor-pathogen scenarios; which of course will have different parameters [ 1-

2 ]. The new IR model has the potential to be implemented as a decision support tool for the 

management of plant diseases, which involves an assessment of the risk and economic cost critical 

for commercial operations [3]. 

 To my knowledge no rigorous analytical solutions of mathematical model of induced 

resistance are developed. Such a model has not been proposed in any literature. The purpose of this 

communication is to derive approximate analytical expressions for the non-steady-state 

concentration for ainduced resistance to plant disease for all values of β, γ,  and cs0  using 

Homotopy perturbation method.  

2. Mathematical model 

 The optimal control problem strategy is obtained by solving the optimal system, which 

consists of ordinary differential equations and its boundary conditions: 
𝑑𝑅

𝑑𝑡
=  𝐸 − 𝛾𝑅  1 − 𝑅 − 𝐷 ;                                                                                               (1) 

𝑑𝐷

𝑑𝑡
= 𝛽𝐷 1 − 𝑅 − 𝐷 (2) 

𝑑𝐸

𝑑𝑡
= −𝜃𝐸 + 𝑠0𝑐(3) 

DDRE
dt

d
DR

R 


 ))21(( (4) 

)21()( DRRE
dt

d
DR

D  


 (5) 

)1( DR
dt

d
RE

E  


(6) 

where  is the specific rate the resistant plant become susceptible,    is the specific rate at which 

disease spreads,   is the   diffusion,  𝑠0𝑐  is the   elicitor effect. These equations are solved for the 

following initial conditions:  

𝑅 0 = 𝑅𝑖 , 𝐷 0 = iD ; 𝐸 0 = 0; 0)0( R ; 0)0( D ; 0)0( E (7)
 

where iR is the proportion of the plant population that exhibits natural resistance at the initial time 

.0t  

3. Analytical expression of concentrations using HPM 

 Recently, many authors have applied the HPM to various problems and demonstrated the 

efficiency of the HPM for handling non-linear structures and solving various physics and engineering 

problems [4-9]. This method is a combination of homotopy in topology and classic perturbation 

techniques. The set of expressions presented in Eqs. (1) - (7) defines the initial value problem. The 

Homotopy perturbation method [10-15] is used to give the approximate analytical solutions of 
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coupled non-linear reaction/diffusion Eqs. (1) to (6). The dimensionless reaction diffusion 

parameters β, γ, θ and cs0 are related to one another, since the bulk solution is at equilibrium in the 

non-steady state.Using HPM (see Appendix A), we can obtain the following solutions to the Eqs.(1) 

to (6).  

𝑅 𝑡 = 𝑅𝑖𝑒
−𝛾𝑡 +  

𝑅𝑖
2

2
−

𝛾𝑅𝑖𝐷𝑖

𝛽−2𝛾
 𝑒−𝛾𝑡 −

𝑠0𝑐𝑡

𝛾
+

𝑠0𝑐𝑡𝑅𝑖𝑒
−𝛾𝑡

2𝛾
−

𝑠0𝑐𝑡𝐷
𝑖𝑒𝛽𝑡

𝛽−𝛾
−

𝑅𝑖
2𝑒−𝛾𝑡

2
+

𝛾𝑅𝑖𝐷𝑖𝑒
(𝛽−𝛾)𝑡

𝛽−2𝛾
    (8) 

𝐷 𝑡 =  𝐷𝑖
2 −

𝛽𝐷𝑖𝑅𝑖

𝛾
 𝑒𝛽𝑡 +

𝛽𝐷𝑖𝑅𝑖

𝛾
𝑒 𝛽−𝛾 𝑡 − 𝐷𝑖

2𝑒2𝛽𝑡 + 𝐷𝑖𝑒
𝛽𝑡 (9) 

𝐸 𝑡 = 𝑠0𝑐𝑡 − 𝜃𝑠0𝑐𝑡
2 + 𝜃2𝑠0𝑐𝑡

3      (10) 
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4. Discussion 

 In fig. 1 shows that, the elicitor application effect is determined by the elicitor applied daily 

until it reaches the target disease control. In fig. 2, the time series of induced resistance model for 

the treated plant. Fig. 3 shows the dimensionless non-steady-state concentration of resistance for 

the potential values of β, γ, θ and cs0 calculated using Eq. (8). From this figure, we can see that the 
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value of the concentration decreases when time (days) increases. The concentration of resistance 

decreases slowly and abruptly constant when 15t and all values ofβ, γ, θ and cs0 . When, 0t , 

the concentration of resistant plants drop then decreases and to reach the steady-state value.  

 Fig. 4.represents the dimensionless concentration of disease 𝐷(𝑡) versus dimensionless time 

(days) for different values of dimensionless β, γ, θ and cs0 . From these figure, it is inferred that, the 

proportion of the diseased plant increases and then reaches its absolute steady state after 15 days. 

Fig. 5.represents the dimensionless concentration of elicitor 𝐸(𝑡) versus dimensionless time (days) 

for different values of dimensionless β, γ,   and cs0 . From this figure, it is inferred that, the 

cumulative elicitor effect which corresponds to the elicitor application every day. Moreover, the 

initial time is zero, a large amount of elicitor has to be applied and then slowly decreased. Fig. 6-8 

represents the dimensionless concentration as a function of time. 

 
Fig. 1: Schematic diagram for the control of the continuous elicitor application. 

 
Fig. 2: Time series for the IR model for the treated plants. 

5.  Numerical simulation  

 The HPM provides an analytical solution in terms of an infinite power series. However, there 

is a practical need to evaluate this solution and to obtain numerical values from the infinite power 

series. The consequent series truncation and the practical procedure conducted to accomplish this 

task, together transforms the otherwise analytical results into an exact solution, which is evaluated 

to a finite degree of accuracy. In order to investigate the accuracy of the HPM solution with a finite 

number of terms, the system of differential equation were solved. To show the efficiency of the 

present method for our problem in comparison with the numerical solution (MATLAB program) we 

report our results graphically. The MATLAB program is also given in Appendix B.  
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Fig. 3:Plot of dimensionless concentration of resistance versus time t forfixed value of β, γ, and cs0 . 

Concentration is calculated using the equation (8). 

 

Fig. 4:Plot of dimensionless concentration of diseased versus time t forfixed value of β, γ, and cs0 . 

Concentration is calculated using the equation ( 9). 
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Fig. 5: Plot of dimensionless concentration of elicitor versus time t forfixed value of β, γ, and cs0 . 

Concentration is calculated using the equation (10). 

 

 

 

Fig. 6: Plot of dimensionless concentration of )(tR versus time t forfixed value of β, γ, and cs0 . 

Concentration is calculated using the equation (11). 
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Fig. 7: Plot of dimensionless concentration of )(tD versus time t forfixed value of β, γ, and cs0 . 

Concentration is calculated using the equation (12). 

 
 

Fig. 8: Plot of dimensionless concentration of )(tE versus time t forfixed value of β, γ, and cs0 . 

Concentration is calculated using the equation (13). 

6.  Conclusions 

 The time dependent non-linear reaction/diffusion equationsfor induced resistance 

mechanism using elicitor application have been formulated and solved using HPM. The primary 

result of this work is simple approximate calculation of dynamical concentration profiles for all 

values of potential parameters. We have presented the estimated parameters were then used to 

analyse the dynamical IR model based on theHomotopy perturbation method. This method can be 

easily extended to find the concentrations for all mechanism for various complex boundary 

conditions. The goal was to determine the best application might cause phytotoxicity to the plants. 

This daily application strategy is reasonable for plants that may be already infected. The results from 
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this numerical experiment gave the optimal application strategy, and thus will help farmers avoid 

unnecessary application. 
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Appendix A. 

In this appendix we outline the basic idea of Homotopy Perturbation method [10-15]. This method 

has eliminated the limitations of the traditional perturbation methods. On the other hand it can take 

full advantage of the traditional perturbation techniques, so there has been a considerable deal of 

research in applying homotopy technique for solving various strongly nonlinear equations. To 

explain this method, let us consider the following function  

                                                                                         r      ,0)()(  rfuA (A1) 

with the boundary conditions of  

                                                               ,0)
u

 ,( 



r

n
uB (A2)    

where A , B , )(rf  and    denote a general differential operator,  a boundary operator, a known 

analytical function and the boundary of the domain  , respectively. Generally speaking, the 

operator A  can be divided into a linear part L  and a nonlinear part N. Eq.(A1) can therefore, be 

written as 

                                           0)()()(  rfuNuL (A3) 

By the Homotopy technique, we construct a Homotopy Rprv  ]1,0[:),(  which satisfies 

    ],1,0[            .0)]()([)]()()[1(),( 0  rprfvApuLvLppvH    (A4) 

or 

                         .0)]()([)()()(),( 00  rfvNpupLuLvLpvH (A5) 

where ]1,0[p  is an embedding parameter, and 0u  is an initial approximation of Eq. (A1), which 

satisfies the boundary conditions. Obviously, from Eqs. (A4) and (A5), we will have 

                                                        0)()()0,( 0  uLvLvH (A6) 

(A7)                                                                                                        .0)()()1,(  rfvAvH
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when 0p  Eq. (A4) or Eq. (A5) becomes a linear equation; when 1p  it becomes a non-linear 

equation. So the changing process of p from zero to unity is just that of 0)()( 0  uLvL  to

0)()(  rfvA . We can first use the embedding parameter p  as a “small parameter”, and assume 

that the solutions of Eqs. (A4) and (A5) can be written as a power series in p  

(A8)                                                                                                  .....2

2

10  vppvvv  

Setting 1p   results in the approximate solution of Eq.(A1): 

(A9)                                                                                             ..... vlim 210
1




vvvu
p

 

The combination of the perturbation method and the Homotopy method is called the HPM.  

Appendix B 

function main1 

options= odeset('RelTol',1e-6,'Stats','on'); 

%initial conditions 

Xo = [0.6118; 0.0168; 0; -4; 18; -11]; 

tspan = [0,20]; 

xspan = [0,0.5]; 

tic 

[t,X] = ode45(@TestFunction,tspan,Xo,options); 

toc 

figure 

holdon 

plot(t, X(:,6)) 

plot(t, X(:,6),'.') 

legend('x1','x2', 'x3','x4','x5','x6') 

ylabel('x') 

xlabel('t') 

return 

function [dx_dt]= TestFunction(t,x) 

b=0.7379; 

r=0.2801; 

o=0.05; 

s=0.1; 

dx_dt(1) =(x(3)-r*x(1))*(1-x(1)-x(2)); 

dx_dt(2) =b*x(2)*(1-x(1)-x(2)); 

dx_dt(3) =-o*x(3)+s; 

dx_dt(4) =x(4)*(x(3)+r*(1-2*x(1)-x(2)))+x(5)*b*x(2); 

dx_dt(5) =x(4)*(x(3)-r*x(1))-x(5)*b*(1-x(1)-2*x(2)); 
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dx_dt(6) =x(6)*o-x(4)*(1-x(1)-x(2)); 

dx_dt = dx_dt'; 

return 

Appendix C.Nomenclature 

 

 


