Vol.4.Issue.2.2016 (April-June)

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

GRAPH OF EQUIVALENCE CLASSES OF A COMMUTATIVE IS-ALGEBRA

SAMY M. MOSTAFA¹, FATEMA F.KAREEM²

¹Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt.Email:samymostafa@yahoo.com ²Department of Mathematics, Ibn-Al-Haitham college of Education, University of Baghdad, Iraq.Email:fa_sa20072000@yahoo.com

ABSTRACT

In this paper, we introduce the graph of a commutative IS-algebra X, denoted by $\Gamma(X)$, as the (undirected) graph with all elements of X. Moreover, we study the graph $\Gamma_E(X)$ of equivalence classes of X which is determined by annihilator ideals. Also, several examples are presented. **Key Words.** IS- algebra, Annihilator ideal, graph of equivalence classes. **2000 Mathematics Subject Classification**. 13A15; 13A99; 05C12.

©KY PUBLICATIONS

1. INTRODUCTION

Imai and Is'eki [3] in 1966 introduced the notion of a BCK-algebra. In the same year, Is'eki [4] introduced BCI-algebras as a super class of the class of BCK-algebras.

In 1993, Jun et al. [7] introduced a new class of algebras related to BCI-algebras and semigroups, called a BCI- semigroup /BCI-monoid/BCI-group. In 1998, for the convenience of study, Jun et al. [8] renamed the BCI-semigroup (respectively, BCI-monoid and BCI-group) as the ISalgebra (respectively, IM-algebra and IG-algebra) and studied further properties of these algebras (see [6], [10]). Many authors studied the graph theory in connection with semigroups and rings. For example, Beck [1] associated to any commutative ring R its zero divisors graph G(R), whose vertices are the zero divisors of R, with two vertices a, b jointed by an edge in case a . b = 0. Jun and Lee [5] defined the notion of zero divisors and quasi-ideals in BCI-algebra and show that all zero divisors are quasi-ideal. So, they introduced the concept of associated graph of BCK/BCI- algebra and verified some properties of this graph and proved that if X is a BCK-algebra, then the associated graph of X is connected. Moreover, if X is a BCI-algebra, then the associated graph of it is disconnected. Zahiri and R. A. Borzooei [12] associate a new graph to a BCI-algebra X which is denoted by G(X), this definition is based on branches of X. If X is a BCK-algebras, then this definition and last definition which was introduced by Jun and Lee are the same. S.Mulay [9] introduced the graph of equivalence classes of zero-divisors of a ring R, which is constructed from classes of zero divisors determined by annihilator ideals. Inspired by ideas from Mulay, we study the graph of equivalence classes of a commutative IS-algebra which is constructed from classes determined by annihilator ideals.

2. Preliminaries

In this section, we submit some concepts related to IS-algebra (BCI-semi-groups) and theories from the literature, which are necessary for our discussion.

Definition 2.1 [3]. Let X be a set with a binary operation * and a constant 0, then (X,*,0) is called a BCI -algebra, if it satisfies the following axioms. For all $x, y, z \in X$.

(BCI-1) ((x * y) * (x * z)) * (z * y) = 0,

(BCI-2) (x *(x *y)) *y = 0, (BCI-3) x *x = 0,

(BCI-4) x * y = 0 and y * x = 0 imply x = y,

If a BCI -algebra X satisfies the identity 0 * x = 0, for all $x \in X$, then X is called a BCK algebra. It is known that the class of BCK-algebra is a proper subclass of the class of BCI-algebra.

A binary relation \leq in X is defined by: $x \leq y$ if and only if x * y = 0.

In a BCI-algebra (X,*,0), the following properties are satisfied:

(BCI1') $(x * z) * (y * z) \le x * y$,

(BCI2') $[x * (x^* y)] \le y$,

(BCI3') $x \le y$ implies $z * x \le z * y$,

(BCI4') $x \le y$ and $y \le z$ imply $x \le z$,

(BCI5') (x * y) * z = (x * z) * y,

(BCI6') $x \le y$ implies $x * z \le y * z$,

(BCI7') x * 0 = x.

Definition2.2 [3].

A subset A of a BCI-algebra (X,*,0)is called an ideal of X, if for any x, $y \in X$, the following conditions hold:

(i) $0 \in A$,

(ii) x * y and $y \in A$ imply that $x \in A$.

Definition2.3 [8]. An IS-algebra is a nonempty set X with two binary operations *,• and constant 0 such that following axioms are satisfied:

1. $(X, *, \bullet)$ is a BCI-algebra,

2. (X, \bullet) is a semigroup,

The operation • is distributive (on both sides) over the operation* , i.e.

3. $x \bullet (y * z) = (x \bullet y) * (x \bullet z) and (x * y) \bullet z = (x \bullet z) * (y \bullet z)$, for all $x, y, z \in X$.

Definition2.4 [6]. A non empty subset *I* of *X* is called a left (resp. right) I-ideal of *X* if:

 (I_1) I is an ideal of a BCI-algebra X,

 $(I_2) \ x \in X$, $a \in I$ imply that $x \bullet a \in I$ (resp. $a \bullet x \in I$).

Lemma2.5 [10]. Let X be an IS-algebra. Then for any $x, y, z \in X$, we have:

(i)
$$0 \bullet x = x \bullet 0 = 0$$

(ii) $x \le y$ implies that $x \bullet z \le y \bullet z$ and $z \bullet x \le z \bullet y$.

Definition2.6. an IS-algebra X is said to be a commutative IS-algebra if the multiplication is commutative i.e., $x \bullet y = y \bullet x$ for all x, y in X.

Example 2.7. Let $X = \{0, a, b, c\}$ be a set. Define * -operation and \bullet -operation by the following tables.

*	0	а	b	с
0	0	0	b	b
а	а	0	С	b
b	b	b	0	0
С	С	b	а	0

*	0	а	b	С
0	0	0	0	0
а	0	а	0	а
b	0	0	b	b
С	0	а	b	С

Then, $(X, *, \bullet, 0)$ is a commutative IS-algebra

Definition2.8. Let X be a commutative IS-algebra and A be a subset of X. Then we define ann (A) = $\{x \in X ; a * (a * (a • x)) = 0 \text{ for each } a \in A\}$ and call it the IS-annihilator of A. If $A = \{a\}$, then we write ann(a) instead of $ann(\{a\})$.

Remark 2.9. Let X be a commutative IS-algebra and

ann (A) = $\{x \in X; a^*(a * (a \bullet x)) = 0 \text{ for each } a \in A\}$ be an annihilator of $A \subseteq X$.

- (i) If x is a zero divisor of X, then $b \bullet x \in ann(A)$ for all $b \in A$.
- (ii) If $a \bullet x = 0$ for all $x \in X$, then ann(A) = 0 for all $a \in A$.

Proof. (i) Since x is a zero divisor, we have a * (a * (a • (b • x)) = a * (a * (a • (0)) = a * a = 0). Hence, $b • x \in ann(A)$.

(ii) Since $a \bullet x = 0$ for all $x \in X$, we have $a^{*}(a * (a \bullet x)) = a^{*}(a * 0)) = a * a = 0$. Hence, ann(A) = 0.

Theorem 2.10. Let A be a non-empty subset of an IS-algebra X. If x is a zero divisor of X , then ann(A) is an ideal of X.

Proof. For every $a \in A$, since $a^*(a^*(a \bullet 0)) = a^*a = 0$, we have $0 \in ann(A)$.

First, we prove that ann(A) is an ideal of a BCI-algebra, we suppose that $x, (y * x) \in ann(A)$. We obtain from definition that a * (a * (a • x)) = 0.....(*i*), and which implies that $a * (a * (a • x)) \leq a • x$.

Also $a^{*}(a^{*}(a \bullet (y^{*}x)) = 0$(*ii*)

It follows from (BCI 2') and (i) that $0 * a \bullet x = 0$, and hence

 $(a * a \bullet x) * a = (a * a) * a \bullet x = 0 * a \bullet x = 0$. This means that $a = a * a \bullet x$ by (BCI-4). Similarly we have $a = a * a \bullet (y * x)$. From these, we have in turn

$$a = a^{*}(a \bullet (y^{*}x) = (a^{*}a \bullet x)^{*}a \bullet (y^{*}x) = (a^{*}a \bullet x)^{*}(a \bullet y^{*}a \bullet x) \le a^{*}a \bullet y \text{ by (BCl 1')}$$

 $0 = a * a \le (a * a \bullet y) * a = 0 * a \bullet y$ (By the property $x \le y \Longrightarrow x * z \le y * z$)

 $0 = 0^* (0^* a \bullet y) \le a \bullet y$, which implies that $0^* a \bullet y = 0$.

It follows that $(a * a \bullet y) * a = (a * a) * a \bullet y = 0 * a \bullet y = 0$ and hence $a = a * a \bullet y$. Thus

 $y \in ann(A)$ and ann(A) is an ideal of X. In the second place, if x is a zero divisor,

then for all $a, b \in A, x \in X$, we have, $b \bullet x \in ann(A)$ by Remark 2.7.

Then ann(A) is an ideal of an IS-algebra X.

Lemma2.11. If $A \neq \phi, B \subseteq X$, then

(I) If $A \subseteq B$, then $ann(B) \subseteq ann(A)$

(II) $ann(A \cup B) = ann(A) \cap ann(B)$

(III) $ann(A) \bigcup ann(B) \subseteq ann(A \cap B)$

Proof. (I) Suppose that

 $x \in ann(B)$, then $b^*(b^*(b \bullet x) = 0, \forall b \in B$, but $A \subseteq B$, therfore $b^*(b^*(b \bullet x) = 0, \forall b \in A$ i.e $x \in ann(A)$, hence $ann(B) \subseteq ann(A)$. (II) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, we have by part (I) of Lemma 2.9 that, $ann(A \cup B) \subseteq ann(A), ann(B)$, and hence $ann(A \cup B) \subseteq ann(A) \cap ann(B) - -(1)$ Conversely, if $x \in ann(A) \cap ann(B)$, then $x \in ann(A), ann(B)$, therefore

 $a * (a * (a \bullet x)) = 0, \forall a \in A \text{ and } b * (b * (b \bullet x)) = 0, \forall b \in B$. But if $c \in (A \cup B)$, then

 $c^*(c^*(c \bullet x) = 0 \forall c \in (A \cap B) \text{ we have } x \in ann(A \cup B)$, hence

 $ann (A) \cap ann(B) \subseteq ann(A \cup B)$ (2)

From (1) and (2), we have $ann(A \cup B) = ann(A) \cap ann(B)$.

(III): we have $A \supset A \cap B$, $B \supset A \cap B$, from(I) $ann(A) \subset ann(A \cap B)$ and $ann(B) \subset ann(A \cap B)$ which implies that

$$ann(A) \bigcup ann(B) \subseteq ann(A \cap B)$$

Lemma 2.12. If A is a nonempty subset of an IS -algebra X , then

 $ann(A) = \bigcap_{a \in A} ann(a)$

Proof. Since $A = \bigcup_{a \in A} \{a\}$, we have $ann(A) = ann\{\bigcup_{a \in A} \{a\}\} = \bigcap_{a \in A} ann(a)$.

Definition2.13. Define a relation \sim on X as follows:

 $x \sim y$ if and only if $ann(x) = ann(y), \forall x, y \in X$

Lemma2.14. the relation ~ (from Definition2.13) is an equivalence relation on X.

Proof. The reflexivity, symmetry, and transitivity follow very easily from Definition 2.13 showing ~ is an equivalence relation.

3- A graph of IS-algebra.

In this section, we introduce the concepts of graph of commutative IS-algebra X and the graph of equivalence classes of X. For a graph G, we denote the set of vertices of G as V(G) and the set of edges as E(G). A graph G is said to be complete if every two distinct vertices are joined by exactly one edge. A graph G is said to be bipartite graph if its vertex set V(G) can be partitioned into disjoint subsets V_1 and V_2 such that, every edge of G joins a vertex of V_1 with a vertex of V_2 . So, G is called a complete bipartite graph if every vertex in one of the bipartition subset is joined to every vertex in the other bipartition subset. Also, a graph G is said to be connected if there is a path between any given pairs of vertices, otherwise the graph is disconnected. For distinct vertices x and y of G, let d(x, y) be the length of the shortest path from x to y and if there is no such path we define $d(x, y) = \infty$. The diameter of G is $diam(G) = \sup \{d(x, y) : x \text{ and } y \text{ are distinct vertices of G}\}$. The diameter is 0 if the graph consists of a single vertex and a connected graph with more than one vertex has diameter 1 if and only if it is complete; i.e., each pair of distinct vertices forms an edge. The neighborhood of a vertex x is the set $N(x) = \{y \in V(G) : x - y\}$. In commutative IS-algebra X, it is easy to see that N(x) = ann(x) for all $x \neq 0$. A graph H is called a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Two graphs G_1 and G_2 are said to be isomorphic if there exists a bijective mapping $f: V(G_1) \rightarrow V(G_2)$ such that $x - y \in E(G_1)$ then $f(x) - f(y) \in E(G_2)$. For more details we refer to [11 and 12].

Definition3.1. For an IS-algebra X, the graph of a commutative IS-algebra X, denoted by $\Gamma(X)$ is a graph whose vertices are elements of X and two distinct vertices are adjacent in $\Gamma(X)$ if $x * (x * (x \bullet y) = 0$.

Example 3.2. Let $Z_6 = \left\{ \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5} \right\}$. Define Θ -operation and \circ -operation by the following

tables:

Θ	$\overline{0}$	ī	$\overline{2}$	<u>3</u>	$\overline{4}$	5
$\bar{0}$	$\bar{0}$	5	$\overline{4}$	3	$\overline{2}$	ī
ī	ī	ō	5	4	3	$\overline{2}$
$\overline{2}$	$\overline{2}$	ī	ō	5	$\overline{4}$	<u>3</u>
<u>3</u>	<u>3</u>	$\overline{2}$	ī	ō	5	$\overline{4}$
$\overline{4}$	$\overline{4}$	3	$\overline{2}$	ī	ō	5
5	5	$\overline{4}$	3	$\overline{2}$	ī	$\overline{0}$

0	Ō	Ī	$\overline{2}$	3	$\bar{4}$	5
Ō	ō	$\bar{0}$	ō	ō	$\bar{0}$	ō
ī	ō	ī	$\overline{2}$	3	$\overline{4}$	5
$\overline{2}$	Ō	$\overline{2}$	$\overline{4}$	ō	$\overline{2}$	$\overline{4}$
3	ō	3	ō	3	$\bar{0}$	<u>3</u>
$\overline{4}$	ō	$\overline{4}$	$\overline{2}$	ō	$\overline{4}$	$\overline{2}$
5	ō	5	$\overline{4}$	3	$\overline{2}$	ī

Then, $(Z_6, \Theta, \circ, 0)$ is a commutative IS-algebra. Now we determine the graph of Z_6 as follows.

The set of vertices are $V(\Gamma(Z_6) = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ and the set of edges are

 $E(\Gamma(Z_6) = \{\overline{0} - \overline{1}, \overline{0} - \overline{2}, \overline{0} - 3, \overline{0} - \overline{4}, \overline{0} - \overline{5}, \overline{2} - \overline{3}, \overline{3} - \overline{4}\}, \text{ hence Figure (1) shows the graph of } Z_6.$

Definition3.3. For a commutative IS-algebra X, the graph of equivalence classes of X, denoted by $\Gamma_E(X)$ is a graph whose vertices are the set of equivalence classes $V(\Gamma_E) = \{\bar{x}; x \sim y, \forall x, y \in X\}$ and two distinct vertices \bar{x}, \bar{y} are adjacent in $\Gamma_E(X)$ if and only if $x \bullet y = 0$.

Example 3.4. Let $X = \{0, a, b, c\}$ be a set. Define *-operation and •-operation by the following tables.

*	0	а	Ь	с
0	0	0	с	Ь
a	а	0	с	Ь
Ь	Ь	Ь	0	с
с	с	С	Ь	0

*	0	a	Ь	С
0	0	0	0	0
а	0	0	0	0
b	0	0	Ь	с
с	0	0	с	Ь

Then, $(X, *, \bullet, 0)$ is a commutative IS-algebra. Now, we determine the graph of X as follows: The set of vertices is $V(X) = \{0, a, b, c, \}$, and the set of edges is

 $E(X) = \{\{0,a\},\{0,b\},\{0,c\},\{a,b\},\{a,c\}\}, \text{ and the set of vertices of } \Gamma_{E}(X) \text{ is } \{[0],[a],[b]\}$ since ann(0) = X, $ann(a) = \{0,b,c\}$, $ann(b) = ann(c) = \{0,a\}$, then

 $E(\Gamma_E(X) = \{\{[0], [a]\}, \{[0], [b]\}\}, \{[a], [b]\}\}\}$. The Figure (2) shows the graph $\Gamma(X)$ and the graph of equivalence classes $\Gamma_E(X)$.

Theorem3.5. Let X be a commutative IS-algebra. Then $\Gamma_E(X)$ is connected and

 $diam(\Gamma_E(X)) \leq 3.$

Proof: Let $\bar{x}, \bar{y} \in V(\Gamma_E(X))$ be distinct. We have the following two cases:

Case1: If $x \bullet y = 0$. Then $\overline{x}, \overline{y}$ are adjacent in $\Gamma_E(X)$ and $d(\overline{x}, \overline{y}) = 1$.

Case2: If $x \bullet y \neq 0$. Then we have the following sub cases:

Sub case1: $x \bullet x = y \bullet y = 0$. If $x \bullet y = x$, then

 $x \bullet y = x \bullet y = (x \bullet y) \bullet y = x \bullet (y \bullet y) = x \bullet 0 = 0$, which is a contradiction. Thus $x \bullet y \neq x$ and $\overline{x} \bullet \overline{y} \neq \overline{x}$ similarly, $x \bullet y \neq y$. Therefore, $\overline{x} - \overline{x} \bullet \overline{y} - \overline{y}$ is a path of length 2, and so $d(\overline{x}, \overline{y}) = 2$. **Sub case2**: $x \bullet x = 0$ and $y \bullet y \neq 0$. Then there is $\overline{b} \in V(\Gamma_E(X)) \setminus {\overline{x}, \overline{y}}$ with $b \bullet y = 0$. If $b \bullet x = 0$, then $\overline{x} - \overline{b} - \overline{y}$ is a path of length 2. If $b \bullet x \neq 0$, then $\overline{x} - \overline{b} \bullet \overline{x} - \overline{y}$ is a path of length 2, in either case $d(\overline{x}, \overline{y}) = 2$.

Sub case3: $y \bullet y = 0$ and $x \bullet x \neq 0$. The proof is similar to sub case 2.

Sub case4: $x \bullet x \neq 0$ and $y \bullet y \neq 0$. Then there exist $\overline{a}, \overline{b} \in V(\Gamma_E(X)) \setminus \{\overline{x}, \overline{y}\}$ with $a \bullet x = b \bullet y = 0$. If $\overline{a} = \overline{b}$, then $\overline{x} - \overline{a} - \overline{y}$ is a path of length 2. Thus we may assume that $\overline{a} \neq \overline{b}$, if $a \bullet b = 0$, then $\overline{x} - \overline{a} - \overline{b} - \overline{y}$ is a path of length 3, and hence $d(\overline{x}, \overline{y}) \leq 3$. If $a \bullet b \neq 0$, then $\overline{x} - \overline{a} \bullet \overline{b} - \overline{y}$ is a path of length 2 so $d(\overline{x}, \overline{y}) = 2$. Hence in all the cases $d(\overline{x}, \overline{y}) \leq 3$, therefore $diam(\Gamma_E(X)) \leq 3$ and there is a path between every two distinct vertices in $\Gamma_E(X)$, thus it is connected.

Theorem3.6. Let X be a commutative IS-algebra. If $\Gamma_E(X)$ contains a cycle, then $gr\Gamma_E(X) \leq 4$.

Proof. Assume that $\Gamma_E(X)$ contains a cycle of length which is greater than four, then $\Gamma_E(X)$ contains a cycle $\overline{x}_0 - \overline{x}_1 - \dots - \overline{x}_n - \overline{x}_0$ with $n \ge 4$, then we have two cases.

Case1: If $x_1 \bullet x_{n-1} = 0$, then we can form the cycle $\overline{x}_0 - \overline{x}_1 - \overline{x}_{n-1} - \overline{x}_n - \overline{x}_0$ of length 4.

Case2: If $x \bullet x_{n-1} \neq 0$, then we have three sub cases.

Sub case1: If $x_1 \bullet x_{n-1} \neq x_0$ and $x_1 \bullet x_{n-1} \neq x_n$, then $\overline{x}_1 \bullet \overline{x}_{n-1} \neq \overline{x}_0$ and $\overline{x}_1 \bullet \overline{x}_{n-1} \neq \overline{x}_n$ thus, we can form the cycle $\overline{x}_0 - \overline{x}_1 \bullet \overline{x}_{n-1} - \overline{x}_n - \overline{x}_0$ of length 3.

Sub case2: If $x_1 \bullet x_{n-1} = x_0$, then $x_1 \bullet x_{n-1} \bullet x_{n-2} = 0$, so we can form the cycle $\overline{x}_0 - \overline{x}_{n-2} - \overline{x}_{n-1} - \overline{x}_n - \overline{x}_0$ of length 4.

Lemma 3.7. If X is a commutative IS-algebra, then

- 1) $\Gamma_{E}(X)$ is a sub graph of $\Gamma(X)$.
- 2) ann(0) = 0, for all $x \in X$.
- 3) If $\Gamma(X)$ is the complete graph then $\Gamma(X) \cong \Gamma_E(X)$.
- 4) If $\Gamma(X)$ is the complete bipartite graph, then $\Gamma_{E}(X)$ is an edge.

Proof. (1) and (2) straightforward. (3) Suppose that $V(\Gamma(X)) = \{x_1, x_2, ..., x_n\}$. Since $\Gamma(X)$ is the complete graph, then every pair of its vertices are adjacent. Thus

 $ann(x_1) = \{x_2, x_3, ..., x_i\}, i = 2, ..., n, ann(x_2) = \{x_1, x_3, ..., x_i\}, i = 1, 3, ..., n \dots$

 $ann(x_n) = \{x_1, x_2, ..., x_{i-1}\}, i = 1, ..., n$. Then $ann(x_1) \neq ann(x_2) \neq ... \neq ann(x_n)$, therefore every vertex of $\Gamma(X)$ is a equivalence class of $\Gamma_E(X)$, thus the vertices of $\Gamma_E(X)$ are distinct and the same number of vertices of $\Gamma(X)$, then there exist an isomorphism $f : \Gamma(X) \rightarrow \Gamma_E(X)$ satisfies $f(x_i) = \overline{x}_i$ for each $i \in \{1, 2, ..., n\}$. And the mapping of edges $f : E(\Gamma(X)) \rightarrow E(\Gamma_E(X))$, which sends the edge $x_i - x_j$ in $\Gamma(X)$ to the edge $\overline{x}_i - \overline{x}_j$ in $\Gamma_E(X)$ is a well-defined bijection. Thus $\Gamma(X) \cong \Gamma_E(X)$.

(4) Suppose that $\Gamma(X)$ is the complete bipartite graph with vertex set $V(\Gamma(X)) = \{x_1, x_2, ..., x_{r_1}, x_{r_1+1}, ..., x_r\}$. This set can be split into two sets $A = \{x_1, x_2, ..., x_{r_1}\}$ and $B = \{x_{r_1+1}, ..., x_r\}$ such that each vertex of A is joined to each vertex of B by exactly one edge. Thus

 $E(\Gamma(X)) = \{x_1 - x_{r_1+1}, x_1 - x_{r_2+1}, \dots, x_1 - x_r, x_2 - x_{r_1+1}, \dots, x_2 - x_r, \dots, x_{r_1} - x_{r_1+1}, x_{r_1} - x_{r_2+1}, \dots, x_{r_1} - x_r\}$, so $ann(x_1) = ann(x_2) = \dots, ann(x_{r_1}) = B$ and $ann(x_{r_1+1}) = ann(x_{r_2+2}) = \dots, ann(x_r) = A$

Then there are two distinct equivalence classes \bar{x}_1 and \bar{x}_{r_1+1} in $\Gamma_E(X)$, which are adjacent. Thus $\Gamma_E(X)$ is an edge.

Theorem3.8. Let X be a commutative IS-algebra.

- (a) If $diam(\Gamma(X)) = 0$, then $diam(\Gamma_E(X)) = 0$
- (b) If $diam(\Gamma(X)) = 1$, then $diam(\Gamma_E(X)) = 0$ or 1
- (c) If $diam(\Gamma(X)) = 2$, then $diam(\Gamma_E(X)) = 0,1$ or 2
- (d) If $diam(\Gamma(X)) = 3$, then $diam(\Gamma_E(X)) = 0, 1, 2$ or 3

Proof: (a) Let $diam(\Gamma(X)) = 0$ i.e. there exist $x \in \Gamma(X)$, which is one vertex. Since ann(x) = ann(x), then $\overline{x} \in \Gamma_E(X)$. Thus $\Gamma_E(X)$ has also one vertex and so $diam(\Gamma_E(X)) = 0$. (b) if $diam(\Gamma(X)) = 1$, then $\Gamma(X)$ is complete graph with more than one vertex. Thus there exist two vertices $x, y \in \Gamma(X)$, such that x - y is a path of length 1 connecting x and y. Now, either ann(x) = ann(y), then $\Gamma_E(X)$ has one vertex. Thus $diam(\Gamma_E(X)) = 0$ or $ann(x) \neq ann(y)$ and $x \bullet y = 0$, by Definition3.3, then there exist an edge connecting x and y so $diam(\Gamma_E(X)) = 1$. (c) If $diam(\Gamma(X)) = 2$, then there exist three vertices $x, y, z \in \Gamma(X)$, such that x - y - z is a path of length 2. Now, if ann(x) = ann(y) = ann(z) then there exist one equivalent class contains these points, thus $\Gamma_E(X)$ has one vertex and so $diam(\Gamma_E(X)) = 0$. If $ann(x) \neq ann(y)$ and ann(x) = ann(z) then $\Gamma_E(X)$ have two vertices \overline{x} and \overline{y} such that $\overline{x} - \overline{y}$ is a path of length 1, thus $diam(\Gamma_E(X)) = 1$. If $ann(x) \neq ann(y) \neq ann(z)$ then $\Gamma_E(X)$ have three vertices \overline{x} , \overline{y} and \overline{z} such that $\overline{x} - \overline{y} - \overline{z}$ is a path of length 2, thus $diam(\Gamma_E(X)) = 2$.

(d) If $diam(\Gamma(X)) = 3$, then there exist four vertices $x, y, z, l \in \Gamma(X)$, such that x - y - z - l is a path of length 3. Now, if ann(x) = ann(y) = ann(z) = ann(l) then $\Gamma_E(X)$ has one vertex. Thus $diam(\Gamma_E(X)) = 0$. If ann(x) = ann(y), ann(z) = ann(l) then $\Gamma_E(X)$ have two vertices \overline{x} and \overline{z} such that $\overline{x} - \overline{z}$ is a path of length 1, thus $diam(\Gamma_E(X)) = 1$. If $ann(x) \neq ann(y)$ and ann(z) = ann(l), then $\Gamma_E(X)$ have three vertices \overline{x} , \overline{y} and \overline{z} such that $\overline{x} - \overline{y} - \overline{z}$ is a path of length 1, thus $diam(\Gamma_E(X)) = 1$. If $ann(x) \neq ann(y)$ and ann(z) = ann(l), then $\Gamma_E(X)$ have three vertices \overline{x} , \overline{y} and \overline{z} such that $\overline{x} - \overline{y} - \overline{z}$ is a path of length 2, thus $diam(\Gamma_E(X)) = 2$. Finally, if $ann(x) \neq ann(y) \neq ann(z) \neq ann(l)$, then $\Gamma_E(X)$ have four vertices $\overline{x}, \overline{y}, \overline{z}$ and \overline{l} such that $\overline{x} - \overline{y} - \overline{z} - \overline{l}$ is a path of length 3, thus $diam(\Gamma_E(X)) = 3$.

Theorem3.9. Let X and Y be two commutative IS-algebras. If $\Gamma(X) \cong \Gamma(Y)$, then $\Gamma_E(X) \cong \Gamma_E(Y)$.

Proof: clear.

The converse of this theorem is false as illustrated in Example 3.8. We have that $\Gamma_E(Z_6) \cong \Gamma_E(Z_{10})$

but $\Gamma(Z_6) \tilde{\neq} \Gamma(Z_{10})$.

Example 3.10. Figure (2) displays the zero divisor graphs and the equivalence class graphs of Z_6 and Z_{10} .

Theorem3.11. Let $\Gamma_E(X)$ be the associated graph of equivalence classes of IS algebra X. For any distinct vertices $\overline{x}, \overline{y} \in \Gamma_E(X)$, if \overline{x} and \overline{y} are connected by an edge, then $ann(x) \neq ann(y)$.

Proof: Suppose that ann(x) = ann(y), then $x \sim y$ and hence $\overline{x} = \overline{y}$, which is a contradiction. Therefore, ann(x) and ann(y) are distinct annihilator ideal of X.

The following example shows that the converse of Theorem 3.11 may not be true.

Example 3.12. Let $(Z_{30}, \Theta, \circ, 0)$ be an IS-algebra, Figure (3) shows the difference between the zerodivisor graph and the equivalence class graph.

In $\Gamma_E(Z_{30})$, the vertices $\overline{3}$ and $\overline{5}$ are distinct annihilators, but no edge joint between them.

Acknowledgement

The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions.

References

- [1]. I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988) 208-226.
- [2]. Y.Imai and K.Iseki, On axiom system of propositional calculi, XIV, Japan Acad. (1966) 19-22

SAMY M. MOSTAFA, FATEMA F.KAREEM

- [3]. K.Iseki, algebra related with a propositional calculus, Proc.Japan.Acad.42 (1966) 351-366.
- [4]. Y.B. Jun and K. J.Lee, graphs based on BCK\BCI-algebra, Int. J. Math. Math. Sci. 1 (2011) Article ID616981.
- [5]. Y.B.Jun, Roh E.H. and X.L.Xin, I-ideals generated by a set in IS-algebras, Bull Kcrean Math.Soc., 35 (1998) 615-624.
- [6]. Y.B.Jun, S.M.Hong, BCI-semigroups, Honam math. (1993).
- [7]. Y.B.Jun, X.I.Xin, and E.H.Roh, Aclass of algebras related to BCI-algebras and semi groups Soochow J. Math., 4 (24) (1998) 309-321.MR200b.06056.
- [8]. S. M. Mostafa, A. E. Radwan, F. A. Ibrahem and F. F.Kareem, The graph of a commutative KUalgebra, Algebra Letters 1 (2015) 1-18.
- [9]. S.B.Mulay, cycles and symmetries of zerodivisors, Comm. Algebra, 7(30)(2002) 3533-3558.
- [10]. E.H.Roh, Y.B.Jun, and W.H.shim, some ideals in IS algebras, Sc. Math.3(2) (1999) 315-320 electronic CMP 1718 275.
- [11]. D. Weber, zero-divisor graphs and lattices of finite commutative rings, Rose-Hulman undergraduate math. J. 1(12) Spring (2011).
- [12]. R.J.Wilson, Introduction to Graph Theory. Oliver and Boyed, Edinburgh (1972).
- [13]. O. Zahiri and R. A. Borzooei, Graph of BCI-algebras, Int. J. Math. Math. Sci. 1(2012) Article ID126835.