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i ABSTRACT
: In this paper, we introduce the graph of a commutative IS-algebra X ,

xf denoted by I'( X ) , as the (undirected) graph with all elements of X .
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.omsn determined by annihilator ideals. Also, several examples are presented.
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1. INTRODUCTION

Imai and Is’eki [3] in 1966 introduced the notion of a BCK-algebra. In the same year, Is'eki
[4] introduced BCl-algebras as a super class of the class of BCK-algebras.

In 1993, Jun et al. [7] introduced a new class of algebras related to BCl-algebras and
semigroups, called a BCI- semigroup /BCI-monoid/BCl-group. In 1998, for the convenience of study,
Jun et al. [8] renamed the BCl-semigroup (respectively, BCl-monoid and BCl-group) as the IS-
algebra (respectively, IM-algebra and IG-algebra) and studied further properties of these algebras
(see [6], [10]). Many authors studied the graph theory in connection with semigroups and rings. For
example, Beck [1] associated to any commutative ring R its zero divisors graph G(R), whose vertices
are the zero divisors of R, with two vertices a, b jointed by an edge in case a. b =0. Jun and Lee [5]
defined the notion of zero divisors and quasi-ideals in BCl-algebra and show that all zero divisors
are quasi-ideal. So, they introduced the concept of associated graph of BCK/BCI- algebra and
verified some properties of this graph and proved that if X is a BCK-algebra, then the associated
graph of X is connected. Moreover, if X is a BCl-algebra, then the associated graph of it is
disconnected. Zahiri and R. A. Borzooei [12] associate a new graph to a BCl-algebra X which is
denoted by G( X ), this definition is based on branches of X .If X is a BCK-algebras, then this
definition and last definition which was introduced by Jun and Lee are the same. S.Mulay [9]
introduced the graph of equivalence classes of zero-divisors of a ring R, which is constructed from
classes of zero divisors determined by annihilator ideals. Inspired by ideas from Mulay, we study
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the graph of equivalence classes of a commutative IS-algebra which is constructed from classes
determined by annihilator ideals.
2. Preliminaries
In this section, we submit some concepts related to IS-algebra (BCl-semi-groups) and
theories from the literature, which are necessary for our discussion.
Definition 2.1 [3]. Let X be a set with a binary operation * and a constant 0, then ( X,*,0) is called
a BCl -algebra, if it satisfies the following axioms. For all X, y,z € X .
(BCI-1) ((x *y) *(x *z)) *(z *y) =0,
(BCI-2) (x *(x *y)) *y = 0, (BCI-3) x*x =0,
(BCl-4)x*y=0and y*x=0implyx =y,
If a BCl -algebra X satisfies the identity 0 * x =0, for all x € X, then X is called a BCK algebra.
It is known that the class of BCK-algebra is a proper subclass of the class of BCl-algebra.
A binary relation £ in X is defined by: x<y ifandonlyif x*y=0.
In a BCl-algebra ( X ,*,0), the following properties are satisfied:
(BCIL') (x*z)*(y*z)<x*y,
(BCIZ') [x* (x*y)] =y,
(BCI3')x<yimpliesz*x<z*y,
(BCl4')x<yandy<zimplyx<z,
(BCIS') (x*y)*z=(x*2z) *y,
(BCI6') x<yimpliesx *z<y * z,
(BCI7') x*0= «x.
Definition2.2 [3].
A subset A of a BCl-algebra ( X ,*,0)is called an ideal of X, if for any x, y € X, the following
conditions hold:
() oeA,
(i)x *yandy € Aimply that x € A,
Definition2.3 [8]. An IS-algebra is a nonempty set X with two binary operations *,e and constant 0
such that following axioms are satisfied:
1. ( X ,*,@)is aBCl-algebra,
2. ( X ,®)is asemigroup,
The operation ® is distributive (on both sides) over the operation* , i.e.
3. xeo(y*z)=(xoy)*(xez)and(x*y)ez=(xez)*(yez), forallx,y,ze X .
Definition2.4 [6]. A non empty subset | of X is called a left (resp. right) I-ideal of X if:
(1)1 is an ideal of a BCl-algebra X,
(I,) xeX . ael implh that xeacl ( resp. aexel).
Lemma2.5 [10]. Let X be an IS-algebra. Then forany x, y, z € X, we have:
() Oex=xe0=0
(i) x < yimpliesthatxez<yezandzex<zey.
Definition2.6. an [S-algebra X is said to be a commutative IS-algebra if the multiplication is
commutativei.e.,, xey =y exforallx, yinX.
Example 2.7. Let X={0, g, b, c} be a set. Define * -operation and e -operation by the following
tables.
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O | T | Of*
O ||| OO
O T OoO|lOo|o
QOO0 |T|T
OO |T|T|O
O |T | O |*

OO0 |O|O
DO | | OD
| T|O|O|T
O |T | | O|o

Then, ( X,*,9,0) is a commutative IS-algebra
Definition2.8. Let X be a commutative IS-algebra and A be a subset of X . Then we define
ann (A) = {x e X;a*(a=*(aex))=0 foreacha e A} and call it the IS-annihilator of A .

If A= {a}, then we write ann(a) instead of ann({a}) .
Remark 2.9. Let X be a commutative IS-algebra and

ann(A) = {xe X;a*(a*(aex))=0 foreacha e A} be an annihilatorof AC X .
(0 If x is a zero divisor of X, then be x cann(A)forallb € A.
(ii) If gex=0forall xeX,then ann(A)=0forallacA.

Proof. (i) Since x is a zero divisor, we havea *(a *(a e (be x))=a*(a *(a ®(0))=a*a =0.
Hence, be x cann(A).
(i) Sinceaex=0forallx € X,we havea *(a* (aex))=a*(a*0)=a*xa=0.

Hence, ann(A)=0.
Theorem 2.10. Let A be a non-empty subset of an IS-algebra X. If x is a zero divisor of X , then
ann(A) isanideal of X.
Proof. Foreverya € A, sincea*(a*(ae0))=a*a=0,wehaveO e ann(A).
First, we prove that ann(A)is an ideal of a BCl-algebra, we suppose that X, (y *X) eann(A) . We
obtain  from definition that a*(a*(aex))=0........ (i), and which implies that
a*(a*(aex))<aex.
Also a*(@*(ae(y*X)=0..cccccervrnnnne (i)
It follows from (BCI 2') and (i) thatO*a e x =0, and hence

(a*aex)*a=(a*a)*aex=0*aex =0.This means that a=a>ae X by (BCI-4).
Similarly we have a=a*ae(y*X) .From these, we have in turn
a=a*(ae(y*x)=(a*aex)*ae(y*x)=(a*aex)*(aey*aex)<a*aey by (BCl1')
O=a*a<(a*aey)*a=0*aey(Bythe property X<y = X*z2<Yy*7)
0=0*(0*aey)<aey,whichimpliesthatO*aey=0.
It follows that (a*aey)*a=(a*a)*aey=0*aey=0and hencea=ax*aey.Thus
yeann(A) and ann(A) isanideal of X .Inthe second place, if x is a zero divisor,
then for alla,b € A, x € X, we have,b e x € ann(A) by Remark 2.7 .
Then ann(A) isanideal of anIS-algebra X.
Lemma2.11. If A= ¢, B < X, then
() If AcB,then ann(B) < ann(A)
() ann(AUB)=ann(A)Nann(B)
(n) ann(A)Uann(B) cann(ANB)
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Proof. (1) Suppose that
xeann(B) , then b*(b*(bex)=0,vbeB , but Ac B,therfore b*(b*(bex)=0,Vbe A
i.ex eann(A), hence ann(B) < ann(A).
(1) Since Ac AUB and B = AUB, we have by part (I) of Lemma 2.9 that,
ann(AUB) < ann(A),ann(B), and hence ann(AUB) cann (A)() ann(B) ——(1)
Conversely, if X e ann(A) (N ann(B), then x € ann(A), ann(B), therefore
a*(a*(aex))=0,Yac A andb*(b*(bex))=0,VvbeB.Butif cc(AUB), then
c*(c*(cex)=0Vce(ANB) we have xe ann(AU B)' hence

ann (A)( ann(B) cann(AUB) (2)
From (1) and (2), we have ann(AU B) =ann(A)(ann(B).
(): we have A> ANB,B > ANB ,from(l) ann(A) = ann(A(1B)and ann(B) < ann(A(B)
which implies that

ann(A)UJann(B) < ann(AB)

Lemma 2.12. If A is a nonempty subset of an IS -algebra X , then

ann(A) =()ann(a)

acA

Proof. Since A= U{a} , we have ann(A) = ann{U{a}}z ﬂann(a) .

acA acA acA

Definition2.13. Define a relation ~on X as follows:

x ~y if and only if ann(x) =ann(y),Vx,y eX

Lemma2.14. the relation ~ (from Definition2.13) is an equivalence relation on X .

Proof. The reflexivity, symmetry, and transitivity follow very easily from Definition 2.13 showing ~ is
an equivalence relation.

3- A graph of IS-algebra.

In this section, we introduce the concepts of graph of commutative 1S-algebra X and the graph of
equivalence classes of X . For a graph G, we denote the set of vertices of G as V(G) and the set

of edges asE(G). A graph G is said to be complete if every two distinct vertices are joined by
exactly one edge. A graph G is said to be bipartite graph if its vertex set V(G) can be partitioned
into disjoint subsets V, and V, such that, every edge of G joins a vertex of V, with a vertex of V, .

So, G is called a complete bipartite graph if every vertex in one of the bipartition subset is joined to
every vertex in the other bipartition subset. Also, a graph G is said to be connected if there is a path
between any given pairs of vertices, otherwise the graph is disconnected. For distinct vertices x and
y of G, let d(x, y) be the length of the shortest path from x to y and if there is no such path we define
d(x, y) = e=. The diameter of G isdiam(G) =sup{d(X, y) : x and y are distinct vertices of G}. The

diameter is O if the graph consists of a single vertex and a connected graph with more than one vertex
has diameter 1 if and only if it is complete; i.e., each pair of distinct vertices forms an edge. The
neighborhood of a vertex X is the set N(X) ={y €V (G) : X— y}. In commutative IS-algebra X , it

is easy to see that N(X)=ann(x) for allx=0. A graph H is called a subgraph of G if
V(H) <V (G) and E(H) c E(G). Two graphsG,and G, are said to be isomorphic if there exists
a bijective mapping f :V(G;) >V (G,) such that Xx—y e E(G)) then f(x)— f(y)eE(G,).

For more details we refer to [11 and 12].
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Definition3.1. For an IS-algebra X , the graph of a commutative IS-algebra X , denoted by I'(X)is a
graph whose vertices are elements of X and two distinct vertices are adjacent in I'(X) if
X*(X*(xey)=0.

Example 3.2. Llet Z; = (_),1,2 3 ,21,5 . Define ©® -operation and o-operation by the following

tables:
©lolilz]3|als S 01 |2 ]38 45
0|05 |a|3|21 0010 ]0]0]0 0
ililols|a|3]|2 LJ0J1 |23 ]4]5
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Then, (Zs,®,o,0) is a commutative IS-algebra. Now we determine the graph of Z as follows.

The set of vertices are V (I'(Z) :{6,1,§,§,Z,§} and the set of edges are

E(I'(Zs) ={0- 10-2,0-30-4,0-52-3,3— 4_1}, hence Figure (1) shows the graph of Z.

0

3
T'(Zs) Fig.1
Definition3.3. For a commutative 1S-algebra X , the graph of equivalence classes of X , denoted by
I'c (X) is a graph whose vertices are the set of equivalence classes V (I'.) = {)_( X ~Y, VX Y€ X}
and two distinct vertices X,y are adjacentin I'-(X) ifandonlyif xey=0.
Example 3.4. Let X ={0,a,b,C}be a set. Define *-operation and e -operation by the following

tables.

La < O ')
oo o ol o
oo o ol 5
o o o o | e
el I I B Y
[T =l T =]
o | o o] o o
o o ol o B
o o o o o
| o | S| o O
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Then, (X ,*,0,0) is a commutative IS-algebra. Now, we determine the graph of X as follows: The
set of vertices isV (X) ={0,a,b,c,}, and the set of edges is

E(X) ={{0,a},{0,b}.{0,c},{a,b},{a,c}}, and the set of vertices of ' (X) is {[0],[a],[b]}
sinceann(0) = X, ann(a) ={0,b,c}, ann(b) = ann(c) ={0,a} , then

E(: (X) ={{[C],[al}{[0],[b]}{[al,[b]}}. The Figure (2) shows the graph I'(X) and the graph

of equivalence classesI'; (X) .

0 [0]
@ 3 [a] [b]
) -
Fig. 2

Theorem3.5. Let X be a commutative IS-algebra. Then I'z (X) is connected and

diam(Tz (X)) <3.

Proof: Let X,y €V (I'z (X)) be distinct. We have the following two cases:

Casel:If Xey=0.Then X,y are adjacentin I':(X) and d(X,y)=1.

Case2: If Xe® Yy = 0. Then we have the following sub cases:

Sub casel: XexX=Yyeoy=0.If Xoy=X,then
Xey=Xey=(Xxey)ey=xe(yey)=Xxe0=0, whichis a contradiction. Thus Xy # X and

X ®y # X similarly, X®y # Y. Therefore, X —X ® Y — Y is a path of length 2, and so d(X,Yy) =2.
Sub case2: XeXx=0 and yey=0. Then there is b eV (I'c(X))\{X,y} with bey=0. If
bex=0, then X—b — ¥ is a path of length 2. If be X %0, then X—b e X — ¥ is a path of length
2, ineither case d(X,y) =2.

Sub case3: Yoy =0 and Xe X = 0. The proof is similar to sub case 2.

Sub cased: XeXx#0 and yey=0. Then there exista,b eV ([ (X))\{X, ¥} with
aex=bpey=0.If a=b, then X —a — Y is a path of length 2. Thus we mayassumethatﬁ;tk; ,
ifaeb=0, then X—a—b — Y is a path of length 3, and henced(X,y) <3.If aeb =0, then
X —aeb —V is a path of length 2 so d(X,y) = 2. Hence in all the casesd (X, y) <3, therefore
diam(I'c (X)) <3 and there is a path between every two distinct vertices in I'z (X), thus it is

connected.
Theorem3.6. Let X be a commutative IS-algebra. If [z (X) contains a cycle, then grlc (X) <4.

Proof. Assume that I'; (X) contains a cycle of length which is greater than four, then I’z (X)
contains a cycle X, — X, —...— X, — X, with N >4, then we have two cases.
Casel: If X, ®X, ; =0, then we can form the cycle X, — X, — X, , — X, — X, of length 4.

Case2: If Xxe X, # 0, then we have three sub cases.
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Sub casel: If X, X , #X, andX, X , # X, then X, eX , #X, and X X, , # X, thus, we
can form the cycle X, — X, ® X _, — X, — X, of length 3.
Sub case2: If X ®X,,=X,, then X eX ,eX ,=0, so we can form the cycle
Xy — X, , — X, 4, — X, — X, of length 4.
Lemma 3.7. |If X isacommutative IS-algebra, then

1) I'z (X) is asub graph of '(X).

2)ann(0) =0, forall xe X.

3) If I'(X) is the complete graph then I'(X) = Iz (X).

4) If I'(X) is the complete bipartite graph, then I'z (X) is an edge.
Proof. (1) and (2) straightforward. (3) Suppose thatV (I'(X)) ={X;, X, ,..., X, } . Since T'(X) is the
complete graph, then every pair of its vertices are adjacent. Thus
ann(x,) ={X,, X3,..., X, }, 1 =2,...,n, ann(x,) ={X;, X5,.... X, ;1 =13,...,n...
ann(x,,) ={X;, X, ,.... X, ; },i =1,,...,n. Then ann(x,) = ann(x,) #... = ann(X,) , therefore every
vertex of I'(X) is a equivalence class of Iz (X) , thus the vertices of I (X) are distinct and the
same number of vertices of I'(X), then there exist an isomorphism f :T'(X) — I'c (X) satisfies
f(x;) =X, foreachi €{1,2,...,n}. And the mapping of edges f : E(I'(X)) — E(I'z (X)), which
sends the edge X; —X; in I'(X) to the edge X; —X; in I'z (X) is a well-defined bijection. Thus
'(X)z=T:(X).
(4) Suppose that TI(X) is the complete bipartite graph with vertex set
V(I'(X)) :{Xl,xz,...,xrl,x X, }. This set can be split into two sets A:{Xl,Xz,...,Xrl} and

r1+1,...,

B ={Xr1+1,..., X, } such that each vertex of A is joined to each vertex of B by exactly one edge.
Thus
E(F(X)) ={X1 - Xr1+l! X, — Xr2+l""’ X=X, Xy — Xr1+1""' Xy = X yeees Xrl - Xr1+l’ Xrl - Xr2+1""’ Xr1 - Xr}

,s0 ann(x,) =ann(x,) =...,ann(x, ) = B and ann(x, ,;) =ann(x, ,,) =...,ann(x, ) = A
Then there are two distinct equivalence classes X; and X, ,; in Iz (X) , which are adjacent. Thus
I (X) isan edge.
Theorem3.8. Let X be a commutative IS-algebra.

(a) If diam(I"(X)) =0, then diam(I'z (X)) =0

(b) If diam(I"(X)) =1, then diam(I'z (X)) =0or1

(c) If diam(I"(X)) = 2, then diam(I'z (X)) =01or2

(d) If diam(I'(X)) =3, then diam(I'; (X)) =0,1,20r3
Proof: (a) Let diam(I'(X))=0 ie. there existxeI'(X), which is one vertex. Since
ann(x) = ann(x) , then X e Iz (X) . Thus [z (X) has also one vertex and so diam(I'; (X)) =0.
(b) if diam(I"(X)) =1, then T'(X) is complete graph with more than one vertex. Thus there exist
two vertices X,y € ['(X), such that X— Y is a path of length 1 connecting X and Yy . Now, either
ann(x) = ann(y), then I'z (X) has one vertex. Thus diam(I'z (X)) =0 or ann(x) = ann(y) and
X ey =0, by Definition3.3, then there exist an edge connecting X andy so diam(I'z (X)) =1.
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(c) If diam(I"(X)) = 2, then there exist three vertices X, y,Z € '(X), such that X—y —Z is a path
of length 2 . Now, if ann(x) =ann(y) =ann(z) then there exist one equivalent class contains
these points, thus I'z(X) has one vertex and so diam(I'z (X)) =0. If ann(x) = ann(y)and
ann(x) = ann(z) then I'z(X) have two vertices X and Y such that X — Y is a path of length 1,
thus diam(I'; (X)) =1. If ann(x) = ann(y) = ann(z) then I'c (X) have three verticesX, y and
Z such that X —y — Z is a path of length 2, thus diam(I'z (X)) =2.

(d) Ifdiam(I"(X)) = 3, then there exist four vertices X, Y, z,l e '(X), such that x—y—z—1 isa
path of length 3. Now, if ann(x) =ann(y)=ann(z) =ann(l) thenIz (X) has one vertex. Thus
diam(I'c (X)) =0. If ann(x) =ann(y),ann(z) = ann(l) then I'z (X) have two vertices X and Z
such that X—2Z is a path of length 1, thusdiam(I'z(X))=1. If ann(x)=ann(y)and
ann(z) =ann(l), then I'z(X) have three verticesX, Yy and Zsuch that X —Y —Z is a path of
length 2, thusdiam(I'z (X)) =2. Finally, if ann(x) = ann(y) = ann(z) = ann(l), then I'z(X)
have four verticesX,y, Zand | such that X-— y— 7—1 is a path of length 3, thus
diam(I'; (X)) =3.

Theorem3.9. Let X and Y be two commutative IS-algebras. If I'(X)=z=I(Y), then
e (X) =Te(Y) .

Proof: clear.

The converse of this theorem is false as illustrated in Example 3.8. We have that Iz (Z,) = Iz (Z,,)

but T(Z,) 2T(Z,,).

Example 3.10. Figure (2) displays the zero divisor graphs and the equivalence class graphs of Z and

Z,.

_ _ 3 :
5 2

1—‘E (ZlO) FE (ZG)

3
5
8 2
2 4
(Z,,) I'(Ze)

Fig. (2)

Theorem3.11. Let 1. (X) be the associated graph of equivalence classes of IS algebra X . For any
distinct vertices X, y € I'z (X), if Xand y are connected by an edge, then ann(x) =ann(y).
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Proof: Suppose that ann(x) =ann(y), then X~y and hence X =Y, which is a contradiction.
Therefore, ann(x) and ann(y) are distinct annihilator ideal of X .

The following example shows that the converse of Theorem 3.11 may not be true.

Example 3.12. Let (Z,,,®,0,0) be an IS-algebra, Figure (3) shows the difference between the

zerodivisor graph and the equivalence class graph.
3

NLARR

1—‘E (Z30)

Fig.(3)
InI'c (Z30), the vertices 3 and 5are distinct annihilators, but no edge joint between them.
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