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ABSTRACT 

In this paper, sufficient conditions are derived for the uniformly persistence 

of a stage structured prey predator model with refuge. By constructing 

appropriate Lyapunov functions, a set of easily verifiable sufficient 

conditions are obtained for the global asymptotic stability of nonnegative 

equilibria of the model. Numerical analysis are presented to illustrate the 

validity of our main results. 

Keywords: Equilibrium points, stage structured, refuge, average Lyapunov 
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1.  INTRODUCTION 

 Prey-predator interactions is an important subject in ecology and mathematical ecology for 

which many problems still remain open [1]. Lotka-Volterra model was the first in this context to 

describe the interaction of species. After that many complex models are developed to study prey-

predator systems. The predator-prey system is an important population model, which has received 

extensive attention ( for example see [2,3,4,5,6] ). But all of these works ignore the stage structure 

of species. However, in the real world, almost animals have the stage structure of immature and 

mature. Therefore, in recent years, several predator-prey models based on age-structure are 

developed and studied by many authors ( for example see [7,8,9,10,11,12,13,14] ). Dynamic nature 

of refuge has been studied in different models. Actually in prey-predator interaction prey population 

are at the verge of extinction due to over predation, environmental pollution, mismanagement of 

natural resources so as to save these species, suitable measures such as restriction on harvesting, 

creating reserve zones/refuges should be implemented. Thus study of persistence is important from 

the biological point of view. Biologically, persistence means the long term survival of all populations. 

In mathematical language, persistence of a system means that strictly positive solutions do not have 

omega limit points on the boundary of the non-negative cone[15]. 

 In this paper, we present the occurrence of persistence in the mathematical model proposed 

by Zahraa, J.K., et al [16]. 
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2. Mathematical model [16] 

       Consider the food web model consisting of two predators-stage structure prey in which the prey 

species growth logistically in the absence of predation, while the predators decay exponentially in 

the absence of prey species. It is assumed that the prey population divides into two compartments: 

immature prey population 𝑁1(t) that represents the population size at time t and mature prey 

population 𝑁2(t) which denotes to population size at time t. Furthermore the population size of the 

first predator at time t is denoted by 𝑁3(t), while 𝑁4(t) represents the population size of second 

predator at time t , see [16]. 

Now, the dynamics of the model can be represented by the following differential equations [16]. 
 

    
𝑑𝑁1

𝑑𝑇
= 𝛼 𝑁2   1 −

𝑁2

𝑘
  − 𝛽 𝑁1 

    
𝑑𝑁2

𝑑𝑇
= 𝛽 𝑁1 − 𝑑1 𝑁2 − 𝑐1  1 − 𝑚  𝑁2 𝑁3 − 𝑐2  1 − 𝑚  𝑁2 𝑁4 

    
𝑑𝑁3

𝑑𝑇
= −𝑑2 𝑁3 + 𝑒1 𝑐1  1 − 𝑚  𝑁2 𝑁3 − 𝑐3 𝑁3 𝑁4                                                                             ( 2.1 ) 

    
𝑑𝑁4

𝑑𝑇
= −𝑑3 𝑁4 + 𝑒2 𝑐2   1 − 𝑚  𝑁2 𝑁4 − 𝑐4 𝑁3 𝑁4                                          

 

Now, for further simplification of system   2.1   the following dimensionless variables are used in 

[16]. 

  𝑡 = 𝛼 𝑇 ,  𝑢1 =
𝛽

𝛼
 ,  𝑢2 =

𝑑1

𝛼
 ,  𝑢3 =

𝑑2

𝛼
 ,  𝑢4 =

𝑒1𝑐1𝑘

𝛼
, 𝑢5 =

𝑐3

𝑐2
 ,  𝑢6 =

𝑑3

𝛼
 ,  𝑢7 =

𝑒2𝑐2𝑘

𝛼
, 𝑢8 =

𝑐4

𝑐1
   , 

                                            𝑥 =
𝑁1

𝑘
  , 𝑦 =

𝑁2

𝑘
  , 𝑧 =

𝑐1 𝑁3

𝛼
  , 𝑤 =

𝑐2 𝑁4

𝛼
  .   

Thus, system   2.1   can be written in the following dimensionless form: 

   
𝑑𝑥

𝑑𝑡
= 𝑥   

𝑦  1 − 𝑦 

𝑥
− 𝑢1  = 𝑥  𝑓1  𝑥 , 𝑦 , 𝑧 , 𝑤   

   
𝑑𝑦

𝑑𝑡
= 𝑦   

𝑢1 𝑥

𝑦
− 𝑢2 −  1 − 𝑚  𝑧 −  1 − 𝑚  𝑤  = 𝑦  𝑓2  𝑥 , 𝑦 , 𝑧 , 𝑤   

   
𝑑𝑧

𝑑𝑡
= 𝑧   −𝑢3 + 𝑢4  1 − 𝑚  𝑦 − 𝑢5 𝑤  = 𝑧  𝑓3  𝑥 , 𝑦 , 𝑧 , 𝑤                                                              ( 2.2 ) 

   
𝑑𝑤

𝑑𝑡
= 𝑤   −𝑢6 + 𝑢7  1 − 𝑚  𝑦 − 𝑢8 𝑧  = 𝑤  𝑓4  𝑥 , 𝑦 , 𝑧 , 𝑤   

 

with  𝑥 0 ≥ 0 , 𝑦 0 ≥ 0 , 𝑧 0 ≥ 0  𝑎𝑛𝑑  𝑤 0 ≥ 0 . It is observed that the number of parameters 

have been reduced from thirteen in the system   2.1   to nine in the system   2.2   . 

Obviously the interaction functions of the system   2.2    are continuous and have continuous partial 

derivatives on the following positive four dimensional space. 

   𝑅+
4 =     𝑥 , 𝑦 , 𝑧 , 𝑤  ∈ 𝑅4 ∶  𝑥 0 ≥ 0 , 𝑦 0 ≥ 0 , 𝑧 0 ≥ 0 , 𝑤 0 ≥ 0   .  

Therefore these functions are Lipschitzian on 𝑅+
4  , and hence the solution of the system   2.2   exists 

and is unique. Further, all the solutions of system   2.2   with non-negative initial conditions are 

uniformly bounded as shown in the following theorem [16]. 

Theorem 1: All the solutions of system   2.2   which initiate in 𝑅+
4  are uniformly bounded. 

3. The stability analysis of system   𝟐. 𝟐   [16] 

       The mathematical model given by system   2.2   has at most five equilibrium points, which are 

mentioned with their existence conditions in [16] as the following: 
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1. The vanishing equilibrium point 𝐸0 =   0 ,0 ,0 ,0  , always exists and it is locally asymptotically 

stable in the 𝑅+
4  provided that the following condition holds: 

𝑢2 > 1                                                                                                                                                   (3a) 

However, it is a saddle point otherwise. More details see [16]. 

2. The first equilibrium point 𝐸1 =   𝑥  , 𝑦  ,0 ,0   exists uniquely in Int. 𝑅+
2  (Interior of 𝑅+

2 ) of 

𝑥𝑦 − plane under the following condition: 

           𝑢2 < 1                                                                                                                                                  (3b)  

And it is locally asymptotically stable provided that: 

                
1 − 𝑢2

2
  <  𝑦  < min    

𝑢3

𝑢4  1 − 𝑚 
 ,

𝑢6

 𝑢7  1 − 𝑚 
                                                                      (3c) 

holds. However, it is a saddle point otherwise. More details see [16]. 

3. The second three species equilibrium point 𝐸2 =   𝑥  , 𝑦  , 𝑧  ,0   exists uniquely in the 𝐼𝑛𝑡. 𝑅+
3  of 

𝑥𝑦𝑧 − 𝑠𝑝𝑎𝑐𝑒 provided that the following condition holds: 

        𝑢3 < min    𝑢4  1 − 𝑚  ,  𝑢4  1 − 𝑚    1 − 𝑢2                                                                                  (3d) 

where 

𝑥 =
𝑢3

𝑢1 𝑢4  1 − 𝑚 
  
𝑢4  1 − 𝑚 − 𝑢3

𝑢4 1 − 𝑚 
  , 𝑦 =

𝑢3

𝑢4 1 − 𝑚 
 𝑎𝑛𝑑  𝑧 =

𝑢4  1 − 𝑚    1 − 𝑢2  − 𝑢3

𝑢4  1 − 𝑚 2
 . 

However, according to the Jacobian matrix 𝐽2 given in[16], the characteristic equation of 𝐽2 can be 

written as: 

 𝜆3 + 𝐴 1 𝜆2 + 𝐴 2 𝜆 + 𝐴 3   −𝑢6 + 𝑢7 1 − 𝑚 𝑦 − 𝑢8 𝑧 − 𝜆  = 0  , 𝑤𝑒𝑟𝑒                                            

     𝐴 1 = 1 + 𝑢1 −
𝑢3

𝑢4  1 − 𝑚 
    ,        

     𝐴 2 =
𝑢3   𝑢1 + 𝑢4  1 − 𝑚  1 − 𝑢2  − 𝑢3  

𝑢4  1 − 𝑚 
  , 

𝐴 3 =
𝑢1 𝑢3   𝑢4  1 − 𝑚    1 − 𝑢2  − 𝑢3  

𝑢4  1 − 𝑚 
   .                                                                                               

Now, by using Routh-Hawirtiz criterion we obtain that 𝐸2 is locally asymptotically stable if and only if 

the following conditions 

      𝑢7  1 − 𝑚  𝑦 < 𝑢6 + 𝑢8 𝑧                                                                                                                  (3e) 

and condition  3d  are hold. For otherwise, it is a saddle point.  

4. The second three species equilibrium point 𝐸3 =   𝑥  , 𝑦  , 0, 𝑤    exists uniquely in the 𝐼𝑛𝑡. 𝑅+
3  under 

the following condition:  

     𝑢6 < min    𝑢7  1 − 𝑚  ,𝑢7   1 − 𝑢2   1 − 𝑚                                                                              (3f) 

where 

𝑥  =
𝑢6

𝑢1 𝑢7  1 − 𝑚 
   

𝑢7  1 − 𝑚 − 𝑢6

𝑢7  1 − 𝑚 
   , 𝑦  =

𝑢6

𝑢7  1 − 𝑚 
 , 𝑤  =

𝑢7   1 − 𝑢2    1 − 𝑚 − 𝑢6

𝑢7   1 − 𝑚 2
  . 

Moreover, according to the Jacobian matrix 𝐽3 given in[16], the characteristic equation of 𝐽3can be 

written as: 

             𝜆3 + 𝐵1𝜆
2 + 𝐵2𝜆 + 𝐵3   −𝑢3 + 𝑢4 1 − 𝑚 𝑦 − 𝑢5𝑤 − 𝜆 = 0  , 𝑤𝑒𝑟𝑒                   

    𝐵1 = 1 + 𝑢1 −
𝑢6

𝑢7  1 − 𝑚 
    ,                                                                                                                 

    𝐵2 =  
𝑢6   𝑢1 + 𝑢7  1 − 𝑚  1 − 𝑢2  − 𝑢6  

𝑢7  1 − 𝑚 
  , 

    𝐵3 =
𝑢1 𝑢6   𝑢7 1 − 𝑢2  1 − 𝑚 − 𝑢6  

𝑢7  1 − 𝑚 
  ,       
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Note that, by using Routh-Hawirtiz criterion we obtain that 𝐸3 is locally asymptotically stable if and 

only if the following conditions 

          𝑢4  1 − 𝑚  𝑦 < 𝑢3 + 𝑢5 𝑤                                                                                                                     (3g) 

and condition  3f  are hold. For otherwise, it is a saddle point.  

5. The positive equilibrium point 𝐸4 =   𝑥∗ , 𝑦∗ , 𝑧∗ , 𝑤∗   exists uniquely in the 𝐼𝑛𝑡. 𝑅+
4  under the 

following condition: 

    max   
𝑢3

𝑢4 1 − 𝑚 
 ,

𝑢6

𝑢7 1 − 𝑚 
  < 𝑦∗ < 1                                                                                                (3h) 

And it is locally asymptotically stable if and only if the following conditions are hold: 

     𝑦∗ < min    
𝑢3 + 𝑢5 𝑤∗

𝑢4  1 − 𝑚 
 ,
𝑢6 + 𝑢8 𝑧∗

𝑢7  1 − 𝑚 
                                                                                                        3𝑖  

    𝛽4 > −  𝑑22ℓ2 + ℓ4       𝑤𝑖𝑡    𝑦∗ <
1

2
                                                                                                      (3𝑗) 

where    ℓ2 = 𝑑11Γ2 + Γ6  , ℓ3 = 𝑑23𝑑32 − 𝑑24𝑑42   𝑎𝑛𝑑  ℓ4 = 𝑑11  Γ6 − ℓ3  + 𝑑24Γ8 

    𝛽5 > −𝛽6                                                                                                                                                          (3𝑘) 

   −  𝛽4 2 𝛽3 + 𝛽1𝛽2 + 𝛽1
2𝛽6  > 𝛽1

2𝛽5 + 𝛽3 𝛽1𝛽2 + 𝛽3                                                                          (3𝑙) 

However, 

𝑥∗ =
𝑦∗

𝑢1

  1 − 𝑦∗   , 𝑦∗ =
1 − 𝑢2 +

𝑢6

𝑢8
  1 − 𝑚 +

𝑢3

𝑢5
  1 − 𝑚 

1 +
𝑢7

𝑢8
  1 − 𝑚 2 +

𝑢4

𝑢5
  1 − 𝑚 2

, 𝑧∗ =
𝑢7

𝑢8

 1 − 𝑚  𝑦∗ −
𝑢6

𝑢8
 𝑎𝑛𝑑 

 𝑤∗ =
𝑢4

𝑢5

 1 − 𝑚  𝑦∗  −
𝑢3

𝑢5
  . 

4. The persistence of system ( 𝟐.𝟐 ) 

        In this section, we will establish conditions for the persistence of the global dynamics in the 

boundary plans 𝑥𝑦 and in the 𝐼𝑛𝑡𝑅+
3  of 𝑥𝑦𝑧  𝑎𝑛𝑑  𝑥𝑦𝑤 respectively by using the method of average 

Lyapunov function[17] as shown in the following theorems. 

Theorem3: Suppose that the equilibrium point  𝐸1 =   𝑥  ,𝑦  ,0 ,0   is locally asymptotically stable in 

the 𝐼𝑛𝑡𝑅+
2  , then it is a globally asymptotically stable in the 𝐼𝑛𝑡𝑅+

2  of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒.  

Proof: Consider the following subsystem 

        
𝑑𝑥

𝑑𝑡
= 𝑥   

𝑦  1 − 𝑦 

𝑥
− 𝑢1  = 𝑓 𝑥, 𝑦                                                                                                    ( 2.3 ) 

        
𝑑𝑦

𝑑𝑡
= 𝑦   

𝑢1 𝑥

𝑦
− 𝑢2  = 𝑔 𝑥, 𝑦                                                                                  

where  𝐸1 represent the positive equilibrium point of subsystem ( 2.3 ) in the 𝐼𝑛𝑡𝑅+
2  of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒.   

Assume that 𝐵 𝑥, 𝑦 =
1

𝑥  𝑦
 . Clearly, 𝐵  𝑥, 𝑦   is a 𝐶1 positive definite function. Further  

       ∆  𝑥 , 𝑦  =
𝜕

𝜕𝑥
  𝐵𝑓  +

𝜕

𝜕𝑦
  𝐵𝑔  = −  

𝑢2

𝑥2
+

𝑢1

𝑦2
   

Note that, ∆  𝑥 , 𝑦  does not change sign and is not identically zero in the 𝐼𝑛𝑡𝑅+
2  of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. Then 

according to Bendixson-Dulac criterion subsystem ( 2.3 ) has no periodic dynamic in the interior of 

positive quadrant of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. Further, since  𝐸1 is the only positive equilibrium point of 

subsystem ( 2.3 ) in the interior of positive quadrant of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. Hence according to Poincare-

Bendixson theorem 𝐸1 is a globally asymptotically stable in the 𝐼𝑛𝑡 𝑅+
2  of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 and the proof 

is complete.                                                     

Theorem 4: Assume that the equilibrium point 𝐸2 =   𝑥  ,𝑦  , 𝑧  , 0   of the system ( 2.2 ) is locally 

asymptotically stable in the 𝐼𝑛𝑡 𝑅+
3  and the following conditions 
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1

𝑥
+

𝑢1

𝑦
−

 𝑦 + 𝑦  

𝑥 
≤ 2  

𝑢1

𝑥 𝑦
                                                                                                                       4𝑎  

       
𝑦 + 𝑦 

𝑥 
<

1

𝑥
+

𝑢1

𝑦
                                                                                                                                             4𝑏  

       
𝑦2  𝑥 − 𝑥  2

𝑥 𝑥 
<      

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1 𝑥 

 𝑦 𝑦 
  𝑦 − 𝑦    

2

                                                                         4𝑐  

are hold. Then the equilibrium point 𝐸2 of the system ( 2.2 ) is globally asymptotically stable in 

the 𝐼𝑛𝑡 𝑅+
3  of 𝑥𝑦𝑧 − 𝑠𝑝𝑎𝑐𝑒 . 

Proof: Consider the following subsystem 

        
𝑑𝑥

𝑑𝑡
= 𝑥   

𝑦  1 − 𝑦 

𝑥
− 𝑢1  = 𝑥 𝑓1                                                                                                        ( 2.4 ) 

        
𝑑𝑦

𝑑𝑡
= 𝑦   

𝑢1 𝑥

𝑦
− 𝑢2 −  1 − 𝑚 𝑧  = 𝑦 𝑓2 

        
𝑑𝑧

𝑑𝑡
= 𝑧   −𝑢3 + 𝑢4 1 − 𝑚 𝑦  = 𝑧 𝑓3 

Now, consider the following function 

𝑉1  𝑥 , 𝑦 , 𝑧   = 𝑐1   𝑥 − 𝑥 − 𝑥  ln
𝑥

𝑥 
  + 𝑐2   𝑦 − 𝑦 − 𝑦  ln

𝑦

𝑦 
  + 𝑐3   𝑧 − 𝑧 − 𝑧  ln

𝑧

𝑧 
   .                       

Clearly 𝑉1: 𝑅+
3 → 𝑅 is a 𝐶1 positive definite function. Now by differentiating 𝑉1 with respect to time t 

and doing some algebraic manipulation by choosing  𝑐1 = 𝑐2 = 1 𝑎𝑛𝑑 𝑐3 =
1

𝑢4
  gives that: 

             
𝑑𝑉1

𝑑𝑡
< −   

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1 𝑥 

𝑦 𝑦 
  𝑦 − 𝑦   

2

+
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2 . 

However, the conditions   4𝑎  𝑎𝑛𝑑  4𝑏  guarantee the completeness of the quadratic term 

between  𝑥  𝑎𝑛𝑑  𝑦 .  So, if condition  4𝑐  holds. Then, 
𝑑𝑉1

𝑑𝑡
 is negative and hence 𝑉1 is strictly 

Lyapunov function. Thus 𝐸2 is globally asymptotically stable in the 𝐼𝑛𝑡 𝑅+
3  𝑜𝑓 𝑥𝑦𝑧 − 𝑠𝑝𝑎𝑐𝑒 and the 

proof is complete. 

Theorem5: Assume that the equilibrium point 𝐸3 =   𝑥  , 𝑦  ,0 , 𝑤    of the system ( 2.2 ) is locally 

asymptotically stable in the 𝐼𝑛𝑡 𝑅+
3  and the following conditions 

       
1

𝑥
−

 𝑦 + 𝑦  

𝑥 
+

𝑢1

𝑦
≤ 2  

𝑢1

𝑥 𝑦
                                                                                                                       4𝑑  

      
𝑦 + 𝑦 

𝑥 
<

1

𝑥
+

𝑢1

𝑦
                                                                                                                                              4𝑒  

      
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2 <     

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1 𝑥 

𝑦 𝑦 
  𝑦 − 𝑦    

2

                                                                        4𝑓  

are hold. Then the equilibrium point 𝐸3 of the system ( 2.2 ) is globally asymptotically stable in 

the 𝐼𝑛𝑡 𝑅+
3  of 𝑥𝑦𝑤 − 𝑠𝑝𝑎𝑐𝑒 . 

Proof: Consider the following subsystem 

        
𝑑𝑥

𝑑𝑡
= 𝑥   

𝑦  1 − 𝑦 

𝑥
− 𝑢1  = 𝑥 𝑓1                                                                                                        ( 2.5 ) 

        
𝑑𝑦

𝑑𝑡
= 𝑦   

𝑢1 𝑥

𝑦
− 𝑢2 −  1 − 𝑚 𝑤  = 𝑦 𝑓2 
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𝑑𝑤

𝑑𝑡
= 𝑤   −𝑢6 + 𝑢7 1 − 𝑚 𝑦  = 𝑤 𝑓3 

Now, consider the following function 

𝑉2  𝑥 , 𝑦 , 𝑤   = 𝑐1   𝑥 − 𝑥 − 𝑥  ln
𝑥

𝑥 
  + 𝑐2   𝑦 − 𝑦 − 𝑦  ln

𝑦

𝑦 
  + 𝑐3   𝑤 − 𝑤 − 𝑤  ln

𝑤

𝑤 
   .                     

Clearly 𝑉2: 𝑅+
3 → 𝑅 is a 𝐶1 positive definite function. Now by differentiating 𝑉2 with respect to time t 

and doing some algebraic manipulation by letting  𝑐1 = 𝑐2 = 1 𝑎𝑛𝑑 𝑐3 =
1

𝑢7
 gives that: 

        
𝑑𝑉2

𝑑𝑡
< −    

𝑦 

𝑥 𝑥 
  𝑥 − 𝑥  −   

𝑢1 𝑥 

 𝑦 𝑦  
  𝑦 − 𝑦    

2

+
𝑦2

𝑥 𝑥 
  𝑥 − 𝑥  2 . 

However, the conditions   4𝑑  𝑎𝑛𝑑  4𝑒  guarantee the completeness of the quadratic term 

between  𝑥 𝑎𝑛𝑑 𝑦 .  So, if condition  4𝑓  holds. Then, 
𝑑𝑉2

𝑑𝑡
 is negative and hence 𝑉2 is strictly 

Lyapunov function. Thus  𝐸3  is globally asymptotically stable in the  𝐼𝑛𝑡 𝑅+
3  𝑜𝑓 𝑥𝑦𝑤 − 𝑠𝑝𝑎𝑐𝑒 and the 

proof is complete. 

In the next theorem we show that system ( 2.2 ) is uniformly persistence. By the permanence or 

persistence of a system, we mean that all the species are present and non of them will go to 

extinction. The persistence of a system have been studied by several researchers for example 

see[18,19,20,21,22]. 

Theorem6: Assume that there are no periodic dynamics of system ( 2.2 ) in the boundary of the 

solution. Further, if the following conditions 

         𝑢4𝑢6 1 − 𝑚 2 + 𝑢8 𝑢4 1 − 𝑚  1 − 𝑢2 − 𝑢3 < 𝑢3𝑢7 1 − 𝑚 2                                               (4𝑔) 

         𝑢3𝑢7 1 − 𝑚 2 + 𝑢5 𝑢7 1 − 𝑚  1 − 𝑢2 − 𝑢6 < 𝑢4𝑢6 1 − 𝑚 2                                                (4) 

are hold. Then system ( 2.2 ) is uniformly persistent. 

Proof: Consider the following average Lyapunov function 

                𝛿  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑥𝑃1  𝑦𝑃2  𝑧𝑃3  𝑤𝑃4  , 

where each 𝑃𝑖  , 𝑖 = 1,2,3,4 is a positive constant. Obviously, 𝛿  𝑥 , 𝑦 , 𝑧 , 𝑤   is a nonnegative 

𝐶1 defined in 𝑅+
4  . Then we have 

Ψ  𝑥, 𝑦, 𝑧, 𝑤  =
𝛿   𝑥, 𝑦, 𝑧, 𝑤  

𝛿  𝑥, 𝑦, 𝑧, 𝑤  
 

                          = 𝑃1   
𝑦  1 − 𝑦 

𝑥
− 𝑢1 + 𝑃2   

𝑢1 𝑥

𝑦
− 𝑢2 −  1 − 𝑚  𝑧 −  1 − 𝑚  𝑤 + 

  𝑃3 −𝑢3 + 𝑢4  1 − 𝑚  𝑦 − 𝑢5 𝑤 + 𝑃4 −𝑢6 + 𝑢7  1 − 𝑚  𝑦 − 𝑢8 𝑧   . 

Now, violate condition  3𝑎  imply that 𝐸0 is unstable and then we obtain that these equilibrium 

point does not belong to the omega limit set of system   2.2  , then the only possible omega limit set 

of system   2.2   are the equilibrium points 𝐸𝑖  , 𝑖 = 1,2,3. 

1 ) For 𝐸1 =   𝑥  , 𝑦  ,0 ,0   we have 

       Ψ 𝐸1 = 𝑃3 −𝑢3 + 𝑢4 1 − 𝑚  1 − 𝑢2  + 𝑃4 −𝑢6 + 𝑢7 1 − 𝑚  1 − 𝑢2   

Violate condition  3𝑐  imply that  Ψ  𝐸1 > 0 for any  𝑃3 > 0 and 𝑃4 > 0. 

2 ) For 𝐸2 =   𝑥  , 𝑦  , 𝑧  , 0   we have  

       Ψ 𝐸2 = 𝑃4   
𝑢3𝑢7 1 − 𝑚 2 −   𝑢4𝑢6 1 − 𝑚 2 + 𝑢8 𝑢4 1 − 𝑚  1 − 𝑢2 − 𝑢3   

𝑢4  1 − 𝑚 2
   

So, Ψ 𝐸2 > 0 for any 𝑃4 > 0 provided that condition  4𝑔  𝑎𝑛𝑑 (3𝑑) are hold. 

3 ) For 𝐸3 =   𝑥  , 𝑦  ,0 , 𝑤    we have 

       Ψ 𝐸3 = 𝑃3   
𝑢4𝑢6 1 − 𝑚 2 −   𝑢3𝑢7 1 − 𝑚 2 + 𝑢5 𝑢7 1 − 𝑚  1 − 𝑢2 − 𝑢6   

𝑢7  1 − 𝑚 2
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So, Ψ 𝐸3 > 0 for any 𝑃3 > 0 provided that condition  4  𝑎𝑛𝑑 (3𝑓) are hold. 

Hence, system   2.2   is uniformly persistent and that completes the proof. 

                                                            

5. Numerical analysis 

       In this section the global dynamics of system   2.2   is studied numerically. The system   2.2   is 

solved numerically, for different sets of parameters and different sets of initial conditions, using 

predictor-corrector method with six order Runge-Kutta method [23], and then the time series for the 

trajectories of system   2.2   are drown. 

Now, for the following set of hypothetical parameters that satisfies stability conditions of the 

positive equilibrium point, system   2.2   has a globally asymptotically stable positive equilibrium 

point as shown in Fig.1. 

  𝑢1 = 0.1,𝑢2 = 0.1, 𝑢3 = 0.1, 𝑢4 = 0.8,𝑢5 = 0.2,𝑢6 = 0.1, 𝑢7 = 0.8 , 𝑢8 = 0.2, 𝑚 = 0.8           5.1    

 

 
Fig.1: Time series of the solution of system   2.2   that started from four different initial 

points   0.4 , 0.5 , 0.6 , 0.7  ,  0.7 ,0.8 , 0.4 , 0.5  ,  0.2 , 0.3 , 0.4, 0.5   and   0.7 , 0.2 , 0.4 , 0.2   for the 

data given by   5.1  . a  trajectories of x as a function of time, b  trajectories of y as a function of 

time, c  trajectories of z as a function of time, d  trajectories of w as a function of time. 

       Clearly, Fig.1 shows that system    2.2    has a globally asymptotically stable as the solution of 

system   2.2   approaches asymptotically to the positive equilibrium point 

𝐸4 =   1.39 , 0.83 , 0.17 , 0.17   starting from four different initial points and this is confirming our 

obtained analytical results. 

       Now, in order to discuss the effect of the parameters values of system   2.2   on the dynamical 

behavior of the system, the system is solved numerically for the data given in   5.1   with varying 

one parameter at   each time.  It is observed  that varying the parameters values 𝑢𝑖  , 𝑖 = 1, 5,6,7,8 

the solution still approaches to a positive equilibrium point 𝐸4 =  𝑥∗, 𝑦∗, 𝑧∗, 𝑤∗ , we obtain that 

system   2.2   persists as shown in Fig.2 for typical value 𝑢1 = 0.1 . 

       By varying the parameter 𝑢2 ,𝑚 and keeping the rest of parameters values as in   5.1  , it is 

observed that for 0.1 < 𝑢2 < 0.5 𝑎𝑛𝑑 0.1 ≤ 𝑚 < 0.9, the solution of system   2.2   approaches 

asymptotically to a positive equilibrium point  𝐸4 . while for  0.5 ≤ 𝑢2 < 1 𝑎𝑛𝑑 0.9 ≤ 𝑚 < 1, 

system   2.2   losses the persistence and the solution of system   2.2   approaches  asymptotically 

to 𝐸1 =   𝑥 , 𝑦 , 0, 0   as shown in Fig.3 for typical value 𝑢2 = 0.7. 
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Fig.2: Time series of the solution of system   2.2   for the data given by   5.1   with 𝑢1 = 0.1 which 

approaches to   1.39 ,0.83 ,0.17 ,0.17   in the interior of  R+
4  . 

 
Fig.3: Times series of the solution of system   2.2   for the data given by   5.1   with 𝑢2 = 0.7 which 

approaches to   1.97 , 0.28 , 0 , 0   in the interior of the positive quadrant of  xy − plane. 

6. Conclusions  

         In this paper, the conditions of occurrence of persistence of a mathematical model consists of a 

stage structured prey-predator model incorporating a prey refuge are established. Now, we shall 

discuss the effects of changing the parameters on the dynamical behaviour of system   2.2   

according to the numerical results in section 5:    

1. For the set of hypothetical parameters values given in   5.1  , the 

system    2.2    approaches asymptotically to global stable positive equilibrium point . 

2. It is observed that system   2.2    has no effect on the dynamical behavior for the data given 

in   5.1   with varying the parameter value 𝑢1 in the range  0.1 < 𝑢1 < 1  and the system 

still approaches to the positive equilibrium point and the system persists. 

3.  As  the  natural  death  rate  𝑢2 of the mature  prey increasing  in  the  range 0.1 < 𝑢2 <

0.5  and keeping other parameters fixed as in   5.1  , then again the solution of 

system   2.2   approaches asymptotically to the positive equilibrium point.  However, 

increasing  𝑢2  in  the range  0.5 ≤ 𝑢2 < 1  will cause extinction in the predators and the 

solution of system   2.2   approaches asymptotically to  𝐸1 =   𝑥  , 𝑦  , 0 , 0   and the system is 

not persists. 

4. As the natural death rate  𝑢3 of the first predator increasing in the range 0.1 < 𝑢3 < 1 and 

keeping the rest of parameters as in   5.1  , then again the solution of 

system   2.2   approaches asymptotically to 𝐸1. Consequently, for 𝑢3 > 0.1, the system is 

not persists. 

5. As the predation rate 𝑢4 increasing in the range 0.1 ≤ 𝑢4 ≤ 0.4 causes extinction in the 

predators and the solution of system   2.2   approaches asymptotically to  𝐸1 =

  𝑥  , 𝑦  , 0 , 0   . while, increasing  𝑢4  in the range 0.4 < 𝑢4 ≤ 1 then the system is persist and 

the solution of system   2.2   approaches asymptotically to the positive equilibrium point. 

6.  As the competition rate  𝑢5 and the predation rate  𝑢7 increasing in the range 0.1 ≤ 𝑢5 ≤

1 , 0.1 ≤ 𝑢7 ≤ 1 and keeping the rest of parameters as in    5.1  , then again the solution of 
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system   2.2   approaches asymptotically to the positive equilibrium point. It is observed 

that the natural death rate 𝑢6 of the second predator and the competition rate  𝑢8 have the 

same effect as  𝑢1 and  𝑢5 . 

7. As the number of preys inside the refuge 𝑚   increasing in the range  0.1 ≤ 𝑚 < 0.9  and 

keeping other parameters fixed as in   5.1  , then the system persists and again the solution 

of system    2.2    approaches asymptotically to the positive equilibrium point. However, 

increasing  𝑚  in the range 0.9 ≤ 𝑚 < 1 will cause extinction in the predators and the 

solution of system   2.2   approaches asymptotically to 𝐸1 and the system losses 

persistence. 
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